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Abstract
Classifying or predicting occupational incidents using both structured and unstructured (text) data are an unexplored area

of research. Unstructured texts, i.e., incident narratives are often unutilized or underutilized. Besides the explicit infor-

mation, there exist a large amount of hidden information present in a dataset, which cannot be explored by the traditional

machine learning (ML) algorithms. There is a scarcity of studies that reveal the use of deep neural networks (DNNs) in the

domain of incident prediction, and its parameter optimization for achieving better prediction power. To address these

issues, initially, key terms are extracted from the unstructured texts using LDA-based topic modeling. Then, these key

terms are added with the predictor categories to form the feature vector, which is further processed for noise reduction and

fed to the adaptive moment estimation (ADAM)-based DNN (i.e., ADNN) for classification, as ADAM is superior to GD,

SGD, and RMSProp. To evaluate the effectiveness of our proposed method, a comparative study has been conducted using

some state-of-the-arts on five benchmark datasets. Moreover, a case study of an integrated steel plant in India has been

demonstrated for the validation of the proposed model. Experimental results reveal that ADNN produces superior per-

formance than others in terms of accuracy. Therefore, the present study offers a robust methodological guide that enables

us to handle the issues of unstructured data and hidden information for developing a predictive model.
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1 Introduction

As per the report given by the International Labour Orga-

nization (ILO), a total of 2.3 million people died globally

in a year because of occupational incidents and diseases

including 0.36 million cases of fatalities [1]. Nearly 4% of

the total gross domestic product is drained off because of

the occupational incidents [2]. In Europe, it is reported by

the European Statistical Office (EUROSTAT) that about

3.2% of workers face an incident at work in the European

Union [3]. Behind each of the incidents, there is a chain of

multiple factors interacting with each other in a specific

pattern. If the pattern is identified, the incident outcomes

can be predicted. Once the outcomes are predicted, the

occurrence of incidents can be minimized. A predictive

model, in such circumstances, is playing a key role by

identifying the inherent patterns and subsequently pre-

dicting the outcomes. Therefore, the use of the predictive

model is utmost important in incident analysis and

prevention.
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In practice, once an incident is taken place, safety pro-

fessionals narrate the incident event in their own language

and log them into the electronic database. Therefore, the

exactness of the incident mostly depends on the experience

and quality of writing of the personnel who logs informa-

tion into the system. It is often found that the incident

narratives, which are in the form of unstructured texts,

remain underutilized or sometimes unutilized since the

proper utilization of these unstructured text data for

information retrieval demands an extensive human effort.

Reviewing the incident narratives during the investigation

is extremely time-consuming. In addition, narratives are

sometimes written in such a way that useful information

can hardly be effectively retrieved, and thus analyzed. In

fact, analysis of this kind of data is so difficult that the

inherent information in incident texts are mostly ignored,

which may result in a biased decision-making. On top of

that, a huge amount of unstructured texts along with cat-

egorical, numerical or other forms of data collected at

industry level put the decision-making in a challenging

situation, particularly in terms of prediction. In order to

resolve the issue, a number of practitioners and academic

researchers have put a lot of efforts by employing machine

learning (ML) algorithms for prediction of incidents. In

ML, there are predominantly two kinds of approaches used

for the purpose of classification: (i) non-tree-based

approaches, such as support vector machine (SVM) [4],

k-nearest neighbor (k-NN) [5], artificial neural network

(ANN) [6, 7], Bayesian Network (BN) [8], and (ii) tree-

based approaches, for example, decision tree (DT).

To exemplify, Sorock et al. [9] used 3,686 insurance

claims for the analysis of crash incidents. In their experi-

ment, keywords from the accident narratives were used in

order to identify the types of pre-crash vehicle activities

and types of crash incidents. Lehto & Sorock [10] used

Bayesian model to perform similar kind of work by iden-

tifying the pre-crash activities and crash types from inci-

dent narratives. The experiment showed that the model

could learn from a computer search for 63 key terms per-

taining ro incident categories. Wellman et al. [11] used

fuzzy Bayesian model to classify injury narratives into 13

external causes of injury and poisoning categories. In a

similar vein, Noorinaeini & Lehto [12] also used two sin-

gular value decomposition (SVD)-Bayesian models and

one SVD-regression model to classify injury narratives into

external causes of injury and poisoning categories. Their

experiments explored that all the three models were cap-

able of learning from human knowledge for classification.

In 2007, a notable study by Pons-Porrata et al. [13] showed

the development of a topic discovery system based on a

new incremental hierarchical clustering algorithm and

Testor Theory to extract and classify the implicit knowl-

edge in news streams. Experimental results showed its

usefulness and effectiveness in not only topic detection, but

also in classification and summarization tool. Brooks [14]

used SAS Text Miner to mine free texts of workers’

compensation claims and classify into two categories.

Their experimental results suggested that text mining can

be used as a stand-alone tool for free-text analysis. Fan &

Li [15] used text mining to retrieve historical cases from a

case library. They showed that natural language-based case

document retrieval is superior to the case-based reasoning

and more practical for implementation in construction

sites. Abdat et al. [16] used Bayesian Network-based model

to extract recurrent occupational accident movement with

movement disturbances (OAMD) scenarios from narra-

tives. Using this approach, a total of eight scenarios were

extracted to describe 143 OAMDs in the construction and

metallurgy sectors. In 2014, Sanchez-Pi et al. [17] used

ontology-based automatic text classification from unstruc-

tured texts in an oil and gas industry. Their proposed

approach included text analysis, recognition, and classifi-

cation of failed occupational health control. Later, in 2016,

they extended their ontological concept and made it more

domain-dependent [18] for oil and gas industry. Goh &

Ubeynarayana [19] used text mining classification tech-

niques to classify a total of 1000 publicly available con-

struction accident narratives into two categories, accident

and near miss cases. They employed six machine learning

algorithms, namely k-nearest neighbor (KNN), support

vector machine (SVM), linear regression (LR), decision

tree (DT), random forest (RF), and Naive Bayes (NB).

Experimental results showed that SVM is the best algo-

rithm in classification of 251 cases. In addition, it was

found that the unigram tokenization with linear SVM

performs the best. Zhang et al. [20] used Deep Belief

Network (DBN) and Long Short-Term Memory (LSTM)

methods on three million accident-related tweets to classify

traffic accidents. From the experiments, it is explored that

DBN outperforms SVM and supervised Latent Dirich-

let allocation (sLDA). Song & Suh [21] used patent anal-

ysis using latent Dirichlet allocation (LDA), for extraction

of the latent topics and main keywords contained in doc-

uments, and network analysis for monitoring change pat-

terns and relations to identify the trends in technology

development that prevent the risks of various industrial

systems. Apart from these, LDA has been used in different

areas, including for pattern extraction from OSHA data-

bases [22], construction reports [23], and investigation

reports generated from manufacturing plants [24, 25]. All

the reports are prepared in natural languages. Therefore,

natural language processing (NLP) is an essential task for

accident analysis for the extraction of useful information

hidden in texts. Brown [26] used NLP for identification of

the contributors to rail accidents from accident narratives

and implemented random forest (RF) to check the
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predictive power of the contributors toward the accident

occurrences. In addition, Nenonen [27], in his study, also

mentioned that useful information may also be obtained if

injury narratives or incident reports are analyzed properly.

Moreover, there are a few more interesting applications

using DT found in the refinery industry [28], the petro-

chemical industry [29], railway [30, 31], road [32], and the

aviation industry [33]. In summary, it is often seen that the

unstructured texts are very important source of informa-

tion; however, they remain often under-utilized or some-

times unutilized.

These algorithms have been used effectively in different

application domains, including shipbuilding [6], mining

[34], construction [34], and service [35]. Of them, ANN is

found to be very effective due to the inherent features, for

example, the learning ability from data, parallel operation,

distributed memory, fault tolerance, etc. It is used in a wide

spectrum of application domains. For examples, ANN was

successfully used with the backward algorithm (BA-ANN)

in the prediction of an outburst of coal and gas by He et al.

[36]. It was also used to develop an advanced detection

system for the prediction of the rating of worker’s health in

a hot as well as humid conditions in construction sites [37].

The approaches like ANN and SVM attain widespread

popularity since they hold a strong theoretical underpin-

ning enabling us in dealing with the complexity of the

problem, learning from the historical information, and

more importantly, exploring adaptability with nonpara-

metric theory. However, the interpretation of SVM and

ANN model is rather difficult.

Although the aforementioned ML algorithms including

ANN [25], DT [38], SVM [39] have been used in fre-

quent in accident analysis; however, these algorithms are

only capable enough to effectively utilize the existing

attributes of the dataset for prediction of accident occur-

rences. Nevertheless, there exist a number of hidden

attributes or factors within the dataset in a different form

of data, which can be hardly retrieved and used by the

conventional ML approaches [40]. For instance, hidden

attributes can be characterized as ones that require linear

or nonlinear transformation. The deep learning method, in

this case, can be a better choice for the researchers to

obtain information from the data, including the attributes

present in either explicit or hidden form. The approach

utilizes a number of hidden layers to extract the hidden

factors underlying within data to better predict the inci-

dent outcomes [40]. Deep neural network (DNN), in this

case, works extremely well (in particular NLP-based

analysis) [41, 42] as it offers advantages of efficient

generation of new features from raw data and accurate

classification of feature vectors [43].

DNN, proposed in the early 1980s [44] and revamped in

2002 [45], faced training difficulties initially in deep

architectures. Later, it was used in a broad spectrum of

application areas, including fraud detection [40], dynamic

planning of public bicycle-sharing system [46], time series

prediction [47], Spark-based computation [48, 49], pattern

recognition [50], speech recognition [51], classification

[52, 53], image processing [54, 55], and video processing

[41]. The main characteristic of this approach is that it can

show better classification performance in the case of

analysis of complex and a large amount of data [56–58].

More importantly, due to its basic structure, it can perform

superior classification tasks. Typically, it consists of a pre-

defined number of layers of cascaded auto-encoder (AE)

and a softmax classifier [59], which basically helps DNN to

produce joint advantages of efficient attribute generations

and accurate classification. These characteristics of DNN

help to obtain more advantages than other conventional

classification algorithms available in the literature.

There are a large number of optimization-based

approaches available in the array of literature. Most of

them are not found useful in training a DNN structure due

to its aforementioned problems. However, a number of

optimization techniques have been proposed recently to

deal with the complexity inherent to machine learning

approaches, including training of a DNN structure. Of

them, the optimization algorithms, for example, gradient

descent (GD) [60, 61], stochastic gradient descent (SGD)

[62], and conjugate gradient [63] are found to be very

useful. In GD approach, the algorithm can easily be used

for linear systems. However, it is not usually recommended

in the case of high dimensional search space of the opti-

mization task, where a number of local minima exist.

Hinton and Salakhutdinov [60] suggested that the GD

approach can be useful for training a DNN architecture in

such a case where the optimization parameters like weights

are initialized with the values close to an optimum solution.

In fact, the condition is very difficult to be fulfilled and

consequently, this algorithm gets trapped into local min-

ima. Moreover, the speed of convergence of this algorithm

is found to be very slow while dealing with a large dataset.

In case of high dimensional optimization problems,

stochastic GD algorithm is frequently used due to its faster

rate of convergence, and easy implementation. Another

optimization algorithm, namely root mean square propa-

gation (RMSProp), in this case, produces better perfor-

mance since it uses the average of the second moments of

the gradients (the uncentered variance) [64]. Moreover, a

comprehensive review by Ruder suggested that adaptive

moment estimation (ADAM) comparatively superior to

RMSProp due to its better bias-correction procedure [65].

Based on the review, some issues are identified in

occupational incident prediction and analysis domain,

which are summarized below.
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(i) Hidden information of unstructured text (i.e., brief

description) is not used for the extraction of the

incident pattern.

(ii) In the domain of incident prediction and analysis,

the use of unstructured data (i.e., text) along with

categorical data is very little.

(iii) Very little use of the deep neural network (DNN)

for the incident prediction using both structured

and unstructured data.

(iv) Parameter optimization using adaptive moment

estimation (ADAM) is untouched in DNN.

Therefore, to address these issues, our present study

endeavors to contribute as follows:

(i) Unstructured text (e.g., incident narratives) along

with structured data (i.e., categorical predictor

attributes) has been used together to extract the

feature vector from each sample corresponding to

each occupational incident. All feature vectors

constitute together to make the feature map.

(ii) K-modes algorithm, missing value handling, and

class imbalance handling are adopted to obtain the

noise-free feature map.

(iii) ADAM-based DNN is developed for the predic-

tion of the occupational incident.

In this paper, we propose adaptive moment estimation

(ADAM)-based DNN (i.e., ADNN) classifier for the pre-

diction of incident outcomes using incident data collected

from a steel manufacturing plant. The motivation behind

the use of this optimization algorithm on DNN is based on

its few advantages. For example, it demands less memory

can be used easily and efficiently. In our study, it has been

demonstrated that the proposed approach is better than

other optimized DNN classifiers, namely RMSProp and

SGD-based DNN. In addition, the classification perfor-

mance of the proposed approach has been tested on five

different benchmark datasets from the literature. Finally, a

comparative study has been made between the performance

of ADNN classifier and that of the other state-of-the-art

classifiers, namely SVM, k-NN, and RF to explore the

efficiency of our proposed strategy in incident prediction.

The remainder of the paper is structured in the following

way: In Sect. 2, the proposed methodology has been dis-

cussed in brief. In Sect. 3, a case study is provided with

data collection, data description, and data preprocessing

steps. Results and discussions of the analyses are presented

with the statistical tests in Sect. 4, and finally, in Sect. 5,

the conclusion is drawn with the scopes of future studies.

2 Methodology

The proposed methodology comprises four phases which is

displayed in Fig. 1.

In Phase-I, common data pre-processing tasks, namely

topic modeling, missing data handling, class imbalance

handling, outlier handling, and data transformation are

performed. In the next phase, i.e., Phase-II, three opti-

mizers, namely SGD, RMSProp, and ADAM are used to

tune the parameters of DNN algorithm. In Phase-III, the

best classifier is selected through comparative study and in

the final phase, i.e., Phase-IV, prediction of incident out-

comes using the best classifier is performed. Initially, our

models have been over-fitted on the test data. The training

accuracies have been found much higher than testing

accuracies. To overcome this shortcoming, hyper-parame-

ter tuning of the models has been done using 10-fold cross

validation on training dataset following some earlier stud-

ies [66–68]. Testing dataset has been used only for the

model evaluation. In this cross validation process, first, the

dataset has been shuffled randomly. Then, the dataset has

been split into 10 groups. One of the 10 groups has been

taken as test dataset and rest of them have been taken as

training dataset. Then, the model or classifier has been

fitted with the training set and evaluated it on the test set

based on the performance score. This procedure repeats for

10 times on different test sets and the model performance

has been obtained by averaging out the 10 different per-

formance scores. Based on this average performance score,

the final model is evaluated. Then, the algorithm with the

highest accuracy is considered as the best one. The meth-

ods of data pre-processing (i.e., text data handling using

topic modeling, missing data handling, class imbalance

handling, outlier handling, data transformation from cate-

gorical to continuous form), classification (i.e., DNN), and

optimization (i.e., SGD, RMSProp, and ADAM) used in

this study are briefly discussed in the following sec-

tion. Some important notations used in this study are

mentioned in ‘‘Appendix A’’.

2.1 Data pre-processing

In this section, the five data pre-processing tasks: (i) text

data handling, (ii) missing data handling, (iii) class

imbalance handling, (iv) outlier handling, and (v) data

transformation are discussed below.

2.1.1 Text data handling

The latent Dirichlet allocation (LDA)-based topic model-

ing is discussed as a data pre-processing tool, which has

been used on unstructured text data. To determine the
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optimal number of topics, four metrics have been used in

this study. The first metric (say, ‘Metric1’), has been

developed by Griffiths and Steyvers [69], which helps to

determine the optimal number of topics by the calculation

of the maximum log-likelihood of the data. Cao et al. [70]

have developed another metric (say, ‘Metric2’) to compute

the stability of the structure of a topic using mean cosine

distance between every pair of topics. Using this, it has

been found that the stability increases with the decrease in

mean distance. Likewise, Arun et al. [71] have developed a

Kullback–Leibler (KL) divergence-based metric (say,

‘Metric3’). The choice of the optimal number of topics

depends on the minimum divergence. Of late, Deveaud

et al. [72] have developed a heuristic search-based metric

(say, ‘Metric4’) to determine the number of latent concepts

within the user’s query. It is basically done by maximizing

the intra-topics information divergence. choice of the

optimal number of topics depends on the minimum diver-

gence. Of late, Deveaud et al. [72] have developed a

heuristic search-based metric (say, ‘Metric4’) to determine

the number of latent concepts within the user’s query. It is

basically done by maximizing the intra-topics information

divergence. Metric 1 and 4 are based on word-coherence

and Metric 2 and 3 are based on word-log-perplexity.

Therefore, considering the Therefore, considering the

aforementioned metrics simultaneously, two metrics, i.e.,

Metric2 and Metric3 are to be minimized, whereas the

other two, i.e., Metric1 and Metric4 are to be maximized.

Fig. 1 Proposed research

methodological flowchart
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After obtaining the optimal number of topics, LDA-

based topic modeling is used on unstructured text. In this

process, it is assumed that both document and words are

obtained from a generative probability model [73]. Each

document is obtained by the model given below.

(i) Ni � Poisson distribution (where Ni is a random

variable representing the number of words in i-th

document)

(ii) hi � Dirichlet distribution ðaÞ (where hi is a

random variable denoting per document-topic

proportion, a is a proportion parameter, a\1)

(iii) bTj � Dirichlet ðgÞ (where bTj is a per-topic (say,

Tj) word proportion parameter, such that Tj 2 Tf g
(iv) zi;wl

� Multinomial ðhiÞ (where zi;wl
implies the

topic of each word wl 2 wf g in the i-th document,

Di)

(v) wi;wl
� Multinomial pðwi;wl

j zi;wl
; bTjÞ (where wi;wl

is the observed word in zi;wl
topic)

According to the LDA theory proposed by [73], the words

are generated from the distribution of the topic. Different

topics are able to produce similar words. Based on the

words generated within each topic, an intuitive meaning

can be ascribed to the topic. To estimate the parameters, a

joint distribution of observed and latent random variables is

used, which can be expressed in the following Eq. (1):

pðb; h; z;w j a; gÞ ¼
Ym

j¼1

pðbTj j gÞ
Yn

i¼1

pðhDi
j aÞ

Yp

l¼1

pðzi;wl
j hDi

ÞpðWDi;wl
j b1:m; Zi;wl

Þ
 ! ð1Þ

Using LDA topic modeling, a set of optimal number of

topics are generated. Here, each topic consists of eight key

words that are used as predictors and added with the other

conditional predictors. The algorithm for the extraction of

topics in terms of key words is defined in Algorithm 1.

2.1.2 Missing data handling

For missing data handling, random forest classifier is used.

It uses bootstrap sampling. The observations having miss-

ing values in dependent attribute are imputed by randomly

drawing from independent attributes. This algorithm is

used to fit individual regression tree to a bootstrapped

sample and impute or predict each missing value as the

prediction of a randomly selected decision tree. Consider a

universe S ¼ \U;A [ C[ , where U is the information

table, A is the set of predictor attributes, and C is the

response attribute. Here, U consists of samples:

U ¼ x1; x2; :::; xQ
� �

, where Q represents the total number

of instances in U, A ¼ a1; a2; :::; ap
� �

. Here, p denotes the

number of predictors in U. For an arbitrary attribute asðs 2
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pÞ having missing values at entries i
ðsÞ
mis � 1; 2; :::;Qf g, the

dataset is separated into four parts, which are as follows:

(i) Observed values of attribute as are denoted as y
ðsÞ
obs.

(ii) Missing values of attribute as are denoted as y
ðsÞ
mis.

(iii) The attributes other than as with observations

i
ðsÞ
obs ¼ 1; 2; :::;Qf g n iðsÞmis are denoted as x

ðsÞ
obs.

(iv) The attributes other than as with observations i
ðsÞ
mis

are denoted as x
ðsÞ
mis.

Now, under such condition, missing value imputation is

performed using the random forest algorithm. The steps of

this process are given below.

• Step 1: First, find out the percentage of missing values

for each as in the dataset.

• Step 2: Sort as according to the ascending order of the

percentage of missing values.

• Step 3: For each as, the random forest algorithm is

trained with predictors x
ðsÞ
obs and the response attribute

y
ðsÞ
obs. Then, the missing values y

ðsÞ
mis are predicted or

imputed using this algorithm, which is tested on x
ðsÞ
mis.

This imputation process is repeated until a termination

criterion is satisfied. In this study, the user-defined

maximum number of iterations is considered as the

stopping criterion.

2.1.3 Class imbalance handling

To handle the class imbalance issue in data, Synthetic

Minority Over-sampling Technique (SMOTE) algorithm is

used. It was proposed by Chawla et al. [74]. It is an

oversampling technique. It oversamples the minority class

by generating synthetic samples in the imbalanced dataset.

Each sample of minority class is considered initially and

the new samples are generated along the line segment

which connects this sample with its minority nearest

neighbor. It usually works by oversampling minority class

and undersampling the majority class simultaneously. That

is why it can produce better classification performance than

only undersampling. The steps of this algorithm used in

this study are displayed in Fig. 2.

2.1.4 Outlier handling

The word ‘outlier’ indicates a data object which deviates

significantly from the rest of the data. Handling of such

data is very important as the existence of such data may

negatively impact on the classifier’s performance. To

handle this issue, k-modes clustering algorithm has been

used in this study [75]. It extends the k-means algorithm to

categorical domain by using a suitable dissimilarity mea-

sure defined over categorical attributes. The pseudo-code

for outlier detection using k-modes algorithm is presented

in Algorithm 2.

2.1.5 Data transformation

After the outlier detection and reduction, the reduced

dataset is transformed from its categorical form to the

continuous form using a gravity factor (GF)-based nor-

malization technique [6]. In this data processing stage,

uncertainty arises as the values of the decision classes are

user-defined. GF is a normalized value, which is calculated

from the frequency of each of the categories in each

Neural Computing and Applications (2022) 34:14253–14274 14259
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attribute. The following Eq. (2) is used to estimate the GF

values of the data:

GF ¼
Pn

i¼1 xiyi
n�

Pn
i¼1 xi

ð2Þ

, where xi and yi denote the percentage of each category of

each predictor and a corresponding normalization factor for

risk, respectively. The value of n is taken as equal to three

since the response attribute ‘Incident outcomes’ has three

classes (i.e., injury, nearmiss, and property damage). The

normalization makes the GF values scaled from 0 to 1. The

pseudo-code for computing GF values is shown in Algo-

rithm 3.

2.2 Classification and optimization algorithms

The classification algorithm used in this study is DNN,

which is basically a stacked auto-encoder (SAE), consist-

ing of an auto-encoder and a softmax classifier [43]. A brief

description of the auto-encoder, SAE, and softmax classi-

fier is given below. In addition, three optimization algo-

rithms, namely SGD, RMSProp, and ADAM are also

discussed in this section.

2.2.1 The auto-encoder

The auto-encoder (AE) is basically a feed-forward ANN. It

consists of three layers; one input and one output layer, and

a hidden layer in between them. The AE is trained in such a

manner that the number of nodes at the output layer

becomes equal to that of the input layer to map the input

space to feature space. In Fig. 3, a network structure with a

single hidden layer of ANN is displayed. The number of

inputs and outputs are equal, which is equal to M, and the

number of hidden nodes is N, where both M and N are non-

negative integers. The left and right portions of an AE

network are called ‘encoder’ and ‘decoder,’ respectively.

The inputs of the encoder are the inputs of the AE and its

outputs are the inputs of the decoder. The output of the

decoder is the output of the AE. If there are outputs

c ¼ ½c1 c2 c3 ::: cN �T , activation function (usually, sig-

moidal) f, inputs x ¼ ½x1 x2 x3 ::: xM �T , biases

b ¼ ½b1 b2 b3 ::: bN �T , and the weights

W ¼ ½w1 w2 w3 ::: wN �T , the relationship between input

and output in the encoder can be denoted by c ¼ gEðbþ
WTxÞ and can be expressed as the following Eq. (3) [43]:

c ¼ f ðbþWTxÞ ð3Þ

Similarly, for the decoder, if there are outputs bx ¼
½bx1 bx2 bx3 :::; bxM�T , activation function (usually, sig-

moidal) bf at the output layer, biases bb ¼
½bb1 bb2 bb3 :::; bbM�T , and the weights

bW ¼ ½ bw1 bw2 bw3 :::; bwM�T , the relationship between input

and output of the decoder is denoted as bx ¼ gDðbb þ bWT
cÞ

and expressed as the following Eq. (4):

bx ¼ bf ðbb þ bWT
cÞ ð4Þ

As stated earlier, an auto-encoder consists of two parts:

encoder and decoder. Therefore, the input–output rela-

tionship of an auto-encoder is denoted as Eq. (5):

g1AE ¼ gE � gD ð5Þ

, where gE and gD denote the function of encoder and

decoder, respectively, � represents the output of an encoder

is fed to a decoder as input.
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2.2.2 The structure of a stacked auto-encoder (SAE)

The structure of an SAE is developed by cascading oper-

ation that helps to generate a number of AEs (refer to

Fig. 4). Let L be number of AEs that are cascaded to form

stacked auto-encoder (SAE), and let g1AE; g
2
AE; :::; g

L
AE be the

function of the aforesaid L auto-encoders. Therefore, the

operation of SAE can be expressed as the following

Eq. (6):

gSAE ¼ g1AE � g2AE � g3AE � ::: � gLAE ð6Þ

2.2.3 The softmax classifier

This classifier is a linear classifier, which can classify the

multiple classes. It is used to handle two classes. The

working principle of a softmax classifier depends on the

principle of logistic regression [76]. After the development

of a DNN classifier, the training is done by using opti-

mization algorithms, namely SGD, RMSProp, and ADAM

algorithms, which are described below.

2.2.4 SGD algorithm

SGD is a popular optimization algorithm, which is used to

minimize the objective function with model parameters h.
The parameters are updated in the opposite direction of the

gradient of5hJðhÞ [65]. The size of the steps is determined

by the learning rate, g. Let ht�1 be the value of the

parameters for the ðt � 1Þ-th iteration. Then, the updated

value of the parameters for t-th iteration (where input is x

and output is y), defined as:

ht ¼ ht�1 � g�5ht�1Jðht�1; x; yÞ ð7Þ

, where t ¼ 1; 2; :::; T . Here, T represents the total number

of iterations. At each iteration, the values of the parameters

are updated for every sample present in the dataset. Due to

the capability of the SGD of updating the parameters one at

a time, it works very faster and can be used in an online

settings. Since it shows the frequent update with high

variance in the objective function, a high fluctuation is

observed, which may help to get the better local minima.

This characteristic does not help the algorithm to converge

at an exact minimum point. However, decreasing the

learning rate slowly may help the algorithm converge to a

local or global minimum. The pseudo-code of SGD algo-

rithm is given in Algorithm 4.

2.2.5 RMSProp algorithm

RMSProp is a GD-based optimization algorithm. The

learning rate of this algorithm is adapted for each param-

eter. To resolve the issues of the ‘vanishing gradient’ and

entrapment of solution into local optimum, RMSProp

Fig. 2 Algorithmic flowchart of SMOTE algorithm

Fig. 3 Auto-encoder network

Fig. 4 Cascading-based auto-encoder network
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algorithm is used for training a DNN algorithm [77]. It uses

a moving average of squared gradients. It can balance the

step size by decreasing the steps for the large gradient to

avoid ‘exploding’ and by increasing the steps for the small

gradient to avoid ‘vanishing.’ The algorithm weighs the

recent past more heavily as compared to distant past. As a

consequence, it explores the effectiveness of the opti-

mization algorithm for DNNs. The pseudo-code of

RMSProp algorithm is given in Algorithm 5.

2.2.6 ADAM algorithm

ADAM is a gradient-based first-order stochastic optimizer

[64]. From the first and second moment estimates of the

gradients, it calculates the adaptive learning rates (ALR) of

different parameters. The main advantage of this method

includes the capability of handling the issue of sparse

gradients. There are a few more advantages, for example, it

works without a stationary objective, the parameters are

updated without depending on the rescaling of the gradient,

it has little memory requirement, etc. The algorithm starts

with initializing the moving averages (MAs) by setting

them at zeros. Let gt be the gradient of a stochastic

objective function J at t-th iteration, and let mt be the first

moment (i.e., the mean of gradients) and vt be the second

moment (i.e., variance of the gradients) at t-th iteration. mt

and vt are defined as follows:

gt ¼5ht JðhtÞ ð8Þ

mt ¼ b1mt�1 þ ð1� b1Þgt ð9Þ

vt ¼ b2vt�1 þ ð1� b2Þg2t ð10Þ

, where mt�1 and vt�1 denote the first and second moment

of gradients at ðt � 1Þ-th iteration, respectively. The hyper-

parameters b1 and b2 indicate the first and second expo-

nential decay rates for the moment estimates, respectively,

and b1; b2 2 ½0; 1Þ. These parameters basically control the

decay rates of the MAs. Since the initialization of MAs

starts with zeros, the moment estimates become biased

toward zero. In order to counteract the initialization bias,

bias-corrected first and second-moment estimates are

computed using the following Eqs. (11) and (12),

respectively:

bmt ¼
mt

1� bt1
ð11Þ

bvt ¼
vt

1� bt2
ð12Þ

Later, the parameters are updated using the update rule in

ADAM, as given in Eq. (13):

htþ1 ¼ ht � affiffiffiffi
bvt

p
þ �

bmt ð13Þ

, where � is a very small value. The pseudo-code of the

ADAM algorithm is provided in Algorithm 6. The pseudo-

code of ADAM-based DNN, i.e., ADNN is provided in

Algorithm 7.
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3 Case study

The data consisting of a total of 9473 incident records have

been retrieved from a steel manufacturing plant over the

period of 2010 to 2013. After collection of data, they are

preprocessed. The dataset comprises a total of thirteen

attributes (11 categorical, and two free unstructured text

attributes), of which ‘Incident outcome’ is deemed as the

response attribute. A short description of attributes with

their percentage of occurrence in the dataset is provided in

Table 1. After the data collection, they have been prepro-

cessed. In pre-processing, some basic tasks have been

Table 1 Attributes with percentage of occurrence in the dataset.

Attribute Description Category (%)

Day (DOI) The attribute denoting the day of the week when the incident

took place, has a total of seven classes, i.e., Sunday to Saturday

Sun (8.3%), Mon (15.7%), Tue (15.3%), Wed (15.1%),

Thu (15.5%), Fri (15.5%), and Sat (14.5%)

Month (MOI) The attribute indicating the month of a year when the incident

occurred, has twelve classes, i.e., January to December

Jan (5.5%), Feb (5.3%), Mar (6%), Apr (10.8%), May

(10.5%), Jun (10.9%), Jul (11.3%), Aug (9.3%), Sep

(7.7%), Oct (7.3%), Nov (7.6%), and Dec (7.7%)

Divisions (Div.) It implies the location in the plant where the incident occurred. A

total of fourteen categories of this attribute, i.e., Div1, Div2,

Div3, ... Div13 and Div14 are available in the dataset

Div1 (0.3%), Div2 (10.6%), Div3 (2.4%), Div4 (6.6%),

Div5 (0.01%), Div6 (15.3%), Div7 (8.5%), Div8

(2.1%), Div9 (3.7%), Div10 (1.7%), Div11 (2.9%),

Div12 (28%), Div13 (0.2%), and Div14 (17.7%).

Incident

outcome (IO)

This attribute refers to the category of the incident occurred. The

attribute IO has three classes: (i) Injury (Incident 1), (ii) near

miss (Incident 2), and (iii) property damage (Incident 3)

Injury (34.9%), near miss (40.3%), and property damage

(24.8%)

Incident events

(PC)

This attribute refers to the event of an incident which occurred. It

may be crane dashing, dashing/ collision, derailment, slip trip

fall (STF), and so forth. In the dataset, this attribute has eleven

classes, namely Cause 1, Cause 2, ... Cause 10, and Cause 11

Cause 1 (6.3%), Cause 2 (4.7%), Cause 3 (1.7%), Cause 4

(12.1%), Cause 5 (14.9%), Cause 6 (4.1%), Cause 7

(18.6%), Cause 8 (4.7%), Cause 9 (11.2%), Cause 10

(20.7%), and Cause 11 (0.9%)

Condition of the

work (WC)

The attribute refers to the status of the work while the incident

took place. There are three classes of this attribute, i.e.,

working in a group (GW), working a single (SW), and not

applicable (NA)

Single working (SW) (36.7%), Group working (GW)

(48.7%), and not applicable (14.6%)

Condition of

machine (MC)

This attribute refers to the condition of the machine while the

incident happened. It describes the machine whether it was idle

(MI) or working (MW), or not applicable (NA)

Working (W) (43.8%), idle (I) (13.6%), and not related

(N) (42.6%)

Types of

observation

(OT)

It indicates the basic or root causes of incidents. It is categorized

into four classes: (i) unsafe act (UA), which means a human,

due to his/her own fault, is accountable for the occurrence of

incident; (ii) unsafe condition as well as unsafe act (UAC),

which denotes the both factors, hazardous condition, and

human fault are responsible, (iii) unsafe act by other (UAO),

which implies that incident happens because of someone’s

mistakes, and (iv) unsafe condition (UC), which indicates a

state with potential leading to the occurrence of an incident.

Unsafe act (UA) (46.6%), Unsafe condition (UC)

(32.7%), Unsafe act and condition (UAC) (12.2%), and

Unsafe act by others (8.4%)

Employee Type

(ET)

It indicates the type of worker/employee. It may be either an

employee or a contractor

Permanent employee (E) (28.3%), and Contractor

(C) (71.7%)

Incident type

(IT)

It denotes the types of the incidents; either human behavior

(Bhv.) or process type (Pro.)

Behavioral (Bhv) (75.2%), and Process-related (Pro)

(24.8%)

Standard

operating

procedure

(SOP)

This attribute implicates a guideline, which should be

maintained or followed during work. There are a total of six

classes in this attribute, namely SOP is available and followed

(SAF), SOP is available but not followed (SANF), SOP is

inadequate but is followed (SIF), SOP is inadequate and is not

followed (SINF), SOP is not available and is not required

(SNNR), and SOP is not available but is required (SNR)

SAF (19.5%), SINF (7.6%), SANF (32.4%), SIF (10.4%),

SNN (19.6%), and SNR (10.6%)

Brief description

of the incident

(BD)

It is an unstructured text data, which narrates how and why the

incident took place

Text data

Event leading to

the incident

(EL)

This attribute contains a detailed description of circumstances

and conditions that led to the happening of the incident

Text data
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done, for example, removal of inconsistencies manually,

and missing data by random forest algorithm. Then,

unstructured text attributes have been converted into a

categorical attribute using topic modeling. Thereafter, class

imbalance problem is handled using SMOTE algorithm.

4 Results and discussions

In this section, the generation of a new categorical attribute

using topic modeling, evaluation of the importance of

attributes using chi-square approach, hyper-parameter

study, and prediction of incident outcomes are discussed in

details.

4.1 Generation of a categorical attribute using
topic modeling

There are two text attributes, called ‘BD’ and ‘EL’ within

the dataset, which comprise the description of incidents.

LDA topic modeling has been used to create a categorical

attribute from the texts. Four metrics have been used

simultaneously to determine the number of topics opti-

mally from the attributes of the unstructured text. From the

topic modeling, a total of nine topics are extracted (refer to

Fig. 5). With each of the topics, an exhaustive list of terms,

based on the probability of occurrence, is generated. Using

the list, a meaningful event is obtained for each topic. For

the purpose of visualization, the top eight terms per topic

with its corresponding probability of occurrence are shown

in Table 2. For instance, in Topic1, the top eight terms,

‘road,’ ‘shift,’ ‘near,’ ‘injury,’ ‘come,’ ‘sudden,’ ‘duty,’

and ‘fell’ are found. From the list of the terms extracted, it

can be inferred that Topic1 describes ‘Falling’ as a

meaningful event, which has been later validated by five

domain experts.

4.2 Evaluation of feature importance using Chi-
square approach

Once the dataset has been pre-processed, chi-square test is

conducted for the evaluation of the importance of attri-

butes. The higher values of chi-square in Fig. 6 suggest that

the attributes, such as ‘Employee types,’ ‘Topic,’ ‘Incident

events,’ and ‘Machine condition’ are the significant pre-

dictors for the prediction of incident outcomes.

4.3 Hyper-parametric study

A tree-based regression model is used to find the optimal

values of the hyper-parameters of DNN for producing the

best accuracy. The hyper-parameters of a DNN include

learning rates, activation function, the number of hidden

layers, and the number of neurons in each hidden layer.

First, the model is evaluated based on the values of the

parameters, which are initially set at random. The model is

then improved by sequentially evaluating the cost function

for a number of evaluations, which is set equal to 10 (i.e.,

‘n_calls=10’). This is performed for all the three optimized

DNNs. For ADNN, the best results are obtained with a

single layer of the six hidden layers with 5, 7, 7, 6, 4, and 5

neurons, respectively, a learning rate of 0.061, and ‘recti-

fied linear unit (ReLU)’ activation function. For RMSProp-

DNN, the best results are achieved with a setting of five

hidden layers with 3, 3, 5, 4, and 4 neurons, respectively,

the learning rate of 0.0041, and ‘ReLU’ activation function.

Similarly, for SGD-DNN, the best results are obtained with

the five hidden layers with 6, 4, 3, 4, and 3 neurons,

respectively, the learning rate of 0.00001, and ‘tanh’ acti-

vation function. The ranges and the optimal values of the

optimized classifiers are listed in Table 3. The convergence

plots of all the three cases are also recorded and depicted in

Fig. 7a–c.

Fig. 5 Optimal number of

topics from incident narratives
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4.4 Prediction

This section demonstrates the classification performances

of the three optimized DNNs, namely ADNN, RMSProp-

DNN, and SGD-DNN. Evaluation of the performances is

done based on incident data and five other benchmark

datasets, namely ‘Breast cancer,’ ‘Iris,’ ‘PID,’ ‘Hungarian,’

and ‘Cleveland’ retrieved from UCI Machine Learning

Repository1. Besides these, other three state-of-the-art

classifiers, namely k-NN, SVM, and RF are also employed

Table 2 Eight top terms with probabilities for each of the nine topics

Topic

no.

Top eight terms Meaningful event

1 0.0419*road ? 0.039189*shift ? 0.035124*near ? 0.033509*injury ? 0.031548* come ? 0.028174*sudden ?

0.026819*duty ? 0.025522*fell

Injuries due to fall

2 0.042011*one ? 0.041117*work ? 0.03016?8*job ? 0.026867*person ? 0.025942*area ? 0.0211*material ?

0.014962*plate ? 0.013081*kept

Material Handling

3 0.075108*got ? 0.03764*load ? 0.028079*line ? 0.027372*place ? 0.027069*wagon ? 0.025925*loco ?

0.020101*due ? 0.019865*point

Locomotive

failures

4 0.053615*side ? 0.027446*dumper ? 0.025663*car ? 0.025211*driver ? 0.023513*gate ? 0.020741*vehicle

? 0.017911*dash ? 0.015393*truck

Vehicle

hitting/collision

5 0.051178*hand ? 0.036216*left ? 0.036216*right ? 0.031686*cut ? 0.025129*got ? 0.024831*hit ?

0.023966*first ? 0.020867*finger

Finger related

injuries

6 0.038966*slip ? 0.03491*fall ? 0.031652*leg ? 0.028139*fell ? 0.022263*floor ? 0.021784*machine ?

0.02156*one ? 0.019963*person

Slipping

7 0.030726*water ? 0.025716*due ? 0.024613*pipe ? 0.021178*open ? 0.018783*gas ? 0.014876*slag ?

0.014813*door ? 0.01434*start

Pipe Leakage

8 0.069761*operation ? 0.060601*crane ? 0.033244*coil ? 0.026268*lift ? 0.018292*roll ? 0.015865*position

? 0.013166*broken ? 0.0124378*damage

Crane operation

failure

9 0.48791*fire ? 0.026413*cable ? 0.022651*found ? 0.015609*damage ? 0.1552*electric ? 0.015012*control

? 0.014237*power ? 0.012924*room

Control failures

Fig. 6 Importance of attributes

in prediction

Table 3 Hyper-parameters of

the optimized classifiers
Hyper-parameters Range Classifiers

ADNN RMSProp-DNN SGD-DNN

Learning rate 10�6-10�2 0.061 0.0041 0.00001

Activation functions ‘ReLU,’ ‘tanh,’ and ‘sigmoid’ ‘ReLU’ ‘ReLU’ ‘tanh’

Number of layers 0–10 6 5 5

Number of neurons 5–25 20 17 12

1 https://archive.ics.uci.edu/ml/index.php.
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using 10-fold cross-validation to perform further checking

of the performance. From Table 4, it can be seen that the

maximum accuracy 78.8% is generated by ADNN, whereas

RMSProp-DNN and SGD-DNN produce the accuracies

78.1%, and 76.1%, respectively. Other algorithms, RF,

k-NN, and SVM produce the best accuracy of 73.28%,

70.76%, and 65.11%, respectively. With the experiments,

the corresponding graphs, i.e., accuracy versus epochs are

also depicted for the three optimized algorithms in Fig. 7d–

f. In addition, for comparative study, the analysis related to

‘loss versus epochs’ is plotted for the three models (refer to

Fig. 7g). The trend of accuracies obtained by the six

Er
ro
r

(a)

Er
ror

(b)

Er
ro
r

(c) (d)

(e) (f)

(g)

Fig. 7 Convergence plots: a Error plot of ADNN, b error plot of

RMSProp-DNN, c error plot of SGD-DNN, d accuracy plot of

ADNN, e accuracy plot of RMSProp-DNN, f accuracy plot of SGD-

DNN, and g loss vs epochs plot of ADAM, RMSProp, and SGD-

based DNN classifiers
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models, namely ADNN, RMSProp-DNN, SGD-DNN,

SVM, k-NN, and RF is somewhat similar in nature in terms

of the order of best accuracies on five benchmark test

datasets. Hence, from the experimental results reported in

Table 4, it is explored that ADNN classifier produces the

highest accuracy for all the datasets. Although k-NN, RF,

SGD-DNN, RMSProp-DNN, and SVM are compared with

the proposed ADNN, DNN parameters are tuned using

SGD, RMSProp, and ADAM optimizers to determine the

best one since these optimizers are best suited for tuning

deep learning model parameters rather than others.

Therefore, convergence plots are exhibited for these three

optimizers only.

It is to be noted that in all datasets, information related

to attributes and their respective classes are given. Using

this information, important attributes are extracted and

used in analyses for better classification performance. The

extraction of attributes is done by using a stacked auto

encoder. For example, the stacked auto encoder is applied

over the data, ‘Iris,’ which has four attributes, namely,

‘sepal length,’ ‘sepal width,’ ‘petal length,’ and ‘petal

width,’ and three decision or response classes, namely

‘setosa,’ ‘virginica,’ and ‘versicolour.’ Now, the dataset is

divided into two sets: training set and test set. The number

of inputs used in an auto encoder is same as the number of

attributes in the data. Hyper-parameters are multiplied with

attribute values for each input sample to extract its (e.g.,

input sample) feature value. This feature extraction is done

in hidden layer of auto encoder. For all the samples in input

data, a feature map is generated. The feature map consti-

tutes all the feature values generated from the input data. In

stacked auto encoder, the generated feature map is fed to

the next auto encoder to get its reduced feature map. In this

way the feature map is passed through all the auto enco-

ders, and finally generate more reduced feature map. Input

data can be represented concisely using its reduced feature

map. Instead of taking the entire input data, its corre-

sponding reduced feature map is used for softmax classi-

fication; thereby increasing the classification accuracy as

well as reducing the computational time. Therefore, useful

feature map extraction and its softmax classification is

more advantageous and necessary than just only using

softmax classification on the entire input data.

4.4.1 Performance evaluation and comparison

Besides the accuracy, other performance measures

including sensitivity (i.e., recall), F–measure, and precision

are also evaluated to compare the classification models.

The results of ADNN, RMSProp-DNN, SGD-DNN, SVM,

k-NN, and RF are summarized in Table 5.

4.4.2 Statistical test for significance

Following the strategy adopted by [78–80], two nonpara-

metric tests, Wilcoxon signed-ranks test and Mann–Whit-

ney U test are carried out with 95% confidence interval

(i.e., significance level, a ¼ 0:05) for comparison of the

performance of ADNN with each of the other two models,

i.e., RMSProp-DNN and SGD-DNN. Results reveal that

there exist significant differences between ADNN and the

other two models since p\0:05 (refer to Table 6). In

addition, the results of the Mann–Whitney U test also

support the findings of the previous test (refer to Table 7).

4.4.3 Robustness checking of the classifiers

Robustness checking of the three optimized classifiers is

carried out using five independent runs with 10-fold cross-

validation for every run. Adopting the process of Oztekin

et al. [81], seeds are randomly selected for splitting the

dataset into training and testing. Five different numbers,

i.e., 221, 223, 225, 227, and 229 are assigned to seeds for

five different runs, which, in turn, produces a set of 50

cross-validation accuracies (i.e., 10-fold cross-validation

accuracies per seed � 5 seeds). Based on these values, a

box plot is generated for each of the six classifiers (i.e.,

ADAM-DNN, RMSProp_DNN, SGD-DNN, SVM, k-NN,

and RF) (refer to Fig. 8). From the figure, it is unveiled that

the ADNN algorithm shows the maximum accuracy values

with the least range of dispersion; whereas the minimum

Table 4 Best accuracy of

different classifiers on different

datasets using 10-fold cross-

validation

Classifiers Datasets

Incident data Breast cancer Iris PID Cleveland Hungarian

ADNN 0.788 0.938 0.967 0.715 0.826 0.814

RMSProp-DNN 0.781 0.9298 0.9666 0.704 0.817 0.792

SGD-DNN 0.761 0.64 0.933 0.684 0.795 0.783

SVM 0.6511 0.6228 0.9333 0.657 0.768 0.754

k-NN 0.7076 0.8859 0.9333 0.662 0.771 0.775

RF 0.7328 0.891 0.944 0.69 0.803 0.784
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accuracies are yielded by the SVM algorithm. Maximum

dispersion of accuracies is observed for k-NN algorithm.

Therefore, from the comparative study, the ADNN classi-

fier can be deemed as the robust model.

From the experimental analyses, it is to be noted that

one or more hyper-parameters are set to a particular value

in ML-approach, which influences the testing accuracy of

the classification algorithms. With the proper selection of

the hyper-parameter values, the ML algorithm performs

with the optimum accuracy. Therefore, parameter tuning is

a very important task in ML approach. This tuning process

comprises three steps: Step 1: Parameters are randomly

initialized with some weight values; Step 2: error/loss is

calculated based on the weight values; and Step 3: the error

is propagated back to update the weight values such that

the error should be minimized. In such cases, backpropa-

gation of the errors can be made using several optimization

algorithms, such as gradient descent (GD) and stochastic

gradient descent (SGD) algorithms. In GD-based opti-

mization algorithm, first, the error is calculated for the

entire dataset and then the error is back propagated for

weight updation. Therefore, it takes a lot of time to move

even a single step closer to the optimum weight value/cost.

This problem is solved in SGD, where the entire dataset is

divided into several mini batches of size one. After passing

through one mini batch, the parameters are updated;

thereby speed up the system. These two optimization

algorithms are further speeded up by incorporating

momentum that defines the desired direction of the learn-

ing process so that parameters can reach to optimality with

comparatively shorter time. As stated before, SGD is better

than GD and hence, SGD with momentum is superior to

GD with momentum. RMSProp is a GD-based optimiza-

tion algorithm. It combines GD with momentum. There-

fore, it takes less time than GD to achieve optimality.

Whereas, in SGD, the hyper-parameters are updated after

passing through one mini batch, having the size equal to

one. ADAM combines the SGD with momentum. SGD

reduces the searching space and momentum increases the

learning rate. Therefore, ADAM is superior to GD, SGD,

and RMSprop algorithms in terms of computation time.

5 Conclusions

The present study proposes a new methodology for the

development of a prediction model which enables us to

predict the incident outcomes using the hidden information

underlying the data. DNN, an effective and powerful

classifier, has been used in this task. The findings of the

study allow us to draw some useful insights regarding the

handling of unstructured text data and parameter opti-

mization of the classifiers. For instances, topic modeling isTa
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found to be a very effective tool used for the analysis of

unstructured texts. Moreover, using chi-square testing, the

‘topic’ is also found to be one of the important predictors of

incident outcomes. Besides this, other attributes including

‘Employee types,’ ‘Incident events,’ and ‘Machine condi-

tion’ are found to be the important determinants of the

response attribute. Key words related to each topic are

added with other categorical predictors to form the input

feature space. This input feature space is fed to the DNN

for prediction. In order to achieve the improved accuracy in

classification, the parameters of DNN are tuned by the

three optimization algorithms, namely RMSProp, ADAM,

and SGD, separately. From this study, it is evident that the

proposed approach ADNN is found to be the best classifier

with the highest accuracy. In support of the findings from

the experiments, other algorithms, namely SGD-DNN,

RMSProp-DNN, SVM, k-NN, and RF have also been

applied to the incident dataset. The results reveal that the

ADNN classifier outperforms others in all cases. Further,

all the algorithms used in this study have been tested using

Table 6 Results of the Wilcoxon Signed Rank test for ADNN, RMSProp-DNN, and SGD-DNN for the incident dataset

Z-value Standard p-value deviation Mean difference Sig. (p\ 0.05)

RMSProp-DNN and ADNN -7.2965 286.51 0 0.02 ADAM

SGD-DNN and ADNN -8.6818 290.84 0 -0.02 ADAM

Table 7 Results of the Mann–Whitney U test for ADAM-DNN (ADNN), RMSProp-DNN, and SGD-DNN for each dataset

Algorithms Datasets Incident

dataset

Breast

cancer

Iris PID Cleveland Hungarian

SGD and ADAM-DNN Z-Value -11.876 -11.971 11.926 -12.841 -10.325 -11.301

P-Value 0 0 0 0.00002 0 0

Mean Diff. 100.5 100.5 101 102 105 103

U-Value 139 100 132 125 134 162

Significance

(p\0:05)
ADAM-DNN ADAM-

DNN

ADAM-

DNN

ADAM-

DNN

ADAM-

DNN

ADAM-

DNN

RMSProp and ADAM-

DNN

Z-Value -4.421 -3.45 -10.8 -6.547 -8.258 -11.302

P-Value 0 0 0 0 0 0

Mean Diff. 100.5 100.5 125.5 113 142 118

U-Value 3190 3587.5 1450 2145 2467 1548

Significance

(p\0:05)
ADAM-DNN ADAM-

DNN

ADAM-

DNN

ADAM-

DNN

ADAM-

DNN

ADAM-

DNN

Fig. 8 Box plot analysis for

robustness checking of different

classifiers
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five different available benchmark datasets. In all these

cases, ADNN algorithm performs the best. In order to

check whether the performance of ADNN algorithm differs

significantly or not from other algorithms (i.e., SGD-DNN,

and RMSProp-DNN), two statistical tests, namely Wil-

coxon signed ranked test and Mann–Whitney U test have

been carried out. Results reveal that our proposed algo-

rithm significantly performs better than the others. Finally,

using boxplot analysis, ADNN is found to be the most

robust classifier. Therefore, the present study is expected to

have potential to contribute both in theoretical and practi-

cal aspects.

5.1 Theoretical contributions

From the theoretical point of view, the study offers a

number of contributions. First, the proposed methodology

shows a new way to handle issue of the use of unstructured

texts in analysis using LDA-based topic modeling. Second,

the methodology explores a strategy of using parameter

optimization of classifiers for increasing prediction per-

formances. Third, the higher predictive accuracy of the

optimized classifiers reveals that incidents do not occur in a

chaotic fashion, but hidden patterns do exist. Therefore,

these patterns can be explored and captured with the use of

machine learning techniques. This finding suggests that

occupational safety should be studied empirically in a

systematic way rather than strictly following a qualitative

approach through subjective, expert-opinion-based data

analysis.

5.2 Practical implications

From the practical point of view, the study has some real

implications. The study can help decision-makers like

safety professionals to predict the possible outcomes of

incidents. It may be either injury or near-miss, or property

damage. Based on this predicted outcome, safety-related

decisions can be undertaken, such as working places should

be cleaned and free of spillage of oil or any liquid, proper

illumination level at working places should be maintained,

unexposed cables to be removed from working places, and

others. In addition, it can help decision-makers pre-process

data by addressing the issues of handling of unstructured

text in analysis. The use of LDA helps in automatic text

classification which enables safety managers to identify

useful information (such as probable accidents with

severities) by extracting and relating relevant data present

in documents. It is useful when it is used on proactive data

(i.e., information that lead to incident). The proactive data

indicates the data collected prior to the occurrence of any

incident, for example, an inspection report. This report

usually narrates the date, time, location, machine condition,

working nature of a worker, type of activity being per-

formed by workers, pre-incident working conditions, etc.

Using both incident and inspection data, one attribute

‘Incident’ can be generated which has two classes, ‘Yes,’

or ‘No.’ The ‘Yes’ means the incident has occurred; on the

other hand, ‘No’ means the incident has not occurred.

Using automatic text classification on this information, a

safety manager can at least classify the documents as either

‘Yes’ or ‘No.’ If any new document (from inspection) is

classified as ‘Yes’ by the classification algorithm, it means

that there is a possibility of the occurrence of an incident.

With the help of this information, the safety manager can

take proactive measures to prevent this occurrence.

Moreover, the evaluation of the importance of attributes

toward incident outcome prediction can help the decision-

makers identify the important and unimportant attributes.

Therefore, they can put more focus on the important

attributes or factors responsible for incidents and accord-

ingly, the factors can be improved or eliminated from the

system to prevent the occurrences of incidents.

However, like other studies, this study has also some

limitations. The study suffers from the issue that demands

an extensive human labor, which is necessary to sanitize

the data prior to analysis. This is a time-consuming and less

effective process. Further, the dataset consists of a limited

number of incident records. It is noteworthy to mention

that using a substantial amount of data in the analysis is

necessary for achieving the model’s generality. Based on

the study carried out, some interesting avenues could be

explored for the future research. For examples, the study

could be expanded to develop an ADNN-based automated

decision support system (ADSS) [82] which not only

enables us for prediction but also facilitates smart decision-

making based on the generation of rules. Therefore, the

present study can be useful for academics and researchers

through the development of a new methodology to over-

come the issues of unstructured and hidden information in

data. Moreover, to resolve the issues, the study could be

expanded beyond the manufacturing industry, such as

construction, process industry, aviation, and so forth.

Appendix

A notations used

See Table 8.
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Table 8 Notations used in the study

Notations Meaning

Ni Random variable representing the number of words in i-th document, where i ¼ 1; 2; :::; n

hi Random variable denoting per document-topic proportion

a Proportion parameter, where a\1

bTj Per-topic word proportion parameter

Tj j-th topic, where j ¼ 1; 2; :::;m

g Random variable related to Dirichlet distribution

zi;wl
The topic of each word wl 2 wf g in the i-th document, where l ¼ 1; 2; :::; p

Di i-th document

wi;wl
Observed word in a topic

b Per-topic word proportion parameter

S A universe, where x1; x2; :::; xQ
� �

Q The total number of instances in U

A A set of predictor attributes, where a1; a2; :::; ap
� �

p The number of predictors in U

as An arbitrary attribute, where s 2 p

i
ðsÞ
mis The entries in a dataset having missing values, where i

ðsÞ
mis �Q

y
ðsÞ
obs

Observed values of attribute as

y
ðsÞ
mis

Missing values of attribute as

x
ðsÞ
obs The attributes other than as with observations i

ðsÞ
obs ¼ 1; 2; :::;Qf g n iðsÞmis

x
ðsÞ
mis The attributes other than as with observations i

ðsÞ
mis

X Information table used in SMOTE

P Number of oversampling used in SMOTE

wi Random sample used in SMOTE

yi Synthetic samples generated by SMOTE

d A random value (0, 1) used in SMOTE

NS Total number of samples/instances used in SMOTE

q Total number of minor samples used in SMOTE

M The number of inputs or outputs used in an auto-encoder

N The number of hidden nodes used in the auto-encoder

c ¼ ½c1 c2 c3 ::: cN �T A set of outputs from the auto-encoder

x ¼ ½x1 x2 x3 ::: xM �T A set of inputs used in the auto-encoder

f The activation function (usually, sigmoidal) for the auto-encoder

b ¼ ½b1 b2 b3 ::: bN �T Biases associated with the auto-encoder

W ¼ ½w1 w2 w3 ::: wN �T The weights associated with the auto-encoder

c The relationship between input and output in the encoder

g1AE ¼ gE � gD The input–output relationship of an auto-encoder, where gE and gD denote

L The number of auto-encoders cascaded to form a stacked auto-encoder

� Learning rate

h Initial parameter

m Number of samples in a minibatch

Xð1Þ;Xð2Þ;Xð3Þ; :::;XðmÞ� �
Training set

yðiÞ Target

bg Estimate of gradient

rh Gradient

q Decay rate

d Constant of smaller value
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