
Classification and Novel Class Detection
in Concept-Drifting Data Streams

under Time Constraints
Mohammad M. Masud, Member, IEEE, Jing Gao, Student Member, IEEE,

Latifur Khan, Senior Member, IEEE, Jiawei Han, Fellow, IEEE, and

Bhavani Thuraisingham, Fellow, IEEE

Abstract—Most existing data stream classification techniques ignore one important aspect of stream data: arrival of a novel class. We

address this issue and propose a data stream classification technique that integrates a novel class detection mechanism into

traditional classifiers, enabling automatic detection of novel classes before the true labels of the novel class instances arrive. Novel

class detection problem becomes more challenging in the presence of concept-drift, when the underlying data distributions evolve in

streams. In order to determine whether an instance belongs to a novel class, the classification model sometimes needs to wait for more

test instances to discover similarities among those instances. A maximum allowable wait time Tc is imposed as a time constraint to

classify a test instance. Furthermore, most existing stream classification approaches assume that the true label of a data point can be

accessed immediately after the data point is classified. In reality, a time delay Tl is involved in obtaining the true label of a data point

since manual labeling is time consuming. We show how to make fast and correct classification decisions under these constraints and

apply them to real benchmark data. Comparison with state-of-the-art stream classification techniques prove the superiority of our

approach.

Index Terms—Data streams, concept-drift, novel class, ensemble classification, K-means clustering, k-nearest neighbor

classification, silhouette coefficient.

Ç

1 INTRODUCTION

DATA stream classification poses many challenges, some
of which have not been addressed yet. Most existing

data stream classification algorithms [2], [6], [11], [13], [17],
[22], [27], [29] address two major problems related to data
streams: their “infinite length” and “concept-drift.” Since
data streams have infinite length, traditional multipass
learning algorithms are not applicable as they would
require infinite storage and training time. Concept-drift
occurs in the stream when the underlying concept of the
data changes over time. Thus, the classification model must
be updated continuously so that it reflects the most recent
concept. However, another major problem is ignored by
most state-of-the-art data stream classification techniques,
which is “concept-evolution,” that means emergence of a
novel class. Most of the existing solutions assume that the
total number of classes in the data stream is fixed. But in
real-world data stream classification problems, such as
intrusion detection, text classification, and fault detection,

novel classes may appear at any time in the stream (e.g., a
new intrusion). Traditional data stream classification
techniques would be unable to detect the novel class until
the classification models are trained with labeled instances
of the novel class. Thus, all novel class instances will go
undetected (i.e., misclassified) until the novel class is
manually detected by experts, and training data with the
instances of that class is made available to the learning
algorithm. We address this concept-evolution problem and
provide a solution that handles all three problems, namely,
infinite length, concept-drift, and concept-evolution. Novel
class detection should be an integral part of any realistic
data stream classification technique because of the evolving
nature of streams. It can be useful in various domains, such
as network intrusion detection [12], fault detection [8], and
credit card fraud detection [27]. For example, in case of
intrusion detection, a new kind of intrusion might go
undetected by traditional classifier, but our approach
should not only be able to detect the intrusion, but also
deduce that it is a new kind of intrusion. This discovery
would lead to an intense analysis of the intrusion by human
experts in order to understand its cause, find a remedy, and
make the system more secure.

Note that in our technique we consider mining from only
one stream. We address the infinite length problem by
dividing the stream into equal-sized chunks so that each
chunk can be accommodated in memory and processed
online. Each chunk is used to train one classificationmodel as
soon as all the instances in the chunk are labeled. We handle
concept-drift by maintaining an ensemble of M such
classification models. An unlabeled instance is classified by
taking majority vote among the classifiers in the ensemble.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 6, JUNE 2011 859

. M.M. Masud, L. Khan, and B. Thuraisingham are with the Department of
Computer Science, Eric Jonsson School of Engineering, University of Texas
at Dallas, 800 West Campbell Road, EC-31, Richardson, TX 75080.
E-mail: {mehedy, lkhan, bhavani.thuraisingham}@utdallas.edu.

. J. Gao and J. Han are with the Department of Computer Science, Siebel
Center for Computer Science, University of Illinois, Urbana-Champaign,
Rm 2119, 201 North Goodwin Avenue, Urbana, IL 61801.
E-mail: jinggao3@illinois.edu, hanj@cs.uiuc.edu.

Manuscript received 10 Sept. 2009; revised 20 Feb. 2010; accepted 25 Feb.
2010; published online 6 Apr. 2010.
Recommended for acceptance by E. Bertino.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2009-09-0652.
Digital Object Identifier no. 10.1109/TKDE.2010.61.

1041-4347/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

The ensemble is continuously updated so that it represents
the most recent concept in the stream. The update is
performed as follows: As soon as a new model is trained,
one of the existingmodels in the ensemble is replaced by it, if
necessary. The victim is chosen by evaluating the error of
each of the existing models in the ensemble on the latest
labeled chunk, and discarding the onewith the highest error.
Our approach provides a solution to concept-evolution
problem by enriching each classifier in the ensemble with a
novel class detector. If all of the classifiers discover a novel
class, then arrival of a novel class is declared, potential novel
class instances are separated and classified as “novel class.”
Thus, novel class can be automatically identified without
manual intervention.

Our novel class detection technique is different from
traditional “one-class” novelty detection techniques [16],
[21], [28] that can only distinguish between the normal and
anomalous data. That is, traditional novelty detection
techniques assume that there is only one “normal” class
and any instance that does not belong to the normal class is
an anomaly/novel class instance. Therefore, they are unable
to distinguish among different types of anomaly. But our
approach offers a “multiclass” framework for the novelty
detection problem that can distinguish between different
classes of data and discover the emergence of a novel class.
Furthermore, traditional novelty detection techniques sim-
ply identify data points as outliers/anomalies that deviate
from the “normal” class. But our approach not only detects
whether a single data point deviates from the existing
classes, but also discovers whether a group of such outliers
possess the potential of forming a new class by showing
strong cohesion among themselves. Therefore, our ap-
proach is a synergy of a “multiclass” classification model
and a novel class detection model.

Traditional stream classification techniques also make
impractical assumptions about the availability of labeled
data. Most techniques [6], [11], [29] assume that the true label
of a data point can be accessed as soon as it has been
classified by the classificationmodel. Thus, according to their
assumption, the existing model can be updated immediately
using the labeled instance. In reality, we would not be so
lucky in obtaining the label of a data instance immediately,
since manual labeling of data is time consuming and costly.
For example, in a credit card fraud detection problem, the
actual labels (i.e., authentic/fraud) of credit card transactions
usually become available in the next billing cycle after a
customer reviews all his transactions in the last statement
and reports fraud transactions to the credit card company.
Thus, a more realistic assumption would be to have a data
point labeled after Tl time units of its arrival. For simplicity,
we assume that the ith instance in the stream arrives at ith
time unit. Thus, Tl can be considered as a time constraint

imposed on data labeling process. Note that traditional
stream classification techniques assume Tl ¼ 0. Finally, we
impose another time constraint, Tc, on classification decision.
That is, an instance must be classified by the classification
model within Tc time units of its arrival. If it is assumed that
there is no concept-evolution, it is customary to have Tc ¼ 0,
i.e., an instance should be classified as soon as it arrives.
However, when new concepts evolve, classification decision
may have to be postponed until enough instances are seen by
themodel to gain confidence in decidingwhether an instance
belongs to a novel class or not. Tc is the maximum allowable
time up to which the classification decision can be post-
poned. Note that Tc < Tl must bemaintained in any practical
classification model. Otherwise, we would not need the
classifier at all, we could just wait for the labels to arrive.

1.1 Example Illustrating Time Constraints

Fig. 1 illustrates the significance of Tl and Tc with an
example. Here, xk is the last instance that has arrived in the
stream. Let xj be the instance that arrived Tc time units
earlier, and xi be the instance that arrived Tl time units
earlier. Then, xi and all instances that arrived before xi

(shown with dark-shaded area) are labeled since all of them
are at least Tl time units old. Similarly, xj and all instances
that arrived before xj (both the light-shaded and dark-
shaded areas) are classified by the classifier since they are at
least Tc time units old. However, the instances inside the
light-shaded area are unlabeled. Instances that arrived after
xj (age less than Tc) are unlabeled and may or may not be
classified (shown with the unshaded area). In summary, Tl

is enforced/utilized by labeling an instance x after Tl time
units of its arrival, and Tc is enforced by classifying xwithin
Tc time units of its arrival, for every instance x in the stream.

Integrating classification with novel class detection is a
nontrivial task, especially in the presence of concept-drift,
and under time constraints. We assume an important
property of each class: the data points belonging to the
same class should be closer to each other (cohesion) and
should be far apart from the data points belonging to other
classes (separation). If a test instance is well separated from
the training data, it is identified as an Foutlier. Foutliers
have potential to be a novel class instance. However, we
must wait to see whether more such Foutliers appear in the
stream that observe strong cohesion among themselves. If a
sufficient number of such strongly cohesive Foutliers are
observed, a novel class is assumed to have appeared, and
the Foutliers are classified as a novel class instance.
However, we can defer the classification decision of a test
instance at most Tc time units after its arrival, which makes
the problem more challenging. Furthermore, we must keep
detecting novel class instances in this “unsupervised”
fashion for at least Tl time units from the arrival of the

860 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 6, JUNE 2011

Fig. 1. Illustration of Tl and Tc.

first novel class instance since labeled training data of the
novel class(es) would not be available before that.

We have several contributions. First, to the best of our
knowledge, no other data stream classification techniques
address the concept-evolution problem. This is a major
problem with data streams that must be dealt with. In this
light, this paper offers a more realistic solution to data
stream classification. Second, we propose a more practical
framework for stream classification by introducing time
constraints for delayed data labeling and making classifica-
tion decision. Third, our proposed technique enriches
traditional classification model with a novel class detection
mechanism. Finally, we apply our technique on both
synthetic and real-world data and obtain much better
results than state-of-the-art stream classification algorithms.

The rest of the paper is organized as follows: Section 2
discusses related work. Section 3 provides an overview of
our approach and Section 4 discusses our approach in
detail. Section 5 then describes the data sets and experi-
mental evaluation of our technique. Finally, Section 6
concludes with directions to future works.

2 RELATED WORK

Our technique is related to both data stream classification
and novelty detection. Data stream classification has been
an interesting research topic for years, and many ap-
proaches are available. These approaches fall into one of
two categories: single model and ensemble classification.
Single model classification techniques maintain and incre-
mentally update a single classification model and effec-
tively respond to concept-drift [6], [11], [29]. Several
ensemble techniques for stream data mining have been
proposed [9], [13], [17], [22], [27]. Ensemble techniques
require relatively simpler operations to update the current
concept than their single model counterparts, and also
handle concept-drift efficiently. Our approach follows the
ensemble technique. However, our approach is different
from all other stream classification techniques in two
different aspects. First, none of the existing techniques can
detect novel classes, but our technique can. Second, our
approach is based on a more practical assumption about the
time delay in data labeling, which is not considered in most
of the existing algorithms.

Our technique is also related to novelty/anomaly
detection. Markou and Singh study novelty detection in
details in [16]. Most novelty detection techniques fall into
one of two categories: parametric, and nonparametric.
Parametric approaches assume a particular distribution of
data and estimate parameters of the distribution from the
normal data. According to this assumption, any test
instance is assumed to be novel if it does not follow the
distribution [19], [21]. Our technique is a nonparametric
approach, and therefore, it is not restricted to any specific
data distribution. There are several nonparametric ap-
proaches available, such as parzen window method [28],
k-nearest neighbor (k-NN)-based approach [30], kernel-
based method [3], and rule-based approach [15].

Our approach is different from the above novelty/
anomaly detection techniques in three aspects. First,
existing novelty detection techniques only consider whether
a test point is significantly different from the normal data.
However, we not only consider whether a test instance is
sufficiently different from the training data, but also
consider whether there are strong similarities among such

test instances. Therefore, existing techniques discover
novelty individually in each test point, whereas our
technique discovers novelty collectively among several
coherent test points to detect the presence of a novel class.
Second, our model can be considered as a “multiclass”
novelty detection technique since it can distinguish among
different classes of data, and also discover emergence of a
novel class. But existing novelty detection techniques can
only distinguish between normal and novel, and therefore,
can be considered as “one-class” classifiers. Finally, most of
the existing novelty detection techniques assume that the
“normal” model is static, i.e., there is no concept-drift in the
data. But our approach can detect novel classes even if
concept-drift occurs in the existing classes.

Novelty detection is also closely related to outlier
detection techniques. There are many outlier detection
techniques available, such as [1], [4], [5], [14]. Some of them
are also applicable to data streams [24], [25]. However, the
main difference with these outlier detection techniques
from ours is that our primary objective is novel class
detection, not outlier detection. Outliers are the by-product
of intermediate computation steps in our algorithm. Thus,
the precision of our outlier detection technique is not too
critical to the overall performance of our algorithm.

Spinosa et al. [23] propose a cluster-based novel concept
detection technique that is applicable to data streams.
However, this is also a “single-class” novelty detection
technique, where authors assume that there is only one
“normal” class and all other classes are novel. Thus, it not
directly applicable to a multiclass environment, where more
than one classes are considered as “normal” or “non-novel.”
But our approach can handle any number of existing
classes, and also detect a novel class that do not belong to
any of the existing classes. Therefore, our approach offers a
more practical solution to the novel class detection problem,
which has been proved empirically.

This paper significantly extends our previous work on
novel class detection [18] in several ways. First, in our
previous work, we did not consider the time constraints Tl

and Tc. Therefore, the current version is more practical than
the previous one. These time constraints impose several
restrictions on the classification algorithm, making classifi-
cation more challenging. We encounter these challenges
and provide efficient solutions. Second, it adds consider-
able amount of mathematical analysis over the previous
version. Third, evaluation is done in a more realistic way
(continuous evaluation rather than chunk by chunk evalua-
tion) and a newer version of baseline technique [23] is used
(version 2008 instead of 2007). Finally, more figures,
discussions, and experiments are added for improved
readability, clarity, and analytical enrichment.

3 OVERVIEW

At first, we mathematically formulate the data stream
classification problem.

. The data stream is a continuous sequence of data
points: {x1; . . . ; xnow}, where each xi is a d-dimen-
sional feature vector. x1 is the very first data point in
the stream, and xnow is the latest data point that has
just arrived.

MASUD ET AL.: CLASSIFICATION AND NOVEL CLASS DETECTION IN CONCEPT-DRIFTING DATA STREAMS UNDER TIME CONSTRAINTS 861

. Each data point xi is associated with two attributes:
yi and ti being its class label and time of arrival,
respectively.

. For simplicity, we assume that tiþ1 ¼ ti þ 1 and
t1 ¼ 1.

. The latest Tl instances in the stream: {xnow�Tlþ1; . . . ;
xnow} are unlabeled, meaning, their corresponding
class labels are unknown. But the class labels of all
other data points are known.

. We are to predict the class label of xnow before the
time tnow þ Tc, i.e., before the data point xnowþTc

arrives, and Tc < Tl.

Table 1 summarizes the most commonly used symbols
and terms used throughout the paper.

3.1 Top Level Algorithm

Algorithm 1 outlines the top level overview of our approach.
The algorithm starts with building the initial ensemble of
models L ¼ fL1; . . . ; LMg with the first M labeled data
chunks. The algorithm maintains three buffers: buffer buf
keeps potential novel class instances, buffer U keeps
unlabeled data points until they are labeled, buffer L keeps
labeled instances until they are used to train a new classifier.
After initialization, the while loop begins from line 5, which
continues indefinitely. At each iteration of the loop, the latest
data point in the stream, xj is classified (line 7) using
Classify() (Algorithm 2). The novel class detection mechan-
ism is implemented inside Algorithm 2. If the class label of xj

cannot be predicted immediately, it is stored in buf for future
processing. Details of this step will be discussed in Section 4.
xj is then pushed into the unlabeled data buffer U (line 8). If
the buffer size exceeds Tl, the oldest element xk is dequeued
and labeled (line 9) since Tl units of time has elapsed since xk

arrived in the stream (so it is time to label xk). The pair
<xk; yk> is pushed into the labeled data buffer L (line 9).
When we have S instances in L, where S is the chunk size, a
new classifierL0 is trainedusing the chunk (line 13). Then, the
existing ensemble is updated (line 14) by choosing the best
M classifiers from the M þ 1 classifiers L [fL0g based on
their accuracies on L, and the buffer L is emptied to receive
the next chunk of training data (line 15). Our algorithm will
be mentioned henceforth as “ECSMiner” (pronounced like
ExMiner), which stands for Enhanced Classifier for Data
Streams with novel class Miner. We believe that any base
learner can be enhanced with the proposed novel class
detector, and used in ECSMiner. The only operation that

needs to be treated specially for a particular base learner is
Train-and-save-decision-boundary. We illustrate this operation
for two base learners in this section.

Algorithm 1. ECSMiner
1: L Build-initial-ensemble()

2: buf empty //temporary buffer

3: U empty //unlabeled data buffer

4: L empty //labeled data buffer (training data)

5: while true do

6: xj the latest data point in the stream

7: Classify(L; xj; buf) //(Algorithm 2, Section 4)

8: U (xj //enqueue
9: if jUj > Tl then //time to label the oldest instance

10: xk (U //dequeue the instance

11: L (< xk; yk > //label it and save in training

buffer

12: if jLj ¼ S then //training buffer is full

13: L0 Train-and-save-decision-boundary(L)

(Section 3.5)

14: L Update(L;L0;L)
15: L empty

16: end if

17: end if

18: end while

3.2 Nearest Neighborhood Rule

We assume that the instances belonging to a class c are
generated by an underlying generative model �c, and the
instances in each class are independently identically dis-
tributed.With this assumption, one can reasonably argue that
the instances which are close together under some distance
metric are supposed to be generated by the same model, i.e.,
belong to the same class. This is the basic assumption for
nearest neighbor classifications [7]. Besides, this assumption
is used in numerous semisupervised learning techniques,
such as [20], and in many other semisupervised learning
works [31].Wegeneralize this assumption by introducing the
concept of “nearest neighborhood.”

Definition 1 (�c;q-neighborhood). �c;q-neighborhood, or
�c;qðxÞ of any instance x is the set of q-nearest neighbors of
x within class c.

For example, let there be three classes cþ, and c�, and c0
denoted by the symbols ‘‘þ; ’’ ‘‘�; ’’ and black dots,

862 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 6, JUNE 2011

TABLE 1
Commonly Used Symbols and Terms

respectively (Fig. 2). Also, let q ¼ 5. Then, �cþ;qðxÞ of any
arbitrary instance x is the set of five nearest neighbors of x
in class cþ, and so on.

Let �Dc;qðxÞ be the mean distance from x to �c;qðxÞ, i.e.,

�Dc;qðxÞ ¼
1

q

X

xi2�c;qðxÞ

Dðx; xiÞ; ð1Þ

where Dðxi; xjÞ is the distance between the data points xi

and xj in some appropriate metric.
Let cmin be the class label such that �Dcmin;qðxÞ is the

minimumamongall �Dc;qðxÞ, i.e.,�cmin;qðxÞ is thenearest�c;qðxÞ
neighborhood (or q-nearest neighborhood or q-NH) of x. For
example, in Fig. 2, cmin ¼ c0, i.e., �c0;qðxÞ is the q-NH of x.

Definition 2 (q-NH Rule). Let cmin be the class label of the
instances in q-NH of x. According to the q-NH rule, the
predicted class label of x is cmin.

In the example of Fig. 2, cmin ¼ c0, therefore, the
predicted class label of x is c0. Our novel class detection
technique is based on the assumption that any class of data
follow the q-NH rule. In Section 4, we discuss the similarity
of this rule with k-NN rule, and highlight its significance.

3.3 Novel Class and its Properties

Definition 3 (Existing Class and Novel Class). Let L be the
current ensemble of classificationmodels. A class c is an existing
class if at least one of the models Li 2 L has been trained with
the instances of class c. Otherwise, c is a novel class.

Therefore, if a novel class c appears in the stream, none
of the classification models in the ensemble will be able to
correctly classify the instances of c. An important property
of the novel class follows from the q-NH rule.

Property 1. Let x be an instance belonging to a novel class c, and
let c0 be an existing class. Then, according to q-NH rule,
�Dc;qðxÞ, i.e., the average distance from x to �c;qðxÞ is smaller
than �Dc0 ;qðxÞ, the average distance from x to �c0;qðxÞ, for any
existing class c0. In other words, x is closer to the neighborhood
of its own class (cohesion), and farther from the neighborhood
of any existing classes (separation).

Fig. 3 shows an hypothetical example of a decision tree
and the appearance of a novel class. A decision tree and its
corresponding feature vector partitioning by its leaf nodes
are shown in the figure. The shaded portions of the feature

space represent the training data. After the decision tree is
built, a novel class appears in the stream (shown with “x”
symbol). The decision tree model misclassifies all the
instances in the novel class as existing class instance since
the model is unaware of the novel class. Our goal is to detect
the novel class without having to train the model with that
class. Note that instances in the novel class follow Property 1
since the novel-class neighborhood of any novel class
instance is much closer to the instance than the neighbor-
hoods of any other classes. If we observe this property in a
collection of unlabeled test instances, we can detect the novel
class. This is not a trivial task since we must decide when to
classify an instance immediately, and when to postpone
the classification decision, andwait formore test instances so
that Property 1 can be revealed among those instances.
Because in order to discover Property 1 (cohesion), we need
to deal with a collection of test instances simultaneously.
Besides, we cannot defer the decisionmore than Tc time units
after the arrival of a test instance.

Therefore, the main challenges in novel class detection are
as follows:

1. saving the training data efficiently without using
much memory;

2. knowing when to classify a test instance immedi-
ately, and when to postpone the classification
decision;

3. classifying the deferred instances within Tc time
unit; and

4. predicting the presence of a novel class quickly and
correctly.

3.4 Base Learners

We apply our technique on two different classifiers:
decision tree and k-nearest neighbor. When decision tree
is used as a classifier, each training data chunk is used to
build a decision tree. When k-NN is used, each chunk is
used to build a k-NN classification model. The simplest
way to build such a model is to just store all the data points
of the training chunk in memory. But this strategy would
lead to a inefficient classification model, both in terms of
memory and running time. In order to make the model
more efficient, we build K clusters with the training data
[17]. We apply a semisupervised clustering technique using

MASUD ET AL.: CLASSIFICATION AND NOVEL CLASS DETECTION IN CONCEPT-DRIFTING DATA STREAMS UNDER TIME CONSTRAINTS 863

Fig. 2. Illustrating �c;qðxÞ for q ¼ 5.

Fig. 3. A decision tree and corresponding feature space partitioning.
Shaded areas represent the training data. A novel class arrives in the
stream that follows Property 1.

Expectation Maximization (E-M) that tries to minimize both
intracluster dispersion (same objective as unsupervised K-
means) and cluster impurity. After building the clusters, we
save the cluster summary of each cluster (centroid and
frequencies of data points belonging to each class) in a data
structure called “microcluster,” and discard the raw data
points. Since we store and use only K microclusters, both
the time and memory requirements become functions of K
(a constant number). A test instance xj is classified as
follows: we find the microcluster whose centroid is nearest
from xj and assign it a class label that has the highest
frequency in that microcluster.

3.5 Creating Decision Boundary during Training

The training data are clustered using K-means and the
summary of each cluster is saved as “pseudopoint.” Then,
the raw training data are discarded. These pseudopoints
form a decision boundary for the training data.

3.5.1 Clustering

K clusters are built per chunk from the training data. This
clustering step is specific to each base learner. For example,
For k-NN, existing clusters are used that were created using
the approach discussed in Section 3.4. For decision tree,
clustering is done at each leaf node of the tree since we need
to create decision boundaries in each leaf node separately.
This is done as follows: Suppose S is the chunk size. During
decision tree training, when a leaf node li is reached, ki ¼
ðti=SÞ �K clusters are built in that leaf, where ti denotes the
number of training instances belonging to leaf node li.
Therefore, the number of clusters built in each leaf node is
proportional to the number of training instances that belong
to the leaf node. If a leaf node is not empty (has one or more
instances), then at least one cluster is built in that node.

3.5.2 Storing the Cluster Summary Information

For each cluster, we store the following summary informa-
tion in a data structure called pseudopoint:

1. Weight, w: Total number of points in the cluster;
2. Centroid, �;
3. Radius; R: Distance between the centroid and the

farthest data point in the cluster; and
4. Mean distance, �d: The mean distance from each

point to the cluster centroid.

So, wðhÞ denotes the “weight” value of a pseudopoint h and
so on. After computing the cluster summaries, the raw data
are discarded and only the pseudopoints are stored in
memory. Any pseudopoint having too few (less than 3)
instances is considered as noise and is also discarded. Thus,
the memory requirement for storing the training data
becomes constant, i.e., OðKÞ.

Each pseudopoint h corresponds to a hypersphere in the
feature space having center �ðhÞ and radius RðhÞ. Let us
denote the portion of feature space covered by a pseudopoint
h as the “region” of h or REðhÞ. Therefore, REðLiÞ denotes
the union of the regions of all pseudopoints h in the classifier
Li, i.e., REðLiÞ ¼ [h2Li

REðhÞ. REðLiÞ forms a decision
boundary for the training data of classifier Li. The decision
boundary for the ensemble of classifiers L is the union of the
decision boundaries of all classifiers in the ensemble, i.e.,

REðLÞ ¼ [Li2LREðLiÞ. The decision boundary plays an
important role in novel class detection. It defines the physical
boundary of existing class instances. Lemma 1 emphasizes
the significance of the decision boundary in distinguishing
the existing class instances from novel class instances.

Lemma 1. Let x be a test instance inside the decision boundary
REðLÞ. That is, there is a pseudopoint h such that the distance
fromx to the center ofh is less than or equal to the radius ofh, i.e.,
Dðx; �ðhÞÞ � RðhÞ. Then, xmust be an existing class instance.

Proof. Without loss of generality, let Dða; bÞ be the square of
euclidean distance between a and b, i.e., Dða; bÞ ¼
ða� bÞ2. Note that RðhÞ is the distance between �ðhÞ
and the farthest data point in the corresponding cluster
H. Let the data point be x0. Therefore, Dð�; x0Þ ¼ RðhÞ.
Also, x0 is an existing class data point since it is a training
instance that was used to form the cluster. Let xi 2 H be
an arbitrary data point in cluster H, and the total number
of data points in H is n, i.e., wðhÞ ¼ n. In order to
simplify notation, we use � instead of �ðhÞ in the proof.

From the lemma statement, we can deduce that

Dð�; xÞ � Dð�; x0Þ) ðx� �Þ2 � ðx0 � �Þ2) x2 � 2x�

þ �2 � x02 � 2x0�þ �2

) x2 � 2x� � x02 � 2x0�) x2 � 2x
1

n

X

xi2H

xi � x02

� 2x0
1

n

X

xi2H

xiðby definition of �Þ

) x2 � 2x
1

n

X

xi2H

xi þ
1

n

X

xi2H

x2
i � x02 � 2x0

1

n

X

xi2H

xi

þ
1

n

X

xi2H

x2
i adding

1

n

X

xi2H

x2
i on both sides

 !

)
1

n

X

xi2H

�

x2 � 2xxi þ x2i
�

�
1

n

X

xi2H

�

x02 � 2x0xi þ x2
i

�

)
1

n

X

xi2H

ðx� xiÞ
2 �

1

n

X

xi2H

ðx0 � xiÞ
2

) �Dðx;HÞ � �Dðx0; HÞ;

where �Dðx;HÞ denotes the mean distance from x to the
instances in H. Therefore, the mean distance from x to
the instances in H is less than the mean distance from x0

to the instances in H. Since x0 as well as all xi 2 H are
existing class instances, according to Property 1, x must
also be an existing class instance. tu

We deduce from the lemma that a novel class instance
must be outside the decision boundary. We call any test
instance outside the decision boundary as an Foutlier.

Definition 4 (Foutlier). A test instance is an Foutlier (i.e.,
filtered outlier) if it is outside the decision boundary of all
classifiers Li 2 L, i.e., it is outside REðLÞ.

Again, a novel class instance must be an Foutlier.

4 CLASSIFICATION WITH NOVEL CLASS DETECTION

Algorithm 2 (Classify) sketches the classification and novel
class detection technique. The algorithm consists of two
main parts: classification (lines 1-5) and novel class

864 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 6, JUNE 2011

detection (lines 6-14). Details of the steps of this algorithm
will be explained in the following sections.

Algorithm 2. Classify(L; xj; buf)

Input: L: Current ensemble of best M classifiers

xj: test instance

buf : buffer holding temporarily deferred instances

Output: Immediate or deferred class prediction of xj

1: fout true

2: if Foutlier(L; xj) ¼ false then

3: y0i majority-voting(L; xj) //classify immediately

4: fout false

5: end if

6: Filter(buf)

7: if fout ¼ true then

8: buf (xj //enqueue
9: if buf .length > q and last_trial + q � ti then

10: last_trial ti
11: novel DetectNovelClass(L; buf) //

(Algorithm 3, Section 4.2)

12: if novel ¼ true then remove_novel (buf)

13: end if

14: end if

4.1 Classification

In line 2 of Algorithm 2, we first check whether the test
instance xj is an Foutlier. So, if xj is not an Foutlier, we
classify it immediately using the ensemble voting (line 3).
Recall that a novel class instance must be an Foutlier.
However, an Foutlier is not necessarily an existing class
instance. Therefore, we perform further analysis on the
Foutliers to determine whether they really belong to
novel class.

4.2 Novel Class Detection

The buffer buf temporarily holds potential novel class
instances. These instances are analyzed periodically in order
to detect novel class, which is explained in the next
paragraph. buf needs to be cleared periodically (line 6,
Algorithm 2) to remove instances that no longer contribute
to novel class detection. Besides, instances in buf that has
reached classification deadline Tc are classified immediately.
An instance is removed from buf if it fulfills either of the
three conditions: 1) Age > S: the front of buf contains the
oldest element in buf . It is removed if its age is greater than
S, the chunk size. Therefore, at any moment in time, there
can be at most S instances in buf ; 2) Ensemble update: the
ensemble may be updated while an instance xk is waiting
inside buf . As a result, xk may no longer be an Foutlier for
the new ensemble of models, and it must be removed if so. If
xk is no longer an Foutlier, and it is not removed, it could be
falsely identified as a novel class instance, and also, it could
interfere with other valid novel class instances, misleading
the detection process; 3) Existing class: any instance is
removed from buf if it has been labeled, and it belongs to one
of the existing classes. If it is not removed, it will also
mislead novel class detection. When an instance is removed
from buf , it is classified immediately using the current
ensemble (if not classified already).

Lines 7-14 are executed only if xj is an Foutlier. At first,
xj is enqueued into buf (line 8). Then, we check whether
buf .length, i.e., the size of buf is at least q, and the last check

on buf for detecting novel class had been executed (i.e.,
last_trial) at least q time units earlier (line 9). Since novel
class detection is more expensive than simple classification,
this operation is performed at most once in every q time
units. In line 11, Algorithm 3 (DetectNovelClass) is called,
which returns true if a novel class is found. Finally, if a
novel class is found, all instances that are identified as novel
class are removed from buf (line 12).

Next, we examine Algorithm 3 to understand how buf is
analyzed to detect presence of novel class. First, we define
q-neighborhood silhouette coefficient, or q-NSC, as follows:

Definition 5 (q-NSC). Let �Dcout;qðxÞ be the mean distance from
an Foutlier x to �cout;qðxÞ defined by (1), where �cout;qðxÞ is the
set of q-nearest neighbors of x within the Foutlier instances.
Also, let �Dcmin;qðxÞ be the minimum among all �Dc;qðxÞ, where
c is an existing class. Then, q-NSC of x is given by

q-NSCðxÞ ¼
�Dcmin;qðxÞ � �Dcout;qðxÞ

maxð �Dcmin;qðxÞ; �Dcout;qðxÞÞ
; ð2Þ

where q-NSC, which is a unified measure of cohesion and
separation, yields a value between �1 and þ1. A positive
value indicates that x is closer to the Foutlier instances
(more cohesion) and farther away from existing class
instances (more separation) and vice versa. Note that q-
NSC(x) of an Foutlier x must be computed separately for
each classifier Li 2 L. We declare a new class if there are at
least q0 ð> qÞ Foutliers having positive q-NSC for all
classifiers Li 2 L. The justification behind this decision is
discussed in the next section.

4.2.1 Speeding up the Computation of q-NSC

For each classifier Li 2 L, computing q-NSC for all Foutlier
instance takes quadratic time in the number of Foutliers. Let
B ¼ buf .length. In order to compute q-NSC for one element x
in buf , we needOðBÞ time to compute the distances from x to
all other elements in buf , and OðKÞ time to compute the
distances from x to all existing class pseudopoints h 2 Li.
Therefore, the total time to compute q-NSC of all elements in
buf is OðBðBþKÞÞ ¼ OðB2Þ since B� K. In order to make
the computation faster, we create Koð¼ ðB=SÞ �KÞ pseudo-
points from Foutliers using K-means clustering and per-
form the computations on the pseudopoints (referred to as
Fpseudopoints), where S is the chunk size. The time required
to apply K-means clustering on B instances is OðKoBÞ. The
time complexity to compute q-NSC of all of the
Fpseudopoints is OðKo�ðKo þKÞÞ, which is constant, since
both Ko andK are independent of the input size. Therefore,
the overall complexity for computing q-NSC including the
overhead for clustering becomesOðKo � ðKo þKÞ þKoBÞ ¼
OðKoðBþKo þKÞ ¼ OðKoBÞ since B� K � Ko. So, the
running time to compute q-NSC after speedup is linear in B
compared to quadratic in B before speedup. q-NSC of a
Fpseudopoint computated in this way is actually an
approximate average of the q-NSC of each Foutlier in that
Fpseudopoint. By using this approximation, although we
gain speed, we also lose some precision. However, this drop
in precision is negligible, as shown in the analysis to be
presented shortly. This approximate q-NSC of an
Fpseudopoint h is denoted as q-NSC0(h).

MASUD ET AL.: CLASSIFICATION AND NOVEL CLASS DETECTION IN CONCEPT-DRIFTING DATA STREAMS UNDER TIME CONSTRAINTS 865

In line 1 of Algorithm 3, we create Fpseudopoints using
the Foutliers as explained earlier. For each classifier Li 2 L,
we compute q-NSC0ðhÞ of every Fpseudopoint h (line 4). If
the total weight of the Fpseudopoints having positive q-
NSC0() is greater than q, then Li votes for novel class (line 7).
If all classifiers vote for novel class, then we decide that a
novel class has really appeared (line 9). Once novel class is
declared, we need to find the instances of the novel class.
This is done as follows: suppose h is an Fpseudopoint having
positive q-NSC0(h) with respect to all classifiers Li 2 L (note
that q-NSC0(h) is computed with respect to each classifier
separately). Therefore, all Foutlier instances belonging to h
are identified as novel class instances.

Algorithm 3. DetectNovelClass(L; buf)

Input: L: Current ensemble of best M classifiers

buf : buffer holding temporarily deferred instances
Output: true, if novel class is found; false, otherwise

1: Make Ko ¼ (K�buf .length/S) clusters with the

instances in buf using K-means clustering, and create

Ko Fpseudopoints

2: Let Ho be the set of Fpseudopoints

3: for each classifier Li 2 L do

4: for each h 2 Ho do Compute q-NSC0(h)

5: Hp fhjh 2 Ho and q-NSC0ðhÞ > 0}
//Fpseudopoints with positive q-NSC0ðÞ

6: wðHpÞ
P

h2Hp
wðhÞ. //wðhÞ is the weight of h i.e., #

of instances in the Fpseudopoint h.

7: if wðHpÞ > q then NewClassVote++

8: end for

9: if NewClassVote ¼M then return true else return false

This algorithm can detect one or more novel classes
concurrently as long as each novel class follows Property 1
and contains at least q instances. This is true even if the class
distributions are skewed. However, if more than one such
novel classes appear concurrently, our algorithm will
identify the instances belonging those classes as novel,
without imposing any distinction between dissimilar novel
class instances (i.e., it will treat them simply as “novel”). But
the distinction will be learned by our model as soon as the
true labels of those novel class instances arrive, and a
classifier is trained with those instances.

It should be noted that the larger the value of q, the
greater the confidence with which we can decide whether a
novel class has arrived. However, if q is too large, then we
may also fail to detect a new class if the total number of
instances belonging to the novel class is � q. An optimal
value of q is obtained empirically (Section 5).

4.2.2 Impact of Evolving Class Labels on Ensemble

Classification

As reader might have realized already, arrival of novel
classes in the stream causes the classifiers in the ensemble to
have different sets of class labels. There are two scenarios to
consider. Scenario (a): suppose an older (earlier) classifier Li

in the ensemble has been trained with classes c0 and c1, and
an younger (later) classifier Lj has been trained with classes
c1 and c2, where c2 is a new class that appeared after Li had
been trained. This puts a negative effect on voting decision
since the Li obviously misclassifies instances of c2. So,
rather than counting the votes from each classifier, we
selectively count their votes as follows: If an younger

classifier Lj classifies a test instance x as class c, but an older
classifier Li had not been trained with training data of c,
then the vote for Li will be ignored if x is found to be an
outlier for Li. Scenario (b): the opposite situation may also
arise where the oldest classifier is trained with some class c0,
but none of the newer classifiers are trained with that class.
This means class c0 has been outdated, and in that case, we
remove Li from the ensemble. Fig. 4a illustrates scenario (a).
The classifiers in the ensemble are sorted according to their
age, with L1 being the oldest and L4 being the youngest.
Each classifier Li is marked with the classes with which it
has been trained. For example, L1 has been trained with
classes c1; c2, and c3, and so on. Note that class c4 appears
only in the two youngest classifiers. x appears as an outlier
to L1. Therefore, L1’s vote is not counted since x is classified
as c4 by an younger classifier L3, and L1 does not contain
class c4. Fig. 4b illustrates scenario (b). Here, L1 contains
class c1, which is not contained by any younger classifiers in
the ensemble. Therefore, c1 has become outdated, and L1 is
removed from the ensemble. In this way, we ensure that
older classifiers have less impact in the voting process. If
class c1 later reappears in the stream, it will be automati-
cally detected again as a novel class (see Definition 3).

Although there may be other techniques for updating the
ensemble for handling evolving class labels, such as
exponentially decaying weighting, we found our approach
better than the others because of two reasons. First, uniform
voting is preferred to weighted ensemble voting, which is
supported by our initial observations, as also by other
researchers (e.g., [10]). Second, by removing classifiers that
contain outdated class labels, we make sure that if the
outdated class reappears, a new classification model will be
included in the ensemble. This makes the ensemble more
up-to-date with the current trend of that class since the class
characteristics might have been modified due to concept-
drift. Note that a new model is trained in each batch
anyway (i.e., whether a novel class appears or not);
therefore, there is no increase in runtime overhead due to
our updating approach.

4.3 Analysis and Discussion

In this section, at first we justify the novel class detection
algorithm, then analyze the extent of precision loss in
computing q-NSC, and finally, analyze the time complexity
of ECSMiner.

4.3.1 Justification of the Novel Class Detection

Algorithm

In Algorithm 3, we declare a novel class if there are at least
q0ð> qÞFoutliers that have positive q-NSC for all the
classifiers in the ensemble. First, we illustrate the signifi-
cance of this condition, i.e., “more than q Foutliers have
poisitive q-NSC.” Equation (2) deals with the mean distance
between an Foutlier and its nearest neighborhood. Now, we
go one step further to examine the mean distances between
any pair of Foutliers.

Let F be the set of Foutliers having positive q-NSC.
Therefore, for any x 2 F

�Dcmin;qðxÞ � �Dcout;qðxÞ > 0 ðfrom ð2ÞÞ

) �Dcmin;qðxÞ >
�Dcout ;qðxÞ:

866 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 6, JUNE 2011

Summing up for all Foutliers x 2 F

X

x2F

�Dcmin;qðxÞ >
X

x2F

�Dcout;qðxÞ

)
X

x2F

1

q

X

xi2�cmin;q
ðxÞ

Dðx; xiÞ >
X

x2F

1

q
X

xj2�cout;qðxÞ

Dðx; xjÞ ðfrom ð1ÞÞ

)
1

m

1

q

X

x2F

X

xi2�cmin;q
ðxÞ

Dðx; xiÞ >
1

m

1

q

X

x2F
X

xj2�cout;qðxÞ

Dðx; xjÞ ðletting m ¼ jFjÞ:

ð3Þ

Therefore, the mean pairwise distance between any pair
ðx; xjÞ of Foutliers (such that x is an Foutlier with positive
q-NSC and xj is an Foutlier in �Cout;qðxÞ) is less than the
mean pairwise distance between an Foutlier x and any
existing class instance xi. In other words, an Foutlier with
positive q-NSC is more likely to have its k-NN within the
Foutlier instances (for k � q). So, each of the Foutliers x 2
F should have the same class label as the other Foutlier
instances and should have a different class label than any of
the existing classes. This implies that the Foutliers should
belong to a novel class. The higher the value of q, the larger
the support we have in favor of the arrival of a new class.
Furthermore, when all the classifiers unanimously agree on
the arrival of a novel class, we have very little choice other
than announcing the appearance of a novel class. The q-NH
rule can be thought of a variation of the k-NN rule and is
applicable to any data set irrespective of its data distribu-
tion and shape of classes (e.g., convex and nonconvex).

4.3.2 Deviation between Approximate and Exact q-NSC

Computation

As discussed earlier, we compute q-NSC for each

Fpseudopoint, rather than each Foutler individually in

order to reduce time complexity. The resultant q-NSC is an

approximation of the exact value. However, following

analysis shows that the deviation of the approximate value

from exact value is negligible.

Without loss of generality, let �i be an Fpseudopoint
having weight q1, and �j be an existing class pseudopoint
having weight q2, which is the closest existing class
pseudopoint from �i (Fig. 5). We compute q-NSC0ð�iÞ, the
approximate q-NSC of �i using the following formula:

q-NSC0ð�iÞ ¼
Dð�i; �jÞ � �Di

maxðDð�i; �jÞ; �DiÞ
; ð4Þ

where �i is the centroid of �i; �j is the centroid of �j, and �Di

is the mean distance from centroid �i to the instances in �i.
The exact value of q-NSC follows from (2):

q-NSCð�iÞ

¼
1

q1

X

x2�i

1
q

P

xj2�cmin;q
ðxÞDðx; xjÞ �

1
q

P

xi2�cout;qðxÞ
Dðx; xiÞ

max
�

1
q

P

xj2�cmin;q
ðxÞDðx; xjÞ;

1
q

P

xi2�cout;qðxÞ
Dðx; xiÞ

� ;

ð5Þ

where �cout;qðxÞ is the set of q-nearest neighbors of x within
Fpseudopoint �i, and �cmin;qðxÞ is the set of q-nearest
neighbors of x within pseudopoint �j, for some x 2 �i.
Therefore, the deviation from the exact value, Eqnsc ¼ q-
NSCð�iÞ � q-NSC0ð�i). Applying (4) and (5),

Eqnsc

¼
1

q1

X

x2�i

1
q

P

xj2�cmin;q
ðxÞDðx; xjÞ �

1
q

P

xi2�cout;qðxÞ
Dðx; xiÞ

max 1
q

P

xj2�cmin;q
ðxÞDðx; xjÞ;

1
q

P

xi2�cout ;qðxÞ
Dðx; xiÞ

� �

�
Dð�i; �jÞ � �Di

maxðDð�i; �jÞ; �DiÞ
:

ð6Þ

In order to simplify the equations, we assume that
q1 ¼ q2 ¼ q, and q-NSC is positive for any x 2 �i. Therefore,
�cout;qðxÞ ¼ �i; �cmin;qðxÞ ¼ �j. Also, we consider square of
euclidean distance as the distance metric, i.e., Dðx; yÞ ¼
ðx� yÞ2. Since q-NSC is positive for any x 2 �i, we can
deduce following relationships:

R1: maxðDð�i; �jÞ; �DiÞ ¼ Dð�i; �jÞ—as the q-NSC for each
x 2 �i is positive, the overall q-NSC of �i (i.e., q-NSC0(�i)) is
also positive. Therefore, this relationship follows from (4).

MASUD ET AL.: CLASSIFICATION AND NOVEL CLASS DETECTION IN CONCEPT-DRIFTING DATA STREAMS UNDER TIME CONSTRAINTS 867

Fig. 4. Impact of evolving class label on ensemble.

R2: max
1

q

X

xj2�cmin;q
ðxÞ

Dðx; xjÞ;
1

q

X

xi2�cout;qðxÞ

Dðx; xiÞ

0

@

1

A

¼
1

q

X

xj2�cmin;q
ðxÞ

Dðx; xjÞ;

which follows, since the mean q-NSC of the instances in �i

is positive.
Also, �Di ¼

1
q

P

x2�i
ðx� �iÞ

2 ¼ �2i , the mean distance of

the instances in �i from the centroid. Therefore, q-NSC0(�i)

can be rewritten as:

q-NSC0ð�iÞ ¼
ð�i � �jÞ

2 � �2
i

ð�i � �jÞ
2
¼

1

q

X

x2�i

ð�i � �jÞ
2 � ðx� �iÞ

2

ð�i � �jÞ
2

¼
1

q

X

x2�i

q�NSC0ðxÞ;

ð7Þ

where q-NSC0ðxÞ is an approximate value of q-NSCðxÞ.

Now, we can deduce the following inequalities:
I1: ðx� �iÞ

2 � ð�i � �jÞ
2—since q-NSC0ðxÞ > 0 for all

x 2 �i.
I2: �

2
i � ð�i � �jÞ

2—from (7) since q-NSC0ð�iÞ > 0.
I3: ðx� �jÞ

2 � ðx� �iÞ
2 þ ð�i � �jÞ

2—by triangle in-

equality (see Fig. 5).
I4: �2

j � ð�i � �jÞ
2—because �j represents an existing

class, and similar inequality as I2 is applicable to the

instances of �j.
Continuing from (6)

Eqnsc ¼
1

q

X

x2�i

1
q

P

xj2�j
ðx� xjÞ

2 � 1
q

P

xi2�i
ðx� xiÞ

2

1
q

P

xj2�j
ðx� xjÞ

2

�
ð�i � �jÞ

2 � �2
i

ð�i � �jÞ
2

¼
1

q

X

x2�i

1
q

P

xj2�j
ðx� xjÞ

2 � 1
q

P

xi2�i
ðx� xiÞ

2

1
q

P

xj2�j
ðx� xjÞ

2

�
ð�i � �jÞ

2 � ðx� �iÞ
2

ð�i � �jÞ
2

!

:

It is easy to show that 1
q

P

x2�i
ðx� xiÞ

2 � ðx� uiÞ
2 ¼ �2

i

and 1
q

P

x2�j
ðx� xjÞ

2 � ðx� ujÞ
2 ¼ �2

j . Substituting these

values, we obtain

Eqnsc ¼
1

q

X

x2�i

�2
j þ ðx� �jÞ

2 � �2i � ðx� �iÞ
2

�2
j þ ðx� �jÞ

2

�
ð�i � �jÞ

2 � ðx� �iÞ
2

ð�i � �jÞ
2

!

¼
1

q

X

x2�i

1�
�2
i þ ðx� �iÞ

2

�2
j þ ðx� �jÞ

2
� 1þ

ðx� �iÞ
2

ð�i � �jÞ
2

 !

¼
1

q

X

x2�i

ðx� �iÞ
2

ð�i � �jÞ
2
�

�2
i þ ðx� �iÞ

2

�2
j þ ðx� �jÞ

2

 !

¼
�2
i

ð�i � �jÞ
2
�
1

q

X

x2�i

�2
i

�2
j þ ðx� �jÞ

2

�
1

q

X

x2�i

ðx� �iÞ
2

�2
j þ ðx� �jÞ

2

�
�2
i

ð�i � �jÞ
2
�

�2
i

�2
i þ �2

j þ ð�i � �jÞ
2

�
1

q

X

x2�i

ðx� �iÞ
2

�2
j þ ðx� �jÞ

2
:

The last line follows since using the relationship between
harmonic mean and arithmetic mean it can be shown that

1

q

X

x2�i

�2
i

�2
j þ ðx� �jÞ

2

�
�2
i

1
q

P

x2�i
ð�2

j þ ðx� �jÞ
2Þ
¼

�2
i

�2
j þ

1
q

P

x2�i
ðx� �jÞ

2

¼
�2
i

�2
j þ �2

i þ ð�i � �jÞ
2
:

Applying inequalities I1-I4, and after several algebraic
manipulations, we obtain

Eqnsc �
�2
i

ð�i � �jÞ
2
�

�2i
3ð�i � �jÞ

2
�

�2
i

3ð�i � �jÞ
2
¼

�2
i

3ð�i � �jÞ
2
:

ð8Þ

Usually, if �i belongs to a novel class, it is empirically
observed that q-NSC0ð�iÞ � 0:9. Putting this value in (7), and
solving, we obtain �2

i � ð1� 0:9Þð�i � �jÞ
2. Therefore, from

(8),we obtain Eqnsc � 0:1=3 � 0:03. Since the rangeof q-NSC is
�1 toþ 1, a deviation of 0.03 (3 percent) from the exact value
is really negligible and does not effect the outcome of the
algorithm. Similar reasoning can be carried out for the cases
where q-NSC of the instances in �i is negative.

4.3.3 Time and Space Complexity

Line 1 of Algorithm 3 (clustering) takes OðKSÞ time, and the
for loop (lines 3-8) takes OðK2MÞ time. The overall time
complexity of Algorithm 3 is OðK2M þKSÞ ¼ OðKSÞ since
S � KM. Lines 1-5 of Algorithm 2 take OðSðKM þMfcÞÞ

868 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 6, JUNE 2011

Fig. 5. Illustrating the computation of deviation. �i is an Fpseudopoint,
i.e., a cluster of Foutliers, and �j is an existing class pseudopoint, i.e., a

cluster of existing class instances. In this particular example, all

instances in �i belong to a novel class.

per chunk, where fc is the time to classify an instance using a
classifier, and OðKMÞ is the time to determine whether an
instance is an Foutlier. Line 6 takes OðSÞ time. Line 11
(Algorithm 3) is executed at most once in every q time units.
Therefore, the worst-case complexity of lines 7-14 is
OððKSÞ � ðS=qÞÞ, where OðKSÞ is the time required to
execute line 11 (Algorithm 3). So, the overall complexity of
Algorithm 2 is OðSðKM þMfc þKSq�1ÞÞ per chunk. For
most classifiers, fc ¼ Oð1Þ. Also, let S=q ¼ m. So, the overall
complexity of Algorithm 2 becomesOðKMS þMS þmSÞ ¼
OðmSÞ since m� KM. Finally, the overall complexity of
Algorithm 1 (ECSMiner) is OðmS þ ftðSÞÞ per chunk, where
ftðSÞ is the time to train a classifier with S training instances,
and m� S.

ECSMiner keeps three buffers: buf , the training buffer L,
and the unlabeled data buffer U . Both buf and L hold at
most S instances, whereas U holds at most Tl instances.
Therefore, the space required to store all three buffers is
OðmaxðS; TlÞÞ. The space required to store a classifier (along
with the pseudopoints) is much less than S. So, the overall
space complexity remains OðmaxðS; TlÞÞ.

5 EXPERIMENTS

In this section, we describe the data sets, experimental
environment, and report the results.

5.1 Data Sets

5.1.1 Synthetic Data with only Concept-Drift (SynC)

SynC simulates only concept-drift, with no novel classes.
This is done to show that concept-drift does not erroneously
trigger a new-class detection in our approach. SynC data are
generated with a moving hyperplane. Equation of a hyper-
plane is as follows:

Pd
i¼1 aixi ¼ a0. If

Pd
i¼1 aixi � a0, then an

example is negative, otherwise it is positive. Each example
is a randomly generated d-dimensional vector {x1; . . . ; xd},
where xi 2 ½0; 1	. Weights {a1; . . . ; ad} are also randomly
initialized with a real number in the range [0, 1]. The value
of a0 is adjusted so that roughly the same number of
positive and negative examples are generated. This can
be done by choosing a0 ¼

1
2

Pd
i¼1 ai. We also introduce noise

randomly by switching the labels of p percent of the
examples, where p ¼ 5 is set in our experiments.

There are several parameters that simulate concept-drift.
Parameterm specifies the percent of total dimensions whose
weights are involved in changing, and it is set to 20 percent.
Parameter t specifies the magnitude of the change in every
N examples. In our experiments, t is set to 0.1, and N is set
to 1,000. si; i 2 f1; . . . ; dg specifies the direction of change for
each weight. Weights change continuously, i.e., ai is
adjusted by si:t=N after each example is generated. There
is a possibility of 10 percent that the change would reverse
direction after every N examples are generated. We generate
a total of 250,000 records.

5.1.2 Synthetic Data with Concept-Drift and Novel-Class

(SynCN)

This synthetic data simulates both concept-drift and novel
class. Data points belonging to each class are generated using
Gaussian distribution having different means ð�5:0 toþ 5:0Þ

and variances (0.5-6) for different classes. Besides, in order to
simulate the evolving nature of data streams, the probability
distributions of different classes are varied with time. This
caused some classes to appear and some other classes to
disappear at different times. In order to introduce concept-
drift, the mean values of a certain percentage of attributes
have been shifted at a constant rate. As done in the SynC data
set, this rate of change is also controlled by the parameters
m; t; s, and N in a similar way. The data set is normalized so
that all attribute values fall within the range [0, 1]. We
generate the SynCN data set with 20 classes, 40 real valued
attributes, having a total of 400K data points.

5.1.3 Real Data—KDDCup 99 Network Intrusion

Detection

We have used the 10 percent version of the data set, which is
more concentrated, hence more challenging than the full
version. It contains around 490,000 instances. Here, different
classes appear and disappear frequently, making the new
class detection challenging. This data set contains TCP
connection records extracted from LAN network traffic at
MIT Lincoln Labs over a period of two weeks. Each record
refers to either to a normal connection or an attack. There are
22 types of attacks, such as buffer-overflow, portsweep,
guess-passwd, neptune, rootkit, smurf, spy, etc. So, there are
23 different classes of data. Most of the data points belong to
the normal class. Each record consists of 42 attributes, such as
connection duration, the number bytes transmitted, number
of root accesses, etc.We use only the 34 continuous attributes
and remove the categorical attributes. This data set is also
normalized to keep the attribute values within [0, 1].

5.1.4 Real Data—Forest Cover (UCI Repository)

The data set contains geospatial descriptions of different
types of forests. It contains seven classes, 54 attributes, and
around 581,000 instances. We normalize the data set, and
arrange the data so that in any chunk at most three and at
least two classes co-occur, and new classes appear randomly.

5.2 Experimental Setup

We implement our algorithm in Java. The code for decision
tree has been adapted from the Weka machine learning
open source repository (http://www.cs.waikato.ac.nz/ml/
weka/). The experiments were run on an Intel P-IV
machine with 2 GB memory and 3 GHz dual processor
CPU. Our parameter settings are as follows, unless
mentioned otherwise:

1. K (number of pseudopoints per classifier) ¼ 50;
2. q (minimum number of instances required to declare

novel class) ¼ 50;
3. M (ensemble size) ¼ 6; and
4. S (chunk size)¼ 2;000. These values of parameters are

tuned to achieve an overall satisfactory performance.

5.3 Baseline Method

To the best of our knowledge, there is no approach that can
classify data streams and detect novel class. So, we compare
ECSMiner with a combination of two baseline techniques:
OLINDDA [23] and Weighted Classifier Ensemble (WCE)
[27], where the former works as novel class detector and the
latter performs classification. This is done as follows: For

MASUD ET AL.: CLASSIFICATION AND NOVEL CLASS DETECTION IN CONCEPT-DRIFTING DATA STREAMS UNDER TIME CONSTRAINTS 869

each test instance, we delay its classification for Tc time
units. That is, OLINDDA is given Tc time units to
determine whether the instance is novel. If by that time
the test instance is identified as a novel class instance, then
it is considered novel and not classified using WCE.
Otherwise, the instance is assumed to be an existing class
instance, and its class is predicted using WCE. We use
OLINDDA as the novelty detector since it is a recently
proposed algorithm that is shown to have outperformed
other novelty detection techniques in data streams [23].

However, OLINDDA assumes that there is only one
“normal” class, and all other classes are “novel.” So, it is not
directly applicable to the multiclass novelty detection
problem, where any combination of classes can be
considered as the “existing” classes. Therefore, we propose
two alternative solutions. First, we build parallel
OLINDDA models, one for each class, which evolve
simultaneously. Whenever the instances of a novel class
appear, we create a new OLINDDA model for that class. A
test instance is declared as novel, if all the existing class
models identify this instance as novel. We will refer to this
baseline method as WCE-OLINDDA_PARALLEL. Second,
we initially build an OLINDDA model using all the
available classes with the first init_number instances.
Whenever a novel class is found, the class is absorbed into
the existing OLINDDA model. Thus, only one “normal”
model is maintained throughout the stream. This will be
referred to as WCE-OLINDDA_SINGLE. In all experiments,
the ensemble size and chunk size are kept the same for all
three baseline techniques. Besides, the same base learner is
used for WCE and ECSMiner. The parameter settings for
OLINDDA are following:

1. number of clusters built in the initial model, K ¼ 30;
2. least number of normal instances needed to update

the existing model ¼ 100;
3. least number of instances needed to build the initial

model ¼ 100; and
4. maximum size of the “unknown memory” ¼ 200.

These parameters are chosen either according to the default
values used in [23] or by trial and error to get an overall
satisfactory performance. We will henceforth use the acronyms
XM for ECSMiner, W-OP for WCE-OLINDDA_PARAL-
LEL, and W-OS for WCE-OLINDDA_SINGLE.

5.4 Performance Study

5.4.1 Evaluation Approach

Let Fn ¼ total novel class instances misclassified as existing

class, Fp ¼ total existing class instances misclassified as

novel class, Fe ¼ total existing class instances misclassified

(other thanFp),Nc ¼ total novel class instances in the stream,

N ¼ total instances the stream. We use the following

performance metrics to evaluate our technique: Mnnew ¼ %

of novel class instances Misclassified as existing class ¼
Fn�100
Nc

; Fnnew ¼ % of existing class instances Falsely identified

as novel class ¼ Fp�100
N�Nc

; ERR ¼ Total misclassification error

(percent) (including Mnew and FnewÞ ¼
ðFpþFnþFeÞ�100

N . From

the definition of the error metrics, it is clear that ERR is not

necessarily equal to the sum of Mnew and Fnew.
Evaluation is done as follows: we build the initial models

in each method with the first init_number instances. In our

experiments, we set init_number ¼ 3S (first three chunks).
From the fourth chunk onward, we evaluate the perfor-
mances of each method on each data point using the time
constraints. We update the models with a new chunk
whenever all data points in that chunk are labeled.

5.4.2 Results

Figs. 6a, 6b, and 6c show the total number of novel class
instances missed (i.e., misclassified as existing class) and
Figs. 6d, 6e, and 6f show the overall error rates (ERR) of each
of the techniques for decision tree classifier up to a certain
point in the stream in different data sets. We omit SynC from
the figures since it does not have any novel class. k-NN
classifier also has similar results. For example, in Fig. 6a at
X-axis ¼ 100, the Y values show the total number of novel
class instancesmissed by each approach in the first 100Kdata
points in the stream (Forest Cover). At this point, XMmisses
only 15 novel class instances, whereas W-OP and W-OS
misses 1,937 and 7,053 instances, respectively. Total number
of novel class instances appeared in the stream by this point
of time is shown by the corresponding Y value of the curve
“Total,” which is 12,226. Likewise, in Fig. 6d, the ERR rates
are shown throughout the streamhistory. In this figure, at the
same position (X ¼ 100), Y values show the ERR of each of
the three techniques upto the first 100K data points in the
stream. The ERR rates of XM, W-OP, and W-OS at this point
are following: 9.2, 14.0, and 15.5 percent, respectively.

Table 2 summarizes the error metrics for each of the
techniques in each data set for decision tree and KNN. The
columns headed by ERR, Mnew, and Fnew report the value of
the corresponding metric on an entire data set. For example,
while usingdecision tree inKDDdata set, XM,W-OP, andW-
OShave 1.0, 5.8, and 6.7 percent ERR, respectively. Also, their
corresponding Mnew are 1.0, 13.2, and 96.9 percent, respec-
tively. Note that there is no novel class in SynC, and so, there
is no Mnew for any approach. Both W-OP and W-OS have
some Fnew in SynC data set, which appears since W-OP and
W-OS are less sensitive to concept-drift than XM. Therefore,
some existing class instances are misclassified as novel class
because of concept-drift. In general, XM outperforms the
baseline techniques in overall classification accuracy and
novel class detection.

Figs. 7a and 7b show how XM and W-OP respond to
the constraints Tl and Tc in Forest Cover data set. Similar
characteristics are observed for other data sets and W-OS.
From Fig. 7a, it is evident that increasing Tl increases error
rates. This is because of the higher delay involved in
labeling, which makes the newly trained models more
outdated. Naturally, Mnew rate decreases with increasing
Tc as shown in Fig. 7b because higher values of Tc means
more time to detect novel classes. As a result, ERR rates
also decreases.

Figs. 8a, 8b, 8c, and 8d illustrate how the error rates of
XM change for different parameter settings on Forest cover
data set and decision tree classifier. These parameters have
similar effects on other data sets and k-NN classifier. Fig. 8a
shows the effect of chunk size on ERR, Fnew, and Mnew rates
for default values of other parameters. We note that ERR
and Fnew rates decrease upto a certain point (2,000) then
increases. The initial decrement occurs because larger chunk
size means more training data for the classifiers, which leads

870 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 6, JUNE 2011

to lower error rates. However, if chunk size is increased too
much, then we have to wait much longer to build the next
classifier. As a result, the ensemble is updated less
frequently than desired, meaning, the ensemble remains
outdated for longer period of time. This causes increased
error rates.

Fig. 8b shows the effect of ensemble size (M) on error
rates. We observe that the ERR and Fnew rates keep
decreasing with increasing M. This is because when M is
increased, classification error naturally decreases because of
the reduction of error variance [26]. But the rate of
decrement is diminished gradually. However, Mnew rate
starts increasing after some point (M ¼ 6) because a larger
ensemble means more restriction on declaration of the
arrival of novel classes. Therefore, we choose a value where

the overall error (ERR) is considerably low and also Mnew is
low. Fig. 8c shows the effect of number of clusters (K) on
error. The x-axis in this chart is drawn on a logarithmic
scale. Although the overall error is not much sensitive on
K;Mnew rate is. Increasing K reduces Mnew rate because
outliers are more correctly detected. Fig. 8d shows the effect
of q (Minimum neighborhood size to declare a novel class)
on error rates. The x-axis in this chart is also drawn on a
logarithmic scale. Naturally, increasing q up to a certain
point (e.g., 200) helps reducing Fnew and ERR since a higher
value of q gives us a greater confidence (i.e., reduces
possibility of false detection) in declaring a new class (see
Section 4). But a too large value of q increasesMnew and ERR
rates (which is observed in the chart) since a novel class is
missed by the algorithm if there are less than q instances of

MASUD ET AL.: CLASSIFICATION AND NOVEL CLASS DETECTION IN CONCEPT-DRIFTING DATA STREAMS UNDER TIME CONSTRAINTS 871

Fig. 6. (a)-(c): Novel class instances missed by each method, (d)-(f): overall error of each method (Tl ¼ 1;000; Tc ¼ 400). (a) Forest cover,
(b) KDDcup, (c) SynCN, (d) Forest cover, (e) KDDcup, and (f) SynCN.

TABLE 2
Performance Comparison

the novel class in a window of S instances. We have found
that any value between 20-100 is the best choice for q.

Finally, we compare the running times of all three
competing methods on each data set for decision tree in
Table 3. k-NN also shows similar performances. The
columns headed by “Time (sec)/1K” show the average
running times (train and test) in seconds per 1,000 points, the
columns headed by “Points/sec” show how many points
have been processed (train and test) per second on average,
and the columns headed by “speed gain” shows the ratio of
the speed of XM to that ofW-OP andW-OS, respectively. For
example, XM is 26.9 times faster thanW-OP onKDDdata set.
Also, XM is 1.2, 8.5, and 8.9 times faster than W-OP in SynC,
SynCN, and Forest cover data sets, respectively. In general,
W-OP is roughlyC times slower than XM in a data set having
C classes. This is becauseW-OP needs to maintain C parallel
models, one for each class. Besides, OLINDDA model
creates cluster using the “unknown memory” every time a
new instance is identified as unknown, and tries to validate
the clusters. As a result, the processing speed becomes
diminished when novel classes occur frequently, as ob-
served in KDD data set. However, W-OS seems to run a bit
faster than XM in three data sets although W-OS shows
much poorer performance in detecting novel classes and in
overall error rates (see Table 2). For example, W-OS fails to
detect 70 percent or more novel class instances in all data
sets, but XM correctly detects 91 percent or more novel class
instances in any data set. Therefore, W-OS is virtually
incomparable to XM for the novel class detection task. Thus,
XM outperforms W-OP both in speed and accuracy and
dominates W-OS in accuracy. We also test the scalability of
XM on higher dimensional data having larger number of
classes. Fig. 9 shows the results. The tests are done on
synthetically generated data, having different dimensions
(20-60) and number of classes (10-40). Each data set has

250,000 instances. It is evident from the results that the time
complexity of XM increases linearly with total number of
dimensions in the data, as well as total number of classes in
the data. Therefore, XM is scalable to high-dimensional data.

6 DISCUSSION AND CONCLUSION

6.1 Discussion

We observe in the evaluation that XM outperforms both W-
OP and W-OS in detecting novel classes. The main reason
behind the poorer performance of W-OP and W-OS in
detecting novel classes is the way OLINDDA detects novel
class. OLINDDA makes two strong assumptions about a
novel class and normal classes. First, it assumes a spherical
boundary (or, convex shape) of the normal model. It
updates the radius and centroid of the sphere periodically
and declares anything outside the sphere as a novel class if
there is evidence of sufficient cohesion among the instances
outside the boundary. The assumption that a data class
must have a convex/spherical shape is too strict to be
maintained for a real-world problem. Second, it assumes
that the data density of a novel class must be at least that of
the normal class. If a novel class is more sparse than the
normal class, the instances of that class would never be
recognized as a novel class. But in a real-world problem,
two different classes may have different data densities.

872 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 6, JUNE 2011

Fig. 8. Parameter sensitivity.

Fig. 7. Mnew and overall error (ERR) rates on forest cover data set for
(a) Tc ¼ 400 and different values of Tl and (b) Tl ¼ 2;000 and different
values of Tc.

TABLE 3
Running Time Comparison in All Data Sets

OLINDDA would fail in those cases where any of the
assumptions are violated. On the other hand, XM does not
require that an existing class must have convex shape or
that the data density of a novel class should match that of
the existing classes. Therefore, XM can detect novel classes
much more efficiently. Besides, OLINDDA is less sensitive
to concept-drift, which results in falsely declaring novel
classes when drift occurs in the existing class data. On the
other hand, XM correctly distinguishes between concept-
drift and concept-evolution, avoiding false detection of
novel classes in the event of concept-drift. W-OS performs
worse than W-OP since W-OS “assimilates” the novel
classes into the normal model, making the normal model
too generalized. Therefore, it considers most of the future
novel classes as normal (non-novel) data, yielding very high
false negative rate.

In general, existing novel class detection techniques have
limited applicability since those are similar to one-class
classifiers. That is, they assume that there is only one
“normal” class, and all other classes are novel. However, our
technique is applicable to the more realistic scenario where
there are more than one existing classes in the stream.
Besides, our novel class detection technique is nonpara-
metric, and it does require any specific data distribution or
does not require the classes to have convex shape. We have
also shown how to effectively classify stream data under
different time constraints. Our approach outperforms the
state-of-the-art data-stream-based classification techniques
in both classification accuracy and processing speed. We
believe that our work will inspire more research toward
solving real-world stream classification problems.

It might appear to readers that in order to detect novel
classes we are in fact examining whether new clusters are
being formed, and therefore, the detection process could go
on without supervision. But supervision is necessary for
classification. Without external supervision, two separate
clusters could be regarded as two different classes
although they are not. Conversely, if more than one novel
classes appear simultaneously, all of them could be
regarded as a single novel class if the labels of those
instances are never revealed.

6.2 Conclusion

We have addressed several real-world problems related to
data stream classification. We have proposed a solution to
the concept-evolution problem, which has been ignored by
most of the existing data stream classification techniques.
Existing data stream classification techniques assume that

total number of classes in the stream is fixed. Therefore,

instances belonging to a novel class are misclassified by the

existing techniques. We show how to detect novel classes

automatically even when the classification model is not

trained with the novel class instances. Novel class detection

becomes more challenging in the presence of concept-drift.
In future we would like to apply our technique to

network traffic. Besides, we would like to address the data

stream classification problem under dynamic feature sets.

ACKNOWLEDGMENTS

This research was funded in part by NASA grant

NNX08AC35A and AFOSR grant FA9550-06-1-0045.

REFERENCES

[1] D. Agarwal, “An Empirical Bayes Approach to Detect Anomalies
in Dynamic Multidimensional Arrays,” Proc. IEEE Int’l Conf. Data
Mining (ICDM), p. 8, 2005.

[2] C.C. Aggarwal, J. Han, J. Wang, and P.S. Yu, “A Framework for
On-Demand Classification of Evolving Data Streams,” IEEE Trans.
Knowledge and Data Eng., vol. 18, no. 5, pp. 577-589, May 2006.

[3] T. Ahmed, M. Coates, and A. Lakhina, “Multivariate Online
Anomaly Detection Using Kernel Recursive Least Squares,” Proc.
IEEE INFOCOM, pp. 625-633, May 2007.

[4] S.D. Bay and M. Schwabacher, “Mining Distance-Based Outliers in
Near Linear Time with Randomization and a Simple Pruning
Rule,” Proc. ACM SIGKDD, pp. 29-38, 2003.

[5] M.M. Breunig, H.-P. Kriegel, R.T. Ng, and J. Sander, “Lof:
Identifying Density-Based Local Outliers,” Proc. ACM SIGMOD,
pp. 93-104, 2000.

[6] S. Chen, H. Wang, S. Zhou, and P. Yu, “Stop Chasing Trends:
Discovering High Order Models in Evolving Data,” Proc. IEEE
Int’l Conf. Data Eng. (ICDE), pp. 923-932, 2008.

[7] T.M. Cover and P.E. Hart, “Nearest Neighbor Pattern Classifica-
tion,” IEEE Trans. Information Theory, vol. IT-13, no. 1, pp. 21-27,
Jan. 1967.

[8] V. Crupi, E. Guglielmino, and G. Milazzo, “Neural-Network-
Based System for Novel Fault Detection in Rotating Machinery,”
J. Vibration and Control, vol. 10, no. 8, pp. 1137-1150, 2004.

[9] W. Fan, “Systematic Data Selection to Mine Concept-Drifting Data
Streams,” Proc. ACM SIGKDD, pp. 128-137, 2004.

[10] J. Gao, W. Fan, and J. Han, “On Appropriate Assumptions to Mine
Data Streams,” Proc. Seventh IEEE Int’l Conf. Data Mining (ICDM),
pp. 143-152, Oct. 2007.

[11] G. Hulten, L. Spencer, and P. Domingos, “Mining Time-Changing
Data Streams,” Proc. ACM SIGKDD, pp. 97-106, Aug. 2001.

[12] L. Khan, M. Awad, and B.M. Thuraisingham, “A New Intrusion
Detection System Using Support Vector Machines and Hierarch-
ical Clustering,” Int’l J. Very Large Data Bases, vol. 16, no. 4,
pp. 507-521, 2007.

[13] J. Kolter and M. Maloof, “Using Additive Expert Ensembles to
Cope with Concept Drift,” Proc. Int’l Conf. Machine Learning
(ICML), pp. 449-456, Aug. 2005.

[14] A. Lazarevic and V. Kumar, “Feature Bagging for Outlier
Detection,” Proc. ACM SIGKDD, pp. 157-166, 2005.

[15] P. Mahoney and M.V. Chan, “Learning Rules for Anomaly
Detection of Hostile Network Traffic,” Proc. IEEE Int’l Conf. Data
Mining (ICDM), pp. 601-604, 2003.

[16] M. Markou and S. Singh, “Novelty Detection: A Review. Part 1:
Statistical Approaches, Part 2: Neural Network Based Ap-
proaches,” Signal Processing, vol. 83, pp. 2481-2497, 2499-2521,
2003.

[17] M.M. Masud, J. Gao, L. Khan, J. Han, and B. Thuraisingham, “A
Practical Approach to Classify Evolving Data Streams: Training
with Limited Amount of Labeled Data,” Proc. Int’l Conf. Data
Mining (ICDM), pp. 929-934, Dec. 2008.

[18] M.M. Masud, J. Gao, L. Khan, J. Han, and B. Thuraisingham,
“Integrating Novel Class Detection with Classification for Con-
cept-Drifting Data Streams,” Proc. European Conf. Machine Learning
and Knowledge Discovery in Databases: Part II (ECML PKDD), pp. 79-
94, Sept. 2009.

MASUD ET AL.: CLASSIFICATION AND NOVEL CLASS DETECTION IN CONCEPT-DRIFTING DATA STREAMS UNDER TIME CONSTRAINTS 873

Fig. 9. Scalability test.

[19] A. Nairac, T. Corbett-Clark, R. Ripley, N. Townsend, and L.
Tarassenko, “Choosing an Appropriate Model for Novelty
Detection,” Proc. Int’l Conf. Artificial Neural Networks, pp. 117-
122, 1997.

[20] B. Pang and L. Lee, “A Sentimental Education: Sentiment Analysis
Using Subjectivity Summarization Based on Minimum Cuts,”
Proc. Assoc. for Computational Linguistics, pp. 271-278, 2004.

[21] S.J. Roberts, “Extreme Value Statistics for Novelty Detection in
Biomedical Signal Processing,” Proc. Int’l Conf. Advances in Medical
Signal and Information Processing, pp. 166-172, 2000.

[22] M. Scholz and R. Klinkenberg, “An Ensemble Classifier for
Drifting Concepts,” Proc. Second Int’l Workshop Knowledge Dis-
covery in Data Streams (IWKDDS), pp. 53-64, Oct. 2005.

[23] E.J. Spinosa, A.P. de Leon, F. de Carvalho, and J. Gama, “Cluster-
Based Novel Concept Detection in Data Streams Applied to
Intrusion Detection in Computer Networks,” Proc. 2008 ACM
Symp. Applied Computing, pp. 976-980, 2008.

[24] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki,
and D. Gunopulos, “Online Outlier Detection in Sensor Data
Using Non-Parametric Models,” Proc. Int’l Conf. Very Large Data
Bases (VLDB), pp. 187-198, 2006.

[25] G. Tandon and P. Chan, “Weighting versus Pruning in Rule
Validation for Detecting Network and Host Anomalies,” Proc.
ACM SIGKDD, pp. 697-706, 2007.

[26] K. Tumer and J. Ghosh, “Error Correlation and Error Reduction in
Ensemble Classifiers,” Connection Science, vol. 8, no. 304, pp. 385-
403, 1996.

[27] H. Wang, W. Fan, P.S. Yu, and J. Han, “Mining Concept-Drifting
Data Streams Using Ensemble Classifiers,” Proc. ACM SIGKDD,
pp. 226-235, Aug. 2003.

[28] D. yan Yeung and C. Chow, “Parzen-Window Network
Intrusion Detectors,” Proc. Int’l Conf. Pattern Recognition,
pp. 385-388, 2002.

[29] Y. Yang, X. Wu, and X. Zhu, “Combining Proactive and Reactive
Predictions for Data Streams,” Proc. ACM SIGKDD, pp. 710-715,
2005.

[30] Y. Yang, J. Zhang, J. Carbonell, and C. Jin, “Topic-Conditioned
Novelty Detection,” Proc. ACM SIGKDD, pp. 688-693, 2002.

[31] X. Zhu, “Semi-Supervised Learning Literature Survey,” Technical
Report TR 1530, Univ. of Wisconsin Madison, July 2008.

Mohammad M. Masud received the BS and MS
degrees in computer science and engineering
from the Bangladesh University of Engineering
and Technology in 2001 and 2004, respectively,
and the PhD degree from the University of
Texas at Dallas (UTD) in 2009. He is a post
doctoral fellow at the University of Texas at
Dallas. He was also an assistant professor at
Bangladesh University of Engineering and Tecg-
nology. His research interests are in data stream

mining, machine learning, and intrusion detection using data mining. His
recent research focuses on developing data mining techniques to
classify data streams. He has published more than 20 research papers
in journals, and peer reviewed conferences including ICDM, ECML/
PKDD, and PAKDD. He is also an award-winning programmer at the
ACM-International Collegiate Programming Contests (ICPC) World
Finals 1999, held in Eindhoven, the Netherlands. He is a member of
the IEEE.

Jing Gao (ews.uiuc.edu/~jinggao3) received the
BEng and MEng degrees both in computer
science from the Harbin Institute of Technology,
China, in 2002 and 2004, respectively. She is
currently working toward the PhD degree in the
Department of Computer Science, University of
Illinois, Urbana Champaign. She is broadly
interested in data and information analysis with
a focus on data mining and machine learning. In
particular, her research interests include en-

semble methods, transfer learning, mining data streams, and anomaly
detection. She has published more than 20 papers in refereed journals
and conferences, including KDD, NIPS, ICDCS, ICDM, and SDM
conferences. She is a student member of the IEEE.

Latifur Khan received the BSc degree in
computer science and engineering from the
Bangladesh University of Engineering and Tech-
nology, Dhaka, Bangladesh in 1993, and the MS
and PhD degrees in computer science from the
University of Southern California in 1996 and
2000, respectively. He is currently an associate
professor in the Computer Science Department
at the University of Texas at Dallas (UTD),
where he has been taught and conducted

research since Sept. 2000. In addition, he is the director of the state-
of-the-art DBL@UTD, UTD Data Mining/Database Laboratory, which is
the primary center of research related to data mining, and image/video
annotation at the University of Texas at Dallas. His research areas cover
data mining, multimedia information management, semantic web, and
database systems with the primary focus on first three research
disciplines. He has served as a committee member in numerous
prestigious conferences, symposiums, and workshops, including the
ACM SIGKDD Conference on Knowledge Discovery and Data Mining.
He has published more than 130 papers in journals and conferences. He
is a senior member of the IEEE.

Jiawei Han is a professor in the Department of
Computer Science at the University of Illinois. He
has been working on research into data mining,
data warehousing, stream data mining, spatio-
temporal and multimedia data mining, informa-
tion network analysis, text and Web mining, and
software bug mining, with more than 400 con-
ference and journal publications. He has chaired
or served in more than 100 program committees
of international conferences and workshops and

also served or is serving on the editorial boards for Data Mining and
Knowledge Discovery, IEEE Transactions on Knowledge and Data
Engineering, Journal of Computer Science and Technology, and Journal
of Intelligent Information Systems. He is currently the founding editor-in-
chief of the ACM Transactions on Knowledge Discovery from Data
(TKDD). He has received ACM SIGKDD Innovation Award (2004), and
IEEE Computer Society Technical Achievement Award (2005). He is a
fellow of the ACM and the IEEE. His book Data Mining: Concepts and
Techniques (Morgan Kaufmann) has been used worldwide as a
textbook.

Bhavani Thuraisingham is a professor of
computer science and the director in the Cyber
Security Research Center at the University of
Texas at Dallas (UTD). Prior to joining UTD,
she was a program director for three years at
the National Science Foundation (NSF) in
Arlington. She has also worked for the Com-
puter Industry in Mpls, MN for more than five
years and has served as an adjunct professor
of computer science and member of the

graduate faculty at the University of Minnesota and later taught at
Boston University. Her research interests are in the area of Information
Security and data management. She has published more than
300 research papers including more than 90 journals articles and is
the inventor of three patents. She is also the author of nine books in
data management, data mining, and data security. She serves on the
editorial board of numerous journals including ACM Transactions on
Information and Systems Security and IEEE Transactions on
Dependable and Secure Computing. She is an elected fellow of three
professional organizations: the IEEE, the American Association for the
Advancement of Science (AAAS), and the British Computer Society
(BCS) for her work in data security. She was educated in the United
Kingdom both at the University of Bristol and the University of Wales.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

874 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO. 6, JUNE 2011

