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Classification and regression trees are machine-learning methods for constructing
prediction models from data. The models are obtained by recursively partitioning
the data space and fitting a simple prediction model within each partition. As a
result, the partitioning can be represented graphically as a decision tree. Clas-
sification trees are designed for dependent variables that take a finite number
of unordered values, with prediction error measured in terms of misclassifica-
tion cost. Regression trees are for dependent variables that take continuous or
ordered discrete values, with prediction error typically measured by the squared
difference between the observed and predicted values. This article gives an in-
troduction to the subject by reviewing some widely available algorithms and
comparing their capabilities, strengths, and weakness in two examples. C© 2011 John
Wiley & Sons, Inc. WIREs Data Mining Knowl Discov 2011 1 14–23 DOI: 10.1002/widm.8

CLASSIFICATION TREES

I n a classification problem, we have a training sam-
ple of n observations on a class variable Y that

takes values 1, 2, . . . , k, and p predictor variables,
X1, . . . , Xp. Our goal is to find a model for predict-
ing the values of Y from new X values. In theory, the
solution is simply a partition of the X space into k
disjoint sets, A1, A2, . . . , Ak, such that the predicted
value of Y is j if X belongs to Aj , for j = 1, 2, . . . , k.
If the X variables take ordered values, two classical
solutions are linear discriminant analysis1 and near-
est neighbor classification.2 These methods yield sets
Aj with piecewise linear and nonlinear, respectively,
boundaries that are not easy to interpret if p is large.

Classification tree methods yield rectangular
sets Aj by recursively partitioning the data set one
X variable at a time. This makes the sets easier to
interpret. For example, Figure 1 gives an example
wherein there are three classes and two X variables.
The left panel plots the data points and partitions and
the right panel shows the corresponding decision tree
structure. A key advantage of the tree structure is its
applicability to any number of variables, whereas the
plot on its left is limited to at most two.

The first published classification tree algorithm
is THAID.3,4 Employing a measure of node impurity
based on the distribution of the observed Y values
in the node, THAID splits a node by exhaustively
searching over all X and S for the split {X ∈ S} that
minimizes the total impurity of its two child nodes. If
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X takes ordered values, the set S is an interval of the
form (−∞, c]. Otherwise, S is a subset of the values
taken by X. The process is applied recursively on the
data in each child node. Splitting stops if the relative
decrease in impurity is below a prespecified threshold.
Algorithm 1 gives the pseudocode for the basic steps.

Algorithm 1 Pseudocode for tree construction
by exhaustive search

1. Start at the root node.

2. For each X, find the set S that minimizes
the sum of the node impurities in the two
child nodes and choose the split {X∗ ∈ S∗}
that gives the minimum overall X and S.

3. If a stopping criterion is reached, exit. Oth-
erwise, apply step 2 to each child node in
turn.

C4.55 and CART6 are two later classification
tree algorithms that follow this approach. C4.5 uses
entropy for its impurity function, whereas CART
uses a generalization of the binomial variance called
the Gini index. Unlike THAID, however, they first
grow an overly large tree and then prune it to a
smaller size to minimize an estimate of the misclassi-
fication error. CART employs 10-fold (default) cross-
validation, whereass C4.5 uses a heuristic formula to
estimate error rates. CART is implemented in the R
system7 as RPART,8 which we use in the examples
below.

Despite its simplicity and elegance, the ex-
haustive search approach has an undesirable prop-
erty. Note that an ordered variable with m distinct
values has (m − 1) splits of the form X ≤ c, and an
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FIGURE 1 | Partitions (left) and decision tree structure (right) for a classification tree model with three classes labeled 1, 2, and 3. At each
intermediate node, a case goes to the left child node if and only if the condition is satisfied. The predicted class is given beneath each leaf node.

unordered variable with m distinct unordered values
has (2m−1 − 1) splits of the form X ∈ S. Therefore, if
everything else is equal, variables that have more dis-
tinct values have a greater chance to be selected. This
selection bias affects the integrity of inferences drawn
from the tree structure.

Building on an idea that originated in the FACT9

algorithm, CRUISE,10,11 GUIDE,12 and QUEST13 use
a two-step approach based on significance tests to
split each node. First, each X is tested for association
with Y and the most significant variable is selected.
Then, an exhaustive search is performed for the set
S. Because every X has the same chance to be se-
lected if each is independent of Y, this approach is
effectively free of selection bias. Besides, much com-
putation is saved as the search for S is carried out
only on the selected X variable. GUIDE and CRUISE
use chi squared tests, and QUEST uses chi squared
tests for unordered variables and analysis of variance
(ANOVA) tests for ordered variables. CTree,14 an-
other unbiased method, uses permutation tests. Pseu-
docode for the GUIDE algorithm is given in Algo-
rithm 2. The CRUISE, GUIDE, and QUEST trees are
pruned the same way as CART.

Algorithm 2 Pseudocode for GUIDE classifica-
tion tree construction

1. Start at the root node.

2. For each ordered variable X, convert it to an
unordered variable X′ by grouping its values
in the node into a small number of intervals.
If X is unordered, set X′ = X.

3. Perform a chi squared test of independence
of each X′ variable versus Y on the data in
the node and compute its significance prob-
ability.

4. Choose the variable X∗ associated with the
X′ that has the smallest significance proba-
bility.

5. Find the split set {X∗ ∈ S∗} that minimizes
the sum of Gini indexes and use it to split
the node into two child nodes.

6. If a stopping criterion is reached, exit. Oth-
erwise, apply steps 2–5 to each child node.

7. Prune the tree with the CART method.

CHAID15 employs yet another strategy. If X is
an ordered variable, its data values in the node are
split into 10 intervals and one child node is assigned
to each interval. If X is unordered, one child node
is assigned to each value of X. Then, CHAID uses
significance tests and Bonferroni corrections to try to
iteratively merge pairs of child nodes. This approach
has two consequences. First, some nodes may be split
into more than two child nodes. Second, owing to the
sequential nature of the tests and the inexactness of
the corrections, the method is biased toward selecting
variables with few distinct values.

CART, CRUISE, and QUEST can allow splits
on linear combinations of all the ordered variables,
whereas GUIDE can split on combinations of two
variables at a time. If there are missing values, CART
and CRUISE use alternate splits on other variables
when needed, C4.5 sends each observation with a
missing value in a split through every branch using
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a probability weighting scheme, QUEST imputes the
missing values locally, and GUIDE treats missing val-
ues as belonging to a separate category. All except
C4.5 accept user-specified misclassification costs and
all except C4.5 and CHAID accept user-specified class
prior probabilities. By default, all algorithms fit a con-
stant model to each node, predicting Y to be the class
with the smallest misclassification cost. CRUISE can
optionally fit bivariate linear discriminant models and
GUIDE can fit bivariate kernel density and nearest
neighbor models in the nodes. GUIDE also can pro-
duce ensemble models using bagging16 and random
forest17 techniques. Table 1 summarizes the features
of the algorithms.

To see how the algorithms perform in a real ap-
plication, we apply them to a data set on new cars
for the 1993 model year.18 There are 93 cars and 25
variables. We let the Y variable be the type of drive
train, which takes three values (rear, front, or four-
wheel drive). The X variables are listed in Table 2.
Three are unordered (manuf, type, and airbag, tak-
ing 31, 6, and 3 values, respectively), two binary-
valued (manual and domestic), and the rest ordered.
The class frequencies are rather unequal: 16 (17.2%)
are rear, 67 (72.0%) are front, and 10 (10.8%)
are four-wheel drive vehicles. To avoid random-
ness due to 10-fold cross-validation, we use leave-
one-out (i.e., n-fold) cross-validation to prune the
CRUISE, GUIDE, QUEST, and RPART trees in this
article.

Figure 2 shows the results if the 31-valued vari-
able manuf is excluded. The CHAID tree is not shown
because it has no splits. The wide variety of variables
selected in the splits is due partly to differences be-
tween the algorithms and partly to the absence of

a dominant X variable. Variable passngr is chosen
by three algorithms (C4.5, GUIDE QUEST); enginsz,
fuel, length, and minprice by two; and hp, hwympg,
luggage, maxprice, rev, type, and width by one each.
Variables airbag, citympg, cylin, midprice, and rpm
are not selected by any.

When GUIDE does not find a suitable variable
to split a node, it looks for a linear split on a pair
of variables. One such split, on enginsz and rseat,
occurs at the node marked with an asterisk (*) in
the GUIDE tree. Restricting the linear split to two
variables allows the data and the split to be displayed
in a plot as shown in Figure 3. Clearly, no single split
on either variable alone can do as well in separating
the two classes there.

Figure 4 shows the C4.5, CRUISE, and GUIDE
trees when variable manuf is included. Now CHAID,
QUEST, and RPART give no splits. Comparing them
with their counterparts in Figure 2, we see that the
C4.5 tree is unchanged, the CRUISE tree has an ad-
ditional split (on manuf) and the GUIDE tree is much
shorter. This behavior is not uncommon when there
are many variables with little or no predictive power:
their introduction can substantially reduce the size of
a tree structure and its prediction accuracy; see, e.g.,
Ref 19 for more empirical evidence.

Table 3 reports the computational times used
to fit the tree models on a computer with a 2.66 Ghz
Intel Core 2 Quad Extreme processor. The fastest al-
gorithm is C4.5, which takes milliseconds. If manuf
is excluded, the next fastest is RPART, at a tenth of a
second. But if manuf is included, RPART takes more
than 3 h—a 105-fold increase. This is a practical prob-
lem with the CART algorithm; because manuf takes
31 values, the algorithm must search through 230 − 1

TABLE 1 Comparison of Classification Tree Methods. A Check Mark Indicates Presence of a Feature

Feature C4.5 CART CHAID CRUISE GUIDE QUEST

Unbiased Splits
√ √ √

Split Type u u,l u u,l u,l u,l
Branches/Split ≥2 2 ≥2 ≥2 2 2
Interaction Tests

√ √
Pruning

√ √ √ √ √
User-specified Costs

√ √ √ √ √
User-specified Priors

√ √ √ √
Variable Ranking

√ √
Node Models c c c c,d c,k,n c
Bagging & Ensembles

√
Missing Values w s b i,s m i

b, missing value branch; c, constant model; d, discriminant model; i, missing value imputation; k, kernel density model; l, linear splits;
m, missing value category; n, nearest neighbor model; u, univariate splits; s, surrogate splits; w, probability weights
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TABLE 2 Predictor Variables for the Car Data

Variable Description Variable Description

manuf Manufacturer (31 values) rev Engine revolutions per mile
type Type (small, sporty, compact, midsize, large, van) manual Manual transmission available (yes, no)
minprice Minimum price (in $1000) fuel Fuel tank capacity (gallons)
midprice Midrange price (in $1000) passngr Passenger capacity (persons)
maxprice Maximum price (in $1000) length Length (inches)
citympg City miles per gallon whlbase Wheelbase (inches)
hwympg Highway miles per gallon width Width (inches)
airbag Air bags standard (0, 1, 2) uturn U-turn space (feet)
cylin Number of cylinders rseat Rear seat room (inches)
enginzs Engine size (liters) luggage Luggage capacity (cu. ft.)
hp Maximum horsepower weight Weight (pounds)
rpm Revolutions per minute at maximum horsepower domestic Domestic (U.S./non-U.S.manufacturer)

CRUISE QUEST RPART
hwympg
≤ 21.65

4wd

fuel
≤ 20.67

rev
≤ 1458

rwd fwd

rwd

minprice
≤ 29.6

enginsz
≤ 4.0

fwd rwd

passngr
≤ 5

rwd fwd

fuel
< 19.45

fwd

type
= van

4wd rwd

EDIUG5.4C

width ≤ 74

hp ≤ 202

passngr
≤ 6

fwd

width
≤ 73

4wd fwd

length
≤ 201

rwd fwd

rwd

luggage≤ 19

passngr≤ 6

length ≤ 185

minprice
≤ 27.4

fwd rwd

enginsz
–0.59 rseat
≤ –13.14 *

fwd rwd

maxprice
≤ 23.5

fwd 4wd

rwd

FIGURE 2 | CRUISE, QUEST, RPART, C4.5, and GUIDE trees for car data without manuf. The CHAID tree is trivial with no splits. At each
intermediate node, a case goes to the left child node if and only if the condition is satisfied. The predicted class is given beneath each leaf node.
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FIGURE 4 | CRUISE, C4.5, and GUIDE trees for car data with manuf
included. The CHAID, RPART, and QUEST trees are trivial with no splits.
Sets S1 and S2 are (Plymouth, Subaru) and (Lexus, Lincoln, Mercedes,
Mercury, Volvo), respectively, and S3 is the complement of S1 ∪ S2.

(more than one billion) splits at the root node alone
(if Y takes only two values, a computational shortcut6

reduces the number of searches to just 30 splits). C4.5
is not similarly affected because it does not search for
binary splits on unordered X variables. Instead, C4.5
splits the node into one branch for each X value and
then merges some branches after the tree is grown.
CRUISE, GUIDE, and QUEST also are unaffected be-
cause they search exhaustively for splits on unordered
variables only if the number of values is small. If the
latter is large, these algorithms employ a technique

given in Ref 9 that uses linear discriminant analysis
on dummy variables to find the splits.

Regression trees
A regression tree is similar to a classification tree,
except that the Y variable takes ordered values and
a regression model is fitted to each node to give the
predicted values of Y. Historically, the first regression
tree algorithm is AID,20 which appeared several years
before THAID. The AID and CART regression tree
methods follow Algorithm 1, with the node impurity
being the sum of squared deviations about the mean
and the node predicting the sample mean of Y. This
yields piecewise constant models. Although they are
simple to interpret, the prediction accuracy of these
models often lags behind that of models with more
smoothness. It can be computationally impracticable,
however, to extend this approach to piecewise linear
models, because two linear models (one for each child
node) must be fitted for every candidate split.

M5’,21 an adaptation of a regression tree al-
gorithm by Quinlan,22 uses a more computationally
efficient strategy to construct piecewise linear models.
It first constructs a piecewise constant tree and then
fits a linear regression model to the data in each leaf
node. Because the tree structure is the same as that of
a piecewise constant model, the resulting trees tend to
be larger than those from other piecewise linear tree
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TABLE 3 Tree Construction Times on a 2.66 Ghz Intel Core 2 Quad Extreme Processor for the Car Data.

C4.5 CRUISE GUIDE QUEST RPART

Without manuf 0.004s 3.57s 2.49s 2.26s 0.09s
With manuf 0.003s 4.00s 1.86s 2.54s 3h 2m

methods. GUIDE23 uses classification tree techniques
to solve the regression problem. At each node, it fits a
regression model to the data and computes the resid-
uals. Then it defines a class variable Y′ taking values 1
or 2, depending on whether the sign of the residual is
positive or not. Finally, it applies Algorithm 2 to the
Y′ variable to split the node into two. This approach
has three advantages: (1) the splits are unbiased;
(2) only one regression model is fitted at each node;
and (3) because it is based on residuals, the method
is neither limited to piecewise constant models nor
to the least squares criterion. Table 4 lists the main
features of CART, GUIDE, and M5’.

To compare CART, GUIDE, and M5’ with or-
dinary least squares (OLS) linear regression, we ap-
ply them to some data on smoking and pulmonary
function in children.24 The data, collected from 654
children aged 3–19 years, give the forced expiratory
volume (FEV, in liters), gender (sex, M/F), smoking
status (smoke, Y/N), age (years), and height (ht, in.)
of each child. Using an OLS model for predicting
FEV that includes all the variables, Kahn25 found that
smoke is the only one not statistically significant. He
also found a significant age–smoke interaction if ht
is excluded, but not if ht and its square are both in-
cluded. This problem with interpreting OLS models

often occurs when collinearity is present (the correla-
tion between age and height is 0.8).

Figure 5 shows five regression tree models: (1)
GUIDE piecewise constant (with sample mean of Y
as the predicted value in each node), (2) GUIDE best
simple linear (with a linear regression model involv-
ing only one predictor in each node), (3) GUIDE
best simple quadratic regression (with a quadratic
model involving only one predictor in each node),
(4) GUIDE stepwise linear (with a stepwise linear re-
gression model in each node), and (5) M5’ piecewise
constant. The CART tree (from RPART) is a sub-
tree of (1), with six leaf nodes marked by asterisks
(*). In the piecewise polynomial models (2) and (3),
the predictor variable is found independently in each
node, and nonsignificant terms of the highest orders
are dropped. For example, for model (b) in Figure 5, a
constant is fitted in the node containing females taller
than 66.2 in. because the linear term for ht is not sig-
nificant at the 0.05 level. Similarly, two of the three
leaf nodes in model (c) are fitted with first-degree poly-
nomials in ht because the quadratic terms are not sig-
nificant. Because the nodes, and hence the domains of
the polynomials, are defined by the splits in the tree,
the estimated regression coefficients typically vary be-
tween nodes.

TABLE 4 Comparison of Regression Tree Methods. A Check Mark Indicates Presence

of a Feature

Feature CART GUIDE M5’

Unbiased Splits
√

Split type u,l u u
Branches/Split 2 2 ≥2
Interaction Tests

√
Pruning

√ √ √
Variable Importance Ranking

√ √
Node Models c c,m,p,r c,r
Missing Value Methods s a g
Loss Criteria v v,w v
Bagging & Ensembles

√

a, missing value category; c, constant model; g, global mean/mode imputation; l, linear splits; m, multiple linear
model; p, polynomial model; r, stepwise linear model; s, surrogate splits; u, univariate splits; v, least squares;
w, least median of squares, quantile, Poisson, and proportional hazards.
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FIGURE 5 | GUIDE piecewise constant, simple linear, simple
quadratic, and stepwise linear, and M5’ piecewise constant regression
trees for predicting FEV. The RPART tree is a subtree of (a), with leaf
nodes marked by asterisks (*). The mean FEV and linear predictors
(with signs of the coefficients) are printed beneath each leaf node.
Variable ht2 is the square of ht.

Because the total model complexity is shared be-
tween the tree structure and the set of node models,
the complexity of a tree structure often decreases as
the complexity of the node models increases. There-
fore, the user can choose a model by trading off tree
structure complexity against node model complexity.
Piecewise constant models are mainly used for the in-
sights that their tree structures provide. But they tend
to have low prediction accuracy, unless the data are
sufficiently informative and plentiful to yield a tree
with many nodes. The trouble is that the larger the
tree, the harder it is to derive insight from it. Trees (1)
and (5) are quite large, but because they split almost
exclusively on ht, we can infer from the predicted val-
ues in the leaf nodes that FEV increases monotonically
with ht.

The piecewise simple linear (2) and quadratic (3)
models reduce tree complexity without much loss (if
any) of interpretability. Instead of splitting the nodes,
ht now serves exclusively as the predictor variable in
each node. This suggests that ht has strong linear and
possibly quadratic effects. On the contrary, the splits
on age and sex point to interactions between them
and ht. These interactions can be interpreted with
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ht ≤ 66.2 in., age ≤ 10 years

ht ≤ 66.2 in., age > 10 years

ht > 66.2 in., female
ht > 66.2 in., male, age ≤ 12 years

ht > 66.2 in., male, age > 12 years

FIGURE 6 | Data and fitted regression lines in the five leaf nodes
of the GUIDE piecewise simple linear model in Figure 5(b).

the help of Figures 6 and 7, which plot the data val-
ues of FEV and ht and the fitted regression functions
with a different symbol and color for each node. In
Figure 6, the slope of ht is zero for the group of
females taller than 66.2 in., but it is constant and
nonzero across the other groups. This indicates a
three-way interaction involving age, ht, and sex. A
similar conclusion can be drawn from Figure 7, in
which there are only three groups, with the group of
children aged 11 years or below exhibiting a quadratic
effect of ht on FEV. For children above the age of 11
years, the effect of ht is linear, but males have, on av-
erage, about a half liter more FEV than females. Thus,
the effect of sex seems to be due mainly to children
older than 11 years. This conclusion is reinforced by
the piecewise stepwise linear tree in Figure 5(d), in
which a stepwise linear model is fitted to each of the
two leaf nodes. Age and ht are selected as linear pre-
dictors in both leaf nodes, but sex is selected only in
the node corresponding to children taller than 66.5
in., 70% of whom are above 11 years old.

Figure 8 plots the observed versus predicted val-
ues of the four GUIDE models and two OLS mod-
els containing all the variables, without and with the
square of height. The discreteness of the predicted
values from the piecewise constant model is obvious,
as is the curvature in plot (e). The piecewise simple
quadratic model in plot (c) is strikingly similar to plot
(f), where the OLS model includes squared ht. This
suggests that the two models have similar prediction
accuracy. Model (3) has an advantage over model
(6), however, because the former can be interpreted
through its tree structure and the graph of its fitted
function in Figure 7.

This example shows that piecewise linear regres-
sion tree models can be valuable in providing visual
information about the roles and relative importance

20 Volume 1, January /February 2011c© 2011 John Wi ley & Sons , Inc .



WIREs Data Mining and Knowledge Discovery Classification and regression trees

45 50 55 60 65 70 75

1
2

3
4

5

Height

F
E

V

Age≤ 11 years

Age> 11 years, female
Age> 11 years, male

FIGURE 7 | Data and fitted regression functions in the three leaf nodes of the GUIDE piecewise simple quadratic model in Figure 5(c).
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FIGURE 8 | Observed versus predicted values for the tree models in Figure 5 and two ordinary least squares models.
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of the predictor variables. For more examples, see
Refs 26 and 27.

CONCLUSION

On the basis of the published empirical comparisons
of classification tree algorithms, GUIDE appears to
have, on average, the highest prediction accuracy and
RPART the lowest, although the differences are not
substantial for univariate splits.12 RPART trees of-
ten have fewer leaf nodes than those of CRUISE,
GUIDE, and QUEST, whereas C4.5 trees often have
the most by far. If linear combination splits are used,
CRUISE and QUEST can yield accuracy as high as
the best nontree methods.10,11,28 The computational
speed of C4.5 is almost always the fastest, whereas
RPART can be fast or extremely slow, with the lat-
ter occurring when Y takes more than two values
and there are unordered variables taking many val-
ues (owing to its coding, the RPART software may
give incorrect results if there are unordered vari-
ables with more than 32 values). GUIDE piecewise

linear regression tree models typically have higher
prediction accuracy than piecewise constant models.
Empirical results29 show that the accuracy of the
piecewise linear trees can be comparable to that
of spline-based methods and ensembles of piecewise
constant trees.

Owing to space limitations, other approaches
and extensions are not discussed here. For likelihood
and Bayesian approaches, see Refs 30 and 31,
and Refs 32 and 33, respectively. For Poisson and
logistic regression trees, see Refs 34 and 35, and
Refs 36 and 37, respectively. For quantile regression
trees, see Ref 38. For regression trees applicable to
censored data, see Refs 39–43. Asymptotic theory
for the consistency of the regression tree function
and derivative estimates may be found in Refs 26,
34, and 44. The C source code for C4.5 may be
obtained from http://www.rulequest.com/Personal/.
RPART may be obtained from http://www
.R-project.org. M5’ is part of the WEKA21 package
at http://www.cs.waikato.ac.nz/ml/weka/. Software
for CRUISE, GUIDE and QUEST may be obtained
from http://www/stat.wisc.edu/∼loh/.

NOTE

CART is a registered trademark of California Statistical Software, Inc.
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