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1. Multiple Regression 

Regression is a method for modeling a set of response variables Y; (1 5 i 5 q) as 

functions of a set of predictor variables Xj (1 5 j <_ p) based on matched observations 

(training data). 

ylk!y2k,“‘yqk,=lk,Z2kr”‘2pk (0) 

Often there is only a single response variable (q = 1). Usually the goal is to estimate 

the conditional expectation of each Yi given a set of values for the predictor variables 

I 

Yi(2lrZ29-*-, Z~)=E[Y~IX~=~~,X~=Z~,“‘,X~=ZP] (l<i<q), (1) 

as the predictor variable values range over some region of interest in RP. These conditional 

expectation estimates are then used as best guesses for the true underlying response values 

assuming that the observed responses were generated from a noisy process 

yi 7 gi(Xl,X2,“*, xp)+Si (15i<.q) (2) 

where the 9; are single valued functions of p variables and si is a random variable with zero 

expectation. The conditional expectations Yi(z,, zz, - + . , zp) can be regarded as estimates 

for the gi(zr,z2,‘+‘,zp) (1 5 i 5 q). 

The classical linear model expresses the Pi as linear functions of the predictor variables 

P 
I 
Yi(Zl . . * Zp) = Qio + C aij2j 

j=l 

where the values of the oij are chosen to be those for which the expected distance between 

Yi and Yi is minimized. Several different distance measures are in common use, but the 

most common is the Euclidean 

A2 (aio ’ * . sip) = l&,X [Yi - Pi]“. (3) 

The resulting estimates are termed least-squares estimates. 
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Recently Friedman 

model (termed PPR for 

and Stuetzle (1981) suggested an extension to the basic linear 

Projection Pursuit Regression). It has the form 

with 

(5) 

and the jim single valued (ridge) functions of a single variable. Instead of modeling each 

response as a linear combination of the predictor variables (as in linear regression), PPR 

models each one as a sum of functions of linear combinations of the predictor variables. 

The parameters of the linear combinations aTrn as well as the functions jim are chosen to 

simultaneously minimize the expected distance between Y; and ?;. Friedman and Skutzle 

(1981) proposed an algorithm for approximately minimizing 

with ?i given by (4). They also proposed a forward stagewise procedure for choosing iWi. 

PPR can be expected to perform better than linear regression in those situations where 

there are substantial nonlinearities in the dependence of the responses on the predictor 

variables, especially if the nonlinearities are approximated reasonably well by a few ridge 

functions (functions that vary in only one direction in Rp). PPR approximations are dense 

in the sense that any function of p variables can be arbitrarily closely approximated by 

ridge function expansions (4) for large enough Mi (Diaconis and Shashahani, 1984). 

PPR was originally intended for (and presented in the c&text of) a single response 

variable (q = 1). For the case of several responses (q 1 1) PPR models (4) can be 

cumbersome due to the large number of functions and linear combinations involved. Also, 

the variance associated with estimating this many functions and parameters can be high 

for all but very large samples, due to overfitting. 

This paper presents a generalization of the PPR model suitable for multiple response 

regression. This generalization (termed SMART for Smooth Multiple Additive Regression 
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Technique) takes the form 

Fi(Zl * ’ ‘Zp) = Fi + 5 Bimfm(aT,X) (1 5 i < 4). (6) 

m=l 

with yi = EYi, Ejm = 0, E ji = 1 and ozom = 1. Here each response variable 

is modeled as a linear combination of predictor functions jm (1 5 m < M). Each of 

these predictor functions is a (smooth but otherwise unrestricted) ridge function in the 

predictor variables, i.e. a function of a linear combination of the predictors. An algorithm 

is presented for minimizing 

with respect to the response linear combinations pz = (pIma - .pe,,,), the predictor linear 

combinations CY~ = (al, * - - apm), and the functions jm (1 5 m < M) with Yi given by 

(6). The (non-negative) response weights Wi (1 < i 2 q), specified by the user, permit 

some flexibility in the specification of a loss metric (see below). (It is possible to specify a 

more general quadratic form for the response loss metric than (7); this would be represented 

by a general positive definite symmetric matrix.) 

SMART models (6) contain PPR models (4) as a special case. They often can be much 

more parsimonious however, by capturing the dependence of the response variables with 

many fewer functions. This is especially true when there is a high degree of association 

among the responses. For the case of a single response (q = 1) both models have the same 

form. They differ, however in that SMART chooses estimates that minimize (7) whereas 

PPR chooses the cyz (1 5 m 5 M) in a forward stagewise manner. This can result in 

considerably different models, especially when there are strong associations among the 

predictor variables. 

Expected values are computed from the data as 

E[Z] = &kzk/ 5 wk (8) 
k=l k=l 

where 2 is considered to be a random variable and zk (1 5 k < N) are its realized values 

comprising the data. The observation weights wk, specified by the user, can be employed to 
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assign differing mass to different observations. They can also be used to impiement iterative 

reweighting schemes for robustification or approximate maximum likelihood fitting. 

As with any distance measure, the squared error loss criterion (7) is sensitive to the 

relative scales of the response variables Yi. The influence of each response is in proportion 

to its variance uur(Y;). If the goal is to give each response equal importance in the loss 

function (7), then one can set Wi = l/ var (Yi) or rescale the response variables to have 

equal variance. 

2. Classihation 

Classification is closely related to regression. Here a single response variable Y assumes 

several categorical (unorderable) values (cl, cz , - - - ,cq). The loss criterion is usually taken 

to be the misclassification risk 

R = Ell$nq 2 kj ~(i I X1 9 X2,. * * Xp>] 
-- i=l 

(9) 

where Iii is the (user specified) loss for predicting Y = cj when its true value is c; (iii z 0). 

The conditional probability p(i 1 zr - - - tP) is the probability that, Y = ci given a particular 

set of values for the predictor variables zr -. - zP. The sum in (9) is simply the loss for 

predicting Y = cj given a set of predictor values. The minimization operation provides a 

decision rule that minimizes this loss at each set of predictor values. The risk is then the 

expected or average loss using this optimal decision rule. The art of classification is to find 

estimates of the conditional probabilities that minimize the misclassification risk. 

Defining category (class) indicator variables for each observation k as 

one has 

h. sk = 
1 if yk = ci I<k<N 

0 otherwise 1 5 i 5 q 

with Xi the unconditional (prior) probability that Y = ci (H; = l), si = 5 wkb(ykr ci), 

k=l 
and 

s = &. Here 6 is the Kronecker delta function 
i=l 

a(a,b)={ lifazb 
O-otherwise. 



Substituting (10) into (9) one has 

From this one sees that the optimal decision rule for a given set of predictor values zl a . . zP 

is to assign Y = cJ’ w here J’ is the integer value (1 5 J’ 5 q) that minimizes the sum in 

(11). 

When the prior probabilities ri (1 5 i 5 q) are unknown, they can be estimated from 

the data as iii = s~/S. Often the IOSS~S Zij are taken to be simply Zij = 1 - S(i, j). When 

both of these situations occur the misclassification risk reduces to simply the misclassifi- 

cation probability. 

. SMART models the condition expectations (10, 11) in the form given by (6). Ideally 

the parameter and function estimates should be chosen using the misclassification risk R 

(11) as a distance measure.. However, as discussed in Breiman, Friedman, Olshen and 

Stone (1983) ( see also Efron, 1978), this can lead to difficulties due to the non-convexity 

of R (11). A good surrogate is the Euclidean distance La (7) with 

SAi ’ z 
w; = - 

Si c ij * 
j=l 

(121 

3. Optimization of least squares criterion for SMART models 

This section discusses the minimization of Lz (6, 7) simultaneously with respect to 

ajm (1 5 j < P),Pim (1 5 i I q) and the functions fm (1 < m 5 M) for a given number 

of terms M. (A met hod for choosing M is discussed in the next section.) An alternating 

optimization strategy is used. The parameters are grouped such that the solution for 

those in each group is straightforward given fixed values for those outside the group. A 

solution is obtained for the variables in a group and these solution values replace their 

current values. Attention is then focused on the next group and this process repeated for 

its parameters. After solutions have been obtained for all groups of parameters, another 

pass is made over the groups obtaining new solution values, given the new values for the 

parameters outside each group that were obtained in the previous pass. These passes are 

repeated until the loss criterion L2 (7) fails to decrease on two consecutive passes. Usually 
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a threshoid E is set at a small value and if improvement on two consecutive ?asses is less 

than E, iterations are stopped and the parameter values at that point taken as the solution. 

Since at each step in this process La is made smaller through a partial minimization, and 

L3 _> 0, the alternating optimization must converge (provided E is large compared to the 

numerical accuracy of the computer’s arithmetic). However, there is no guarantee that the 

solution is the global minimum of LQ. It may be a local minimum. Strategy for dealing 

with this problem in the context of SMART modeling is discussed in the-next section. 

The parameter grouping used in the SMART algorithm is hierarchical. The first level 

grouping is by term. The parameters Qjm (1 5 j 5 p), @im (1 5 i < q) and the function - 

fm (for fixed m) form each group. There are obviously M such groups. At the second 

level the parameters of each term are divided into three groups: the ajm (1 5 j 5 p) form 

the first (sub) grouping, the Pim (1 5 i 5 q) form the second and the function fm forms 

the third. 

Consider a particular term, k (1 5 k 5 M). The loss criterion (6,7) can be reexpressed 

as 

i=l 

with 

%k) 
=~--i - C Pimfm(Q$X) 

(13) 

m#k 

Equation 13 isolates the kth term’s contribution to the criterion. Following the alter- 

nating optimization strategy we minimize L2 (Lr)) with respect to the parameters of the 

kth term. These parameter values are then used to help define &(k,), k’ # k, to obtain 

new solutions for the parameters of other terms. Repeated passes are made over all the 

terms until convergence (Lz stops decreasing-see above). 

We now focus on obtaining solutions for the parameters of the kth term given Ritk) 

(14). The solutions for the &k (given fk and a:) are straightforward 

Pi; = 
EIRick)fk(akTX’I (1 I i < q) 

E[fki+# - 
WI 

(Remember that E[&(k)] = E[fk(azX)] = 0). 
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The solution for the function fk (given pz and arj is almost as easily obtained. 

Reexpressing Lr) (13) as 

LY’ = Ea;x ‘[k Wii&(k) - Pikfk)* 1 a:X], iw 
i= 1 

we see that it is minimized if fk is chosen to minimize the conditional expectation in 16 

for each value of azz. This is accomplished by 

Since we require Efk = 0 and Efk = 1, we standardize fi, rendering the denominator in 

(17) irrelevant. 

It remains to find a solution that minimizes Lr) (13) with respect to a: = (ark, 

Q2k,“’  Qpk) given values for P;k (1 5 i < q) and a (fixed) function fk. Unlike the other 

parameters (p,’ and fk), C$ does not enter in a purely quadratic way into the distance 

criterion. Therefore, solutions may not be unique, and they cannot be obtained in a single 

step. An iterative numerical optimization must be performed. 

The loss criterion L2 (6, 7, 13) can be expressed in the generic form 

L2(ak) = eWiE[$(ak)]2 

i=l 

iw 

with 

The classical numerical optimization technique for criteria of the form (18) is the Gauss- 

Newton method (see Gill, Murray and Wright, 1981, Section 4.7). Let a;)= = 

(‘j (alOk),*-,apk > be a trial set of values at some point during the optimization. The Gauss- 

Newton estimate for the solution a: (the next set of trial values in the iterative process) is 

(OF af = ak + AT where the vector AT is the solution to the set of simultaneous equations 

2 W;E[(E)T(-$)]A = -2 WiE[($JTgi] 
i=l 

k 
i=l 

im 



The function gi an d the vector of partial derivatives are evaluated at ai”. From ( 19) one 

has 

iw 

where f’(z) = d’/dz. After solving (20) for A, cXk replaces &f’ and the process can be 

repeated until convergence (La stops decreasing). 

It is possible that a Gauss-Newton step fails to decrease Lz (La(af’+A) > Lz(ar’)). 

In this case the step is cut in half (Qk = at) + A/2). If this new step still results in an 

increase in La, the step is cut again (ak = CY~’ + A/4). This repeated cutting of the step 

is continued until LQ decreases. Since the matrix on the left-hand-side of (20) is positive 

definite, a = A/ 1 A 1 is a valid descent direction and at some point the step cutting must 

give rise to a decrease in LQ (unless crpl represents a minimum of Lt,). 

The nonparametric estimates for the the functions fk(urz) are stored as an ordinate 

and abscissa value for each observation. The derivative estimates ji(afz) are similarily 

stored (see below). These values are obtained when fk(aEz) is evaluated (17). When 

Qk (OF is changed to CY~ (via Gauss-Newton update), an interpolation scheme must be 

employed to obtain MheS for fk( a: z) from fk( aflT z). This interpolation is almost as 

expensive as obtaining the optimal function for the new argument azz. We, therefore, do 

not iterate the Gauss-Newton stepping until convergence for a given function, but rather 

take only a single step. A new (optimal) function fkf[(oflT + AT)z] (17) is evaluated, and 

the next Gauss-Newton step (19-21) is made based on this new function. Step cutting, as 

described above, is employed for bad steps. In this way both the function and the predictor 

linear combination for the k - th term are simultaneously optimized by the Gauss-Newton 

iteration procedure. 

The expected values E[-] are easily evaluated via (8). The conditional expectation 

estimates (17) for evaluation of the optimal functions are more difficult. The method used 

here is described in detail in Friedman (1984a). The derivative estimates (21) are made 

by taking first differences of the function estimates 

f~(Q$l) = 
[fk(+~+l) - fk(Q:--l)j 

&r+1 - w-1) 

i2 < , < N _ 1l 
- - (22) 
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where the zl are labeled in increasing order of azz. Endpoints (I = 1 and 1 = N) 

are handled by simply copying the values of their nearest neighbors. Such estimates can 

become unstable if the denominator becomes too small. This can be avoided by pooling 

observations for which 

into a single observation for the purpose of derivative calculation. Here I is the semi- 

interquartile range of af z and E is a small number (E H 0.05). This pooling can be done 

rapidly by using a method similar to the pooled-adjacent-violators algorithm for isotone 

regression (Kruskal, 1964). 

4. Modeling Strategy 

The principal task of the user is to choose M (6) the number of predictive terms com- 

prising the model. Increasing the number of terms decreases the bias (model specification 

error) at the expense of increasing the variance of the (model and parameter) estimates. 

Since the expected squared error, ESE, is the sum of these two effects - ESE = (bias)2 + 

variance, there is an optimal value for M. Sample reuse techniques can be used to estimate 

these effects - ESE through cross-validation (Stone, 1977) and (Geisser, 1975), and vari- 

ance through bootstrapping (Efron, 1983). It is possible to implement these procedures in 

conjunction with SMART with the aim of estimating an optimal value for A4 as well as 

confidence intervals for estimates. 

Since the variance tends to increase more or less linearly with increasing M while 

the (bias)2 tends to drop rapidly for small (increasing) M, leveling off to a slow decrease 

for larger M, a good estimate for the optimal M value can usually be made by simply 

inspecting L.2 vs. M for various values of M. That point at which a unit decrease in M 

leads to a relatively large increase in La (compared to that for close-by larger M values) is 

often a good choice. Since the ESE tends to vary slowly as a function of M in the region 

near the optimal M value (especially on the side of increasing M), the choice is not critical 

provided it is not too small. 

For a given value of M, solutions (minimizing La) may not be unique. Sometimes 
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there are local minima that can trap the SMART algorithm thereby masking a better 

global minimum. Such local minima represent solutions that are relevant to larger (higher 

M) models. Solutions are not necessarily found in optimal order as M is increased. This 

suggests a backwards stepwise model selection procedure. 

The strategy is to start with a relatively large value of M (say M = ML) and find 

all models of size Mr. and less. That is, solutions that minimize Lg are found for M = 

ML, ML - 1, ML -2,+-e, 1 in order of decreasing M. The starting parameter values 

for the numerical search in each M-term model are the solution values for the M most 

important (out of M + 1) terms of the previous model. Term importance is measured as 

‘m=~KIBirnI (l<m<M) (24) 

i=l 

normalized so that the most important term has unit importance. 

(Note that the variance of all fm is one.) The starting point for the minimization of the 

largest model, M = ML, is given by an ML term stagewise model (Friedman and Stuetzle, 

1981). 

The sequence of solutions generated in this manner is then examined by the user and 

a final model is chosen according to the guidelines above. 

5. Relative knportance of Predictor Variables 

It is often useful to have an idea of the relative importance of each predictor variabie to 

the final model. For (single response) linear models an often used measure is the absolute 

value of the corresponding regression coefficient Qj times a scale measure of the predictor 

variable aj, 1j = bj ] aj 1, (1 < j 5 p). A corresponding relative importance measure for 

(multiple response) nonlinear models would be 

Ij=cjkWiEI g I (1~~~~) 

i=l j 

with P” = E[Yi 1 ZI* * * zP]. For SMART models (6) this becomes 

13 = Uj & Wi E 1 2 Pirnajrn.f’(Q~X) 1 (1 I i 2 P) 

i= 1 m=l 

(25) 
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where f;(z) = dfm/dz (22). In the case of only one term, M = 1, (25) is equivalent 

t0 Ij = cj ( aj I. It is important to keep in mind that the same care is required in 

interpreting (25) as in the corresponding interpretation of regression coefficients in linear 

models, especially in the presence of high collinearity among the predictor variables. 

5. Examples 

In this section we show and discuss the results of applying the procedure described in 

the previous sections to several data sets. The purpose here is to illustrate the functioning 

of the procedure and to provide a little insight into the interpretation of results. They are 

not intended as definitive or complete analyses of these data. 

The first example illustrates the use of the algorithm in an approximation rather 

than an estimation mode. The purpose is to approximate a single function (q = 1) of three 

variables by a ridge function expansion (4). Thus, there is no noise in the system, e = 0 (2). 

The data consist of 200 randomly generated triangles in the plane. The response function 

was taken to be the ratio of the area of the triangle to the area of the circumscribed circle. 

The predictor variables are the lengths of the three sides of the triangle, ordered so that 

the first variable correspond to the smallest side, the second to the middle, and the third 

predictor to the largest side. The true functional form is 

4[(%1 + z2 + 23)(% + z3 - Zl)(Zl + 23 - z*)(q + 22 - 23)]: 
= 

94w2~3)2 
(26) 

which is of course symmetric in the three variables. This complicated expression does 

not have an exact ridge function expansion. The purpose of the exercise is to see if the 

SMART algorithm can find a parsimonious ridge function expansion that provides a good 

approximation. 

Table 1 shows the fraction of unexplained variance e2 as a function of the number 

of terms in the model M. Using the guidelines of Section 4 the M = 4 term model was 

chosen. Table 2 shows the solution linear combinations for the four terms as well as the 

corresponding importance of each term (24). Table 3 presents the relative importance of 

each predictor variable (side length) (25) to the model. Figures la - Id show the four 

predictor functions fm ( CY~Z) (1 5 m 2 4) corresponding to each term. The functions 
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. 
are displayed as scatterplots of linear combination value (abscrssa) versus function vaiue 

. (ordinate) for the 200 observations. 

Evsn though the true function (26) is quite complicated, the algorithm was able to 

find a four term ridge function expansion that accounts for 99.88% of its variance. The 

two most important terms involve linear combinations that are close to those appearing 

in the numerator in (26). The third linear combination involves Xr and Xa while the last 

involves X2 and X3. The solution function corresponding to the first term is monotone 

and nearly linear; the next two are highly non monotone and the fourth is nearly monotone 

but highly nonlinear. All three variables are relatively important to the model with X1 

and Xa being most important. Although the solution ridge function expansion is very 

accurate, it is unlikely that one would be able to guess the correct functional form (26) 

from the four linear combinations (Table 2) and the four predictor functions (Figs. la-ld). 

The second example, although involving actual data, is still somewhat contrived to 

illustrate the functioning of the algorithm. It consists of various physico-chemical proper- 

ties of the 52 chemical elements ranging from Lithium (Li) to Xenon (Xe) in the periodic 

table of elements. Four of these properties form the responses (q = 4); Yr = first ionization 

energy, Y2 = electronegativity, Ya = covalent radius, and Y4 = density (Lewi, 1982). The 

two predictor variables (p = 2) are locators of the element in the periodic table; X1 = 

atomic number, and X2 = atomic group number. The goal is to see how accurately one 

can model these physico-chemical properties by periodic table location, what form this 

model might take, and whether atomic number or group is more important in determining 

the dependencies. 

To aid in interpretation both the four response and two predictor variables were 

standardized to have zero means and unit variances as calculated over the 52 observations 

(elements). The response weights Wi (1 5 i < 4) (7) were all set to unity. The accuracy 

of the fitted model is expressed in terms of fraction of variance unexplained, defined as 

e2 = L2/ 2 Wi E[Yi - yi]” (27) 
i=l 

with q = 4, L2 given by (7), and Pi = EYia 
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Table 4 gives the fraction of unexplained variance e2 (27) as a function of the number 

of terms in the model. Again, the guidelines of section 4 suggest a four term (M = 4) 

model. Table 5 shows the response linear combinations Pim (1 < i 2 4), the predictor 

linear combinations ajm ( 1 5 j 5 2) as well as term importance I, (24) for this four term 

model (1 2 m 5 4). Table 6 shows the fraction of unexplained variance for each response 

separately for this model. The relative importance of each predictor variable Ii (25) was 

atomic number 11 = 1.00, group 12 = 0.38. The four predictor functions corresponding to 

the four terms (Table 5) are shown in Figures 2a - 2d. 

Since the cardinality of this data set is rather small (N = 52) and the resulting model 

rather complex, one might suspect the presence of considerable overfitt ing. Table 6 shows 

that this is indeed the case. The last column of this table shows a cross-validated estimate 

of the fraction of unexplained variance for each response separately. This cross-validated 

estimate is obtained by removing one observation at a time, estimating a four term model 

on the remaining (N = 51) data, and computing the squared residual for the left-out 

observation using this model. The last column of Table 6 was obtained by averaging these 

squared residuals over all (IV = 52) observations left out one at a time. Although these 

cross-validated results still show considerable explanatory power in the model, we see that 

the simple resubstitution estimate of the squared-error loss is about 3: times too optimistic 

on the average in this case. 

The first two predictive linear combinations (Table 5) are dominated by X1, atomic 

number. The corresponding functions (Figs. 2a, 2b) are highly nonlinear; the first has a 

periodic saw-toothed appearance with steeply rising slope and the second is highly oscil- 

latory. The third function involves more of Xz, group number, and is also very nonlinear. 

The fourth function is dominated by Xz and has a gentle monotonic dependence. 

On the basis of this analysis one would conclude that these physico-chemical properties 

do depend on position in the periodic table, but in a highly nonlinear (periodic) manner. 

Of course, this is already well known. The purpose of including this example was to show 

that the SMART algorithm is capable of modeling such severe nonlinear response surfaces 

even with relatively small sample size. 

The final example is a classification problem involving medical data. The observations 
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consist of 154 patients with chronic hepatitis (Efron and Gong, 1983). The purpose of this 

exercise is to model the severity of the disease as a function of seven clinical measurements. 

These measurements include the age and sex of the patient as well as the blood concen- 

trations of five quantities (Table 7). The response is binary valued indicating whether the 

patient did or did not survive the illness. In the training sample 122 patients survived 

(class = l), while 32 did not (class = 2). Although the sample size (N = 154) might be 

regarded as moderate, the small class 2 sample size dominates the statistical aspects of 

the. problem. 

SMART classification was applied to these data with the purpose of constructing 

a decision rule for classifying the outcome of the illness based on the predictor variable 

values. The prior probabilities Iri (1 5 i 5 2) (10, 11, 12) were estimated to be the sample 

proportions, ~1 = 122/154, Q = 32/154. Since a conservative diagnosis is usually desired, 

the loss for misclassifying a class 2 observation as class 1 (&I) was set to four times that for 

misclassifying a class 1 as a class 2 (112); specifically Izr = 4.0 and 112 = 1.0 (9,11,12). The 

seven predictor variables were all standardized to have zero expectation and unit variance. 

Table 8 shows the fraction of unexplained variance e2, as well.= two a”ci-ditional quan- 

tities, as a function of the numbers of terms in the model. These additional quantities 

are two different estimates of the misclassification risk associated with using this M-term 

model for the conditional expectations in a minimum risk decision rule (11). The first 

estimate Rr (direct resubstitution risk estimate) is obtained by classifying each training 

observation k (1 5 k 5 IV) using the minimum loss rule (11) 

and then computing the risk by averaging the loss associated with the resulting misclassi- 

fications 

RI =~~rS~~li~~6(yk,ci)/~~k. (29) 
k=l i=l k=l 

The second estimate J&J (conditional probability risk estimate) is the value of R (11) 

computed by substituting the conditional expectation estimates of this (M-term) model 

directly into (11). To the extent that the conditional expectation (probability) estimates 
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are accurate these two risk estimates should have simiiar values. However, it is often 

possible to do accurate classification in the presence of very poor probability estimates. 

Comparing the values of RI and & gives some indication of how well the model conditional 

expectation estimates are approximating the true underlying probabilities. If Rl is much 

smaller than R2 (which is often the case) then the probability estimates are not too close. 

Using the guidelines of Section 4 a three term (Al = 3) model was chosen. Table 

9 gives the solution linear combinations a% and the importance I,,, (24) for each term 

1 5 m 5 3. Table 10 shows the relative importance of each predictor variable (25). 

Figures 3a - 3c show the three predictor functions fm(azz) corresponding to each model 

termm (1 <m<3). 

The resulting model misclassifies 24/122 H 20% of the survivors (class 1) and 

2/32 H 6% of the nonsurvivors (class 2). The goal of a conservative classification rule has 

been’achieved. Since the sample size is only moderate one may again suspect these results, 

based on the training sample, to be optimistic estimates. The corresponding cross-validated 

misclassification results are 33/122 z 26% and 3/32 N 9%. Although irdicating some 

measure of overfitting, these cross-validated results indicate that a substantial dependence 

of survivability on the predictor covariates has been captured by the model. 

The predictor functions (Figs. 3a-3c) are substantially nonlinear. The first and most 

important term is mainly a function of variables 1 (sex) and 7 (bilirubin). For values of 

this linear combination less than 0.1 the probability of survival is very high. For values 

greater than 0.1 this probability decreases linearly and very rapidly with increasing value 

of this predictor linear combination. 

6. Discussion 

The examples of the preceding section suggest that the modeling procedure presented 

here can successfully detect and model highly nonlinear relationships between response 

and predictor variables. Such highly non-linear dependencies are not characteristic of all 

situations. In these cases the procedure can be used to verify their non-presence. This i, 

signified by the need for only a single ridge function (M = 1) with nearly linear shape. 

SMART models are not the only nonlinear generalizations of linear regression and 
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classification. Other generalizations include classification and regression trees (Breiman, 

Friedman, Olshen and Stone, 1983), ACE (Breiman and Friedman, 1984) and other gener- 

alized additive models (Hastie and Tibshirani, 1984), logisitic regression (Cox, 1970) and 

nonlinear link functions associated with generalized linear models (McCullagh and Nelder, 

1983). SMART modeling (6) can be viewed as generalizations of some of these (logistic 

regression, generalized linear models) in the sense that these models reduce (or nearly 

reduce) to special cases of (6). H owever, several other of the above listed methods rep- 

resent different generalizations in the same sense. Only classification and regression trees 

(CART) share with SMART the property of being completely nonparametric in that any 

response function can be arbitrarily well approximated given a large enough expansion. 

The particular form chosen for SMART models was motivated by the desire to produce 

parsimonious models in simple situations (nearly linear response dependence or high as- 

sociation among the response variables ) along with the ability to produce more complex 

models for those situations that require them. 

A FORTRAN program (Friedman, 1984b) implementing SMART regression and clas- 

sification is available from the author. 
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Table 1 

Fkaction of unexplained variance e2 as a func- 

tion of number of ridge function terms M for tri- 

angle example. The * indicates the chosen model. 

M c2 

6 0.9 x lo-” 

5 1.0 x 10-3 

4* 1.2 x 1o-3 

3 3.9 x 1o-3 

2 9.6 x 1O-3 

1 3.8 x lo-’ 

Table 2 

Predictor linear combination a: and relative 

term importance of four term model for triangle 

example. 

Term Importance a1 a2 ~3 

1 1.00 0.542 0.502 -0.674 

2 0.21 -0.506 -0.689 0.520 

3 0.16 0.385 0.065 -0.925 

4 0.13 0.003 -0.674 0.739 
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Table 3 

Relative predictor variable importance for tri- 

angle example. 

Variable 1 2 3 

Importance 0.93 0.68 1.00 

Table 4 

Fraction of unexplained variance e2 (27) as a 

function of number of ridge function terms A4 for 

the atomic element example. The * indicates the 

chosen model. 

M e2 

6 .036 

5 .047 

4* .058 

3 .180 

2 .188 

1 .413 
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Table 5 

Linear combinations /3;, CZ”, and term importance I, of the 

four term model for atomic element example 

(4 
1 1.00 -0.43 -0.40 0.39 0.29 .98 -0.18 

2 0.53 -0.02 0.03 -0.33 0.43 .93 -0.36 

3 0.51 0.08 0.07 0.39 -0.24 .84 -0.54 

4 0.49 0.17 0.24 -0.11 0.21 .39 0.02 

Table 6 

Fraction of unexplained variance for each response variable 

ei (1 5 i 5 4) fcr the four term model. Cross-validated results 

ef (cu) are also shown. 

i Re,qonse variable ef er(cu) 

1 first ionization energy .094 .20 

2 electonegativity .054 .16 

3 covalent radius .046 .27 

4 density .038 :18 
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Table 7 

Predictor variables Xj (1 5 j 5 7) used in hepatitis example. 

Variable Variable 

number name 

1 Sex 

2 albumin 

3 proteim 

4 age 

5 SGOT 

6 alkphos 

7 bilirubin 

Table 8 

Fraction of unexplained variance e2, direct resubstitution risk 

estimate Rl, and conditional probability risk estimate RQ as a func- 

tion of number of ridge function terms A4 for hepatitis classification 

example. The * indicates the chosen model. 

M e2 RI & 

4 .47 .lG .31 

3* .49 .21 .33 

2 .57 .28 .37 

1 .60 -24 .30 
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Table 9 

Predictor linear combinations a: and relative term impor- 

tance Im of three term model for hepatitis example. 

Te= I, mm mm wrn wrn am wrn wrn 

(4 

1 1.00 -.67 -.31 .03 .28 -.16 .19 .55 

2 .65 -.09 -.68 -.36 -.ll .03 .27 -.55 

3 .48 -.05 -.15 .83 -.17 -.lO -.4a .13 

Table 10 

Relative predictor variable importance for hepatitis example. 

Variable 1 2 3 4 5 6 7 

Importance .74 1.0 .68 .45 .21 .44 .97 
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Figure Captions 

Figure la Triangle data: Term 1 predictor function 

Figure lb. Triangle data: Term 2 predictor function 

Figure lc. Wangle data: Term 3 predictor function 

Figure Id. Triangle data: Term 4 predictor function 

Figure 2a. Periodic table data: Term 1 predictor function 

Figure 2b. Periodic table data: Term 2 predictor function 

Figure 2c. 

Figure 2d: 

Figure 3a. 

Figure 3b. 

Figure 3c. 

Periodic table data: Term 4 predictor function 

Periodic table dataz Term 4 predktor function 

Chronic hepatitis data: Term 1 predictor filnction 

Chronic hepatitis data: Term 2 predictor function 

Chronic hepatitis data: Term 3 predictor function 
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Figure la. 

Figure lb. 
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Figure lc. 
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Figure 2c. 
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Figure 3a. Figure 3a. 
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Figure 3b. 
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Figure SC. 
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