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Abstract

Introduction Predicting the clinical course of breast cancer is
often difficult because it is a diverse disease comprised of many
biological subtypes. Gene expression profiling by microarray
analysis has identified breast cancer signatures that are
important for prognosis and treatment. In the current article, we
use microarray analysis and a real-time quantitative reverse-
transcription (qRT)-PCR assay to risk-stratify breast cancers
based on biological 'intrinsic' subtypes and proliferation.

Methods Gene sets were selected from microarray data to
assess proliferation and to classify breast cancers into four
different molecular subtypes, designated Luminal, Normal-like,
HER2+/ER-, and Basal-like. One-hundred and twenty-three
breast samples (117 invasive carcinomas, one fibroadenoma
and five normal tissues) and three breast cancer cell lines were
prospectively analyzed using a microarray (Agilent) and a qRT-
PCR assay comprised of 53 genes. Biological subtypes were
assigned from the microarray and qRT-PCR data by hierarchical
clustering. A proliferation signature was used as a single meta-
gene (log2 average of 14 genes) to predict outcome within the

context of estrogen receptor status and biological 'intrinsic'
subtype.

Results We found that the qRT-PCR assay could determine the
intrinsic subtype (93% concordance with microarray-based
assignments) and that the intrinsic subtypes were predictive of
outcome. The proliferation meta-gene provided additional
prognostic information for patients with the Luminal subtype (P
= 0.0012), and for patients with estrogen receptor-positive
tumors (P = 3.4 × 10-6). High proliferation in the Luminal
subtype conferred a 19-fold relative risk of relapse (confidence
interval = 95%) compared with Luminal tumors with low
proliferation.

Conclusion A real-time qRT-PCR assay can recapitulate
microarray classifications of breast cancer and can risk-stratify
patients using the intrinsic subtype and proliferation. The
proliferation meta-gene offers an objective and quantitative
measurement for grade and adds significant prognostic
information to the biological subtypes.

DWD = distance-weighted discrimination; ER = estrogen receptor; IHC = immunohistochemistry; PCR = polymerase chain reaction; qRT = quanti-
tative reverse-transcription; RFS = relapse-free survival.
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Introduction
Current management of breast cancer is based on anatomic

staging (tumor size/node involvement/metastasis) and mor-

phological features such as the tumor grade [1]. Although ana-

tomic staging and histological grade are important prognostic

factors [2], they often fail to predict the clinical course of the

disease. In order to improve upon the standard of care for

breast cancer, there is a need for new molecular markers and

diagnostic algorithms.

Microarray studies have shown that differences in gene

expression can account for much of the diversity in breast can-

cer and that these profiles have prognostic significance [3-8].

A common method to find similarities (and differences) in the

biology of breast cancer is to hierarchical cluster an 'intrinsic'

gene set [3-5]. By definition, intrinsic genes have a large vari-

ation in expression across tumors from different individuals but

have little variation in expression between biological replicates

from the same individual; intrinsic genes therefore identify dis-

tinct tumor biology that could explain differences in phenotype

(for example, drug response).

Hierarchical clustering of microarray data using an intrinsic

gene set has shown that breast cancers can be classified into

at least four groups: Luminal, Normal-like, HER2+/ER, and

Basal-like [3]. Additional studies using larger numbers of

patients have shown that these subtypes can be identified in

independent data sets, and that the different classes are prog-

nostic [5,6,9].

Breast tumors of the 'Luminal' subtype are estrogen receptor

(ER)-positive and have a similar keratin expression profile to

the epithelial cells lining the lumen of the breast ducts

[4,5,10,11]. Conversely, ER-negative tumors can be divided

into two main subtypes – namely those that overexpress (and

are DNA amplified for) HER2 and GRB7 (HER2+/ER-), and

'Basal-like' tumors that have an expression profile similar to

basal epithelium and express keratin 5, keratin 6B, keratin 14

and keratin 17. The ER-negative tumor subtypes are aggres-

sive and typically more deadly than Luminal tumors; however,

there are subtypes of Luminal tumors that lead to poor out-

comes despite being ER-positive [3,4,6]. For example, Sorlie

and colleagues identified a Luminal B subtype with similar out-

comes to the HER2+/ER- and Basal-like subtypes [4], and

Sotiriou and colleagues showed that there are three different

types of Luminal tumors with different outcomes [6]. The Lumi-

nal tumors with poor outcomes consistently share the his-

topathological feature of being higher grade and the molecular

feature of showing high expression of proliferation genes [4-

6].

Proliferation genes are cell-cycle-regulated genes that have a

variety of functions necessary for cell growth, DNA replication,

and mitosis [12,13]. Despite their diverse functions, prolifera-

tion genes have similar gene expression profiles when ana-

lyzed by hierarchical clustering. Furthermore, studies using

supervised analyses to find genes that predict outcome com-

monly identify proliferation genes. For example, the SAM264

'survival' list stated in Sorlie and colleagues [4], the 231 'prog-

nosis classifier' list of van 't Veer and colleagues [7], and the

485 prognostic genes presented in Sotiriou and colleagues

[6] all contained proliferation genes, suggesting that all of

these studies are probably tracking a similar phenotype.

The main objectives of this study are to compare molecular

subtype classification between microarray analysis and real-

time quantitative reverse-transcription (qRT)-PCR analysis,

and to assess the prognostic significance of a proliferation

meta-gene, both as an independent marker and within the con-

text of the breast cancer subtypes.

Materials and methods
Patient selection

An ethnically diverse cohort of patients was studied using

samples collected from the University of Utah Health Sciences

Center, from the University of North Carolina, from Thomas Jef-

ferson University, from the Maine Medical Center, and from the

University of Chicago. Patients provided written acknowledge-

ment of informed consent in accordance with institutional and

federal guidelines. Samples collected prospectively for micro-

array and qRT-PCR analyses included 117 invasive breast

cancers, one fibroadenoma, five 'normal' samples (from reduc-

tion mammoplasty), and three cell lines. Patients were treated

in accordance with the standard of care dictated by their dis-

ease stage, ER status, and HER2 status. Patient outcome

information was collected for up to 118 months (median 21.5

months). The clinical data for the qRT-PCR samples are pre-

sented in Additional file 2 (Supplemental Table 1). Publicly

available data sets containing 337 samples with long-term fol-

low-up (median 86.7 months) were used to further validate the

prognostic significance of the proliferation meta-gene within

the context of intrinsic subtypes [7,8,14].

Sample preparation and first-strand synthesis for qRT-

PCR

Nucleic acids were extracted from fresh frozen tissue using

the RNeasy Midi Kit (Qiagen Inc., Valencia, CA, USA). The

quality of RNA was assessed using the Agilent 2100 Bioana-

lyzer with the RNA 6000 Nano LabChip Kit (Agilent Technolo-

gies, Palo Alto, CA, USA). All samples used had discernable

18S and 28S ribosomal peaks. First-strand cDNA was synthe-

sized from approximately 1.5 µg total RNA using 500 ng

Oligo(dT)12–18 and Superscript III reverse transcriptase (1st

Strand Kit; Invitrogen, Carlsbad, CA, USA). The reaction was

held at 42°C for 50 minutes followed by a 15-minute step at

70°C. The cDNA was washed on a QIAquick PCR purification

column and was stored at -80°C in 25 mM Tris, 1 mM ethylen-

ediamine tetraacetic acid at a concentration of 5 ng/µl (con-

centration estimated from the starting RNA concentration

used in the reverse transcription).
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Primer design

Genbank sequences were downloaded from Evidence viewer

(NCBI website) into the Lightcycler Probe Design Software

(Roche Applied Science, Indianapolis, IN, USA). All primer

sets were designed to have a Tm of approximately 60°C, to

have a GC content of approximately 50%, and to generate a

PCR amplicon <200 bps. Finally, BLAT and BLAST searches

were performed on primer pair sequences using the UCSC

Genome Bioinformatics database and the NCBI database to

check for uniqueness. Primer sets and identifiers are provided

in Additional file 2 (Supplemental Table 2).

Real-time PCR

For PCR each 20 µl reaction included 1 × PCR buffer with 3

mM MgCl2 (Idaho Technology Inc., Salt Lake City, UT, USA),

0.2 mM each of dATP, dCTP, and dGTP, 0.1 mM dTTP, 0.3

mM dUTP (Roche Applied Science), 10 ng cDNA and 1 U

Platinum Taq (Invitrogen). The dsDNA dye SYBR Green I

(Molecular Probes, Eugene, OR, USA) was used for all quan-

tification (1/50,000 final). PCR amplifications were performed

on the Lightcycler software using an initial denaturation step

(94°C, 90 seconds) followed by 50 cycles: denaturation

(94°C, 3 seconds), annealing (58°C, 5 seconds with 20°C/s

transition), and extension (72°C, 6 seconds with 2°C/sec tran-

sition). Fluorescence (530 nm) from the dsDNA dye SYBR

Green I was acquired for each cycle after the extension step.

The specificity of the PCR was determined by postamplifica-

tion melting curve analysis. Reactions were automatically

cooled to 60°C at a rate of 3°C/s and slowly heated at 0.1°C/

s to 95°C while continuously monitoring the fluorescence.

Relative quantification by real-time qRT-PCR

Quantification was performed using the LightCycler 4.0 soft-

ware. The crossing threshold for each reaction was deter-

mined using the second-derivative maximum method [15,16].

The relative copy number was calculated using an external cal-

ibration curve to correct for PCR efficiency and a within-run

calibrator to correct for the variability between runs. The cali-

brator is made from four equal parts of RNA from three cell

lines (MCF7, SKBR3, and ME16C) and Universal Human Ref-

erence RNA (catalogue number #740000; Stratagene, La

Jolla, CA, USA).

Differences in cDNA input were corrected by dividing the tar-

get copy number by the arithmetic mean of the copy number

for three housekeeper genes (MRPL19, PSMC4, and PUM1)

[17]. After adjusting copy numbers to the reference sample

(calibrator) in LCS4, relative copy numbers were imported into

a relational database where the data were normalized to the

housekeeper genes and were log2-transformed for further

analyses.

Hierarchical clustering was carried out in Cluster analysis

using Spearman correlation, median centering by gene and

array, and average linkage association [18]. The clustering

was visualized using Treeview. The real-time qRT-PCR relative

copy number data for all genes (53 classifier genes and three

housekeeper genes) can be found in Additional file 2 (Supple-

mental Table 3).

Histopathology/immunohistochemistry

Histological assessment of grade was performed for the inva-

sive ductal adenocarcinomas using the Scarff-Bloom-Richard-

son system. Nuclear grading was determined for tumors in

which tubular differentiation could not be assessed (for exam-

ple, invasive lobular carcinomas). Samples were scored for

protein expression at the time of diagnosis and using standard

operating procedures established at each institution. Greater

than 20% positive staining nuclei was considered positive for

the ER and the progesterone receptor. Staining and scoring

criteria for HER2 were carried out according to the Her-

cepTest (Dako, Carpinteria, CA, USA).

Microarray experiments

The 126 samples used for qRT-PCR were also analyzed by

DNA microarray (Agilent Human A1, Agilent Human A2, and

custom oligonucleotide). Labeling and hybridization of RNA

for microarray analysis were performed using the Agilent low

RNA input linear amplification kit, but with one-half of the rec-

ommended reagent volumes and using a Qiagen PCR purifi-

cation kit to clean up the cRNA. Each sample was assayed

versus a common reference sample that was a mixture of

Human Universal Reference total RNA (Stratagene, La Jolla,

CA, USA) enriched with equal amounts of RNA from the

MCF7 and ME16C cell lines. Microarray hybridizations were

carried out on Agilent Human oligonucleotide microarrays

using 2 µg Cy3-labeled 'reference' sample and 2 µg Cy5-

labeled 'experimental' sample. Hybridizations were carried out

using the Agilent hybridization kit and a Robbins Scientific

'22k chamber' hybridization oven (Robbins Scientific, Sunny-

vale, CA, USA). The arrays were incubated overnight, washed

once in 2 × SSC and 0.0005% Triton X-102 (10 minutes),

washed twice in 0.1 × SSC (5 minutes), and were then

immersed into Agilent Stabilization and Drying solution for 20

seconds.

All microarrays were scanned using an Axon Scanner 4000A

(Axon Instruments, Inc, Foster City, CA, USA). The image files

were analyzed with GenePix Pro 4.1 (Axon Instruments) and

were uploaded into the UNC Microarray Database at the Uni-

versity of North Carolina at Chapel Hill, where a lowest normal-

ization procedure was performed to adjust the Cy3 and Cy5

channels [19]. All primary microarray data associated with this

study are available at the UNC Microarray Database and have

been deposited in the GEO under accession number

GSE2607.

Selecting genes for real-time qRT-PCR

We developed a real-time qRT-PCR assay using 53 genes

that were selected due to their importance in making 'intrinsic'
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subtype distinctions and/or their association with cell prolifer-

ation (see Additional file 2, Supplemental Table 2). The statis-

tical selection of 'intrinsic' genes involved using 45 before-

therapy and after-therapy samples derived from the data set

presented in Sorlie and colleagues (see Additional file 2, Sup-

plemental Table 4 for the list of 45 pairs) [5]. The two-color

DNA microarray data were downloaded from the Internet and

the R/G ratio (experimental/reference) for each spot was nor-

malized and log2-transformed. Missing values were imputed

using the k-NN imputation algorithm described by Troyan-

skaya and colleagues [20].

Using an 'intrinsic' analysis [3] we identified 550 microarray

elements/spots from the data set presented by Sorlie and col-

leagues [5]. We then applied the 'intrinsic' genes to identifying

molecular subtypes within a completely independent data set

of early-stage breast cancers [7]. Common elements between

the data sets were found after translating the gene annotation

from each data set to UniGene Cluster IDs using the

SOURCE database [21]. Following the algorithm outlined by

Tibshirani and colleagues [22,23], we hierarchical clustered

the 97 samples from van 't Veer and colleagues' study [7]

using a common set of 350 genes and assigned intrinsic sub-

types (Luminal, HER2+/ER-, Basal-like, or Normal-like) based

on the sample-associated dendrogram. Finally, we identified

genes that optimally distinguished the four subtype classes

using a version of the gene selection method first described by

Dudoit and Fridlyand [24], where the best class distinguishers

are identified according to the ratio of between-group to

within-group sums of squares. After scoring genes in this man-

ner, 10-fold cross-validation was performed with a nearest

centroid classifier, resulting in a list of 41 genes that gave the

highest prediction accuracy when compared with the entire

set of 350 genes.

We successfully developed qRT-PCR assays for 37 out of the

41 genes identified from the 'intrinsic' analysis (minimal intrin-

sic list). The genes PGR and EGFR were also included in the

qRT-PCR assay, despite not being statistically selected in the

'intrinsic' analysis, because of their value in predicting therapy

response and their strong association with ER-positive and

ER-negative tumors. Finally, we tested 14 proliferation genes

because of their importance in prognosis.

Cluster robustness

The stability of our hierarchical clustering classifications was

tested using a k-means algorithm implemented in Cluster 3.0

and using Consensus Cluster [25] implemented in GenePat-

tern. For the k-means we ran 1,000 trials (K = 4 and K = 5)

and used the Euclidean distance as the similarity metric. Con-

sensus clustering was also performed for 1,000 runs using a

'subsampling' of 0.8, so that 20% of the samples were left out

of each run.

Combining microarray and qRT-PCR datasets

We used distance-weighted discrimination (DWD) to identify

and correct systematic biases across the microarray and qRT-

PCR datasets [26]. Prior to DWD, we normalized each data-

set by setting the mean to 0 and the variance to 1. After per-

forming DWD, genes in common between the datasets were

clustered using Spearman correlation and average linkage

association.

Receiver operator curves

In order to determine agreement between protein expression

(immunohistochemistry (IHC)) and gene expression (qRT-

PCR), a cutoff value for the relative gene copy number was

selected by minimizing the sum of the observed false-positive

and false-negative errors; that is, minimizing the estimated

overall error rate under equal priors for the presence/absence

of the protein. The sensitivity and specificity of the resulting

classification rule were estimated via bootstrap adjustment for

optimism [27].

Survival analyses

Survival curves were estimated by the Kaplan-Meier method

and compared via a log-rank or stratified log-rank test as

appropriate. The standard clinical pathological parameters of

age (years), node status (positive versus negative), tumor size

(cm, a continuous variable), grade (1–3, a continuous covari-

ate), and ER status (positive versus negative) were tested for

differences in relapse-free survival (RFS) and overall survival

using the Cox proportional hazards regression model. Pair-

wise log-rank tests were used to test for equality of the hazard

functions among the intrinsic classes. Cox regression was

used to determine predictors of survival from continuous

expression data. All statistical analyses were performed using

the R statistical software package (R Foundation for Statistical

Computing Vienna, Austria).

Results and discussion
Recapitulating microarray-based breast cancer 

classifications using qRT-PCR

Two major challenges in using genomics for breast cancer

diagnostics are the ability to find robust classifications that

maintain prognostic significance across different patient pop-

ulations, and the ability to effectively translate those classifica-

tions into the clinical laboratory. Microarray studies on breast

cancer have shown that particular signatures, such as those

for intrinsic subtype classification and proliferation, are con-

sistently identified and are prognostic across different data

sets [3-5,7,8,14,28]. In order to determine whether the 'intrin-

sic' classifications found by microarray analysis could be gen-

erated from real-time qRT-PCR data, we prospectively

compared the two platforms by profiling 126 different breast

tissue samples (117 invasive, five normal, one fibroadenoma,

and three cell lines) with Agilent microarrays (20,000 ele-

ments) and a real-time qRT-PCR assay. The qRT-PCR assay

was comprised of 53 genes that were selected to optimally
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identify the four main breast tumor intrinsic subtypes [3,4], and

to create an objective gene expression predictor for cell prolif-

eration and outcome [12,29,30].

A major objection to using hierarchical clustering for defining

tumor subtypes is that the algorithms are designed for associ-

ating and visualizing gene expression patterns, and are not

necessarily designed for sample classification. We therefore

tested the 'robustness' of the hierarchical clustering classifica-

tions using a k-means method and consensus clustering [25];

both methods found that there were at least four stable clus-

ters.

There were 402 genes in common between our current micro-

array data set and the 550 intrinsic genes initially identified

using the 45 paired samples taken from Sorlie and colleagues

[5]. Two-way hierarchical clustering of the same 126 samples

using either microarray data for the 402 'intrinsic' genes (Addi-

tional file 1, Supplemental Figure 1) or qRT-PCR data for the

minimal 37 'intrinsic' genes (Figure 1) showed 93% concord-

ance in classification. The samples were grouped into Luminal,

HER2+/ER-, Normal-like, and Basal-like subtypes by both

platforms.

In the qRT-PCR classification, 49 out of 55 (89%) Luminal

tumors with available IHC data were scored positive for ER.

Figure 1

Two-way hierarchical clustering of real-time quantitative reverse-transcription (qRT)-PCR dataTwo-way hierarchical clustering of real-time quantitative reverse-transcription (qRT)-PCR data. (a) The sample-associated dendrogram groups the 
126 breast samples profiled by qRT-PCR into the same classes seen by microarray analysis. Samples are grouped into Luminal (blue), HER2+/ER- 
(pink), Normal-like (green), and Basal-like (red) subtypes. The expression level for each gene is shown relative to the median expression of that gene 
across all the samples, with high expression represented by red and low expression represented by green. Genes with median expression are black 
and missing values are gray. (b) A minimal set of 37 'intrinsic' genes was used to classify tumors into their primary 'intrinsic' subtypes. The 'intrinsic' 
gene set was supplemented using (c) PgR and EGFR, and (d) proliferation genes. The genes in (c) and (d) were clustered separately in order to 
determine agreement between the minimal 37 qRT-PCR 'intrinsic' set and the larger 402 microarray 'intrinsic' set (see Additional file 1, Supplemen-
tal Figure 1). Overall, 114/123 (93%) primary breast samples were classified the same between microarray and qRT-PCR.
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Conversely, 46 out of 54 (85%) tumors classified as HER2+/

ER- or Basal-like were ER-negative by IHC. A 37-gene qRT-

PCR assay using a minimal intrinsic list can therefore accu-

rately identify intrinsic subtypes and make classifications that

agree with the ER status.

Comparing real-time qRT-PCR with 

immunohistochemistry

Current molecular classifications in surgical pathology are

made by evaluating single markers rather than sets of markers.

We therefore assessed single qRT-PCR markers for their sen-

sitivity/specificity in determining IHC status (Additional file 1,

Supplemental Figure 2) [31]. This was done for similar mark-

ers (for example, ESR1 gene expression compared with ER

protein status) and for surrogate markers (for example, GATA3

gene expression compared with ER protein status). We found

that the gene expression of ESR1 alone had 87% sensitivity

and 90% specificity for predicting the ER status by IHC. The

gene with the highest correlation in expression to ESR1 was

GATA3 (0.79), and GATA3 alone showed 90% sensitivity and

81% specificity. In addition, gene expression of PgR corre-

lated well with the progesterone receptor IHC status (sensitiv-

ity = 89%, specificity = 82%). There was high correlation in

expression between HER2/ERBB2 and GRB7 (0.91), which

are physically located near one another on chromosome

17q12 and are commonly overexpressed and DNA-amplified

together. Both ERBB2 (sensitivity = 55%, specificity = 87%)

and GRB7 (sensitivity = 40%, specificity = 96%) had low sen-

sitivity but high specificity in predicting the HER2 status by

IHC. It is not surprising that there was poor agreement

between ERBB2 gene expression and HER2 scoring since

IHC is known to overestimate HER2 status when compared to

fluorescence in-situ hybridization [32].

Proliferation and grade

Proliferation genes have a high correlation with grade and

have been shown to be a major determinant of outcome in

breast cancer, especially in predicting recurrence in ER-posi-

tive tumors and in women with early-stage disease

[7,8,28,33,34]. For instance, proliferation is a predominant

component of both the Oncotype Dx test (five out of 16 genes

are proliferation markers) [33] and the MammaPrint® microar-

ray assay based on the 70-gene prognosis signature [7]. Sev-

eral of the cell cycle genes identified (STK6, BUB1, and

BIRC5) in those studies were also strong predictors of recur-

rence in this study and were part of our 14-gene proliferation

signature.

Table 1

Correlating proliferation genes with relapse-free survival (RFS) and the grade using the quantitative reverse-transcription PCR 

assay

Gene RFS-gene Grade-gene

All samples Luminal only All samples
adjusted for grade

All samples
adjusted for stage

All samples
adjusted for stage and 

grade

Spearman 
correlation

P value

BIRC5 0.136 0.0679 0.493 0.146 0.348 0.349 0.000156

BUB1 0.00247 0.0658 0.0178 0.00872 0.0258 0.45 6.84 × 10-7

CENPF 0.0204 0.0173 0.149 0.0934 0.295 0.469 2.00 × 10-7

CKS2 0.34 0.621 0.961 0.125 0.313 0.364 7.57 × 10-5

DUFD1 0.0525 0.0411 0.261 0.188 0.417 0.406 8.93 × 10-6

GTPBP4 0.000813 0.0751 0.00636 0.00177 0.00587 0.258 0.00598

HSPA14 0.0527 0.1 0.219 0.00491 0.0132 0.264 0.00467

MK167 0.101 0.0591 0.297 0.119 0.255 0.354 0.000121

MYBL2 0.00229 0.00246 0.0123 0.0318 0.0777 0.409 7.48 × 10-6

NEK2 0.0654 0.436 0.259 0.155 0.346 0.384 2.89 × 10-5

PCNA 0.155 0.166 0.179 0.182 0.152 0.151 0.109

STK6 0.000707 0.0485 0.00602 0.00816 0.0204 0.427 2.67 × 10-6

TOP2A 0.0347 0.291 0.142 0.0871 0.198 0.325 0.000451

TTK 0.00688 0.0651 0.0571 0.0299 0.11 0.4 1.26 × 10-5

Meta-gene 0.00321 0.0185 0.0252 0.0102 0.0301 0.456 4.77 × 10-7
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Analysis of the real-time qRT-PCR data from our 14 selected

'proliferation' genes (Figure 1d) showed that Luminal tumors

have relatively low replication activity compared with HER2+/

ER- and Basal-like tumors. As expected, the Normal-like sam-

ples showed the lowest expression of the 'proliferation' genes.

When correlating (Spearman correlation) the gene expression

of all 53 qRT-PCR genes with grade, we found that the top

genes with a positive correlation (for instance, high expression

correlates with high grade) were the proliferation genes (Table

1). Since the significance of single markers may change

depending on the cohort studied, we also created a prolifera-

tion meta-gene (log2 average of all 14 proliferation genes) as a

potentially more robust measure of grade. The proliferation

meta-gene was more highly correlated with grade (rs = 0.46)

than any other single marker, except CENPF. Genes within the

ER cluster (ESR1, GATA3, and XBP1) all had significant neg-

ative correlations with grade (Additional file 2, Supplemental

Table 5).

Analysis of the proliferation cluster by gene ontology reveals

that these coordinately expressed genes have diverse but

complementary functions important for progression through

the cell cycle, such as DNA replication (PCNA), chromosome

segregation (TOP2A and STK6), and control of cell-cycle

checkpoints (BUB1, MYBL2, and TTK). Although most of the

proliferation genes are overexpressed in high-grade tumors

regardless of their ER status, we found some genes (for exam-

ple, NEK2A) that are 'good' proliferation markers for ER-nega-

tive tumors but not for ER-positive tumors. Genes functioning

in cell polarity and adhesion were not represented in the pro-

liferation genes, which is notable given that differentiation is an

important aspect of histological grade. It is possible that genes

important for tubule differentiation just do not cluster with cell-

cycle-regulated genes or that these functions have yet to be

revealed for genes in the proliferation cluster.

Using qRT-PCR assay for predicting survival

Outcome analyses for the intrinsic subtypes showed that

patients with Luminal tumors showed significantly better out-

comes for RFS and overall survival compared with HER2+/

ER- and Basal-like tumors (Additional file 1, Supplemental Fig-

ure 3). There was no difference in outcome between patients

with HER2+/ER- and Basal-like tumors, with both groups

doing poorly. In addition to determining the prognostic value of

the biological 'intrinsic' subtypes, we also correlated individual

'intrinsic' classifiers (Additional file 2, Supplemental Table 5)

and proliferation genes (Table 1) to the RFS and grade. We

found that the proliferation meta-gene has significant predic-

tive value for RFS (P = 0.003), even after adjusting for other

important determinants of survival (Table 1 and Figure 2).

Since lobular cancers can only be graded on nuclear contours

and not on tubule differentiation, we also performed our anal-

yses using ductal carcinomas only and found that proliferation

was still a better predictor than grade (P = 0.022 versus P =
0.083). It should be noted that the proliferation signature was

not evaluated in the Normal-like breast group because this

group included control samples and few cancer samples.

Because the intrinsic subtypes (and ER status) capture much

of the biology that explains variations in outcome among

breast cancer patients, we tested whether the proliferation

meta-gene added prognostic value to these classifications.

When we separated tumors by intrinsic subtype (and ER sta-

tus), and then stratified by the proliferation meta-gene, we

found that proliferation only added prognostic information in

the Luminal (and ER-positive) subtype of tumors (Figure 3).

Women that had Luminal tumors with high proliferation were

at a 19-fold increased risk of relapse compared with women

that had Luminal tumors with low proliferation. Similarly, ER-

positive tumors with high proliferation conferred a 13-fold rel-

ative risk of relapse.

Finally, we included the genomic classifiers (intrinsic subtype

and proliferation) in multivariate survival analyses with stand-

ard clinical pathological information (Additional file 2, Supple-

mental Tables 6–9). Three multivariate models were applied to

evaluate the contribution from standard clinical parameters

alone (Model 1), from standard parameters plus genomic pro-

liferation (Model 2), and from standard parameters plus prolif-

eration and the intrinsic subtype (Model 3). This was

performed for RFS (Additional file 2, Supplemental Tables 6

and 8) and for overall survival (Additional file 2, Supplemental

Tables 7 and 9). The cohort analyzed by qRT-PCR showed

that, without the addition of genomic classifiers, the top pre-

Figure 2

Grade and proliferation as predictors of relapse-free survivalGrade and proliferation as predictors of relapse-free survival. A Cox 
regression model was used to determine probability of relapse over 
time. Kaplan-Meier curves show the time to event given different grades 
and levels of proliferation. The grade was scored as low (green), 
medium (red) or high (blue). The proliferation score was based on con-
tinuous expression data, and is shown as tertiles that correspond to low 
(green), medium (red), and high (blue) levels of expression. The prolifer-
ation meta-gene (log2 average of the 14 proliferation genes) showed 
significant value in predicting relapse, even after correcting for other 
clinical parameters important for survival (Table 1). Furthermore, when 
we include both the grade and proliferation in a model for relapse-free 
survival, we find that the proliferation meta-gene is the better predictor 
(grade, P = 0.51; proliferation index, P = 0.047).
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dictors for RFS were the tumor size, the node status, and the

ER status. The proliferation meta-gene was a significant and

independent predictor of survival in the multivariate analysis.

The Luminal (ER-positive) versus Basal-like (ER-negative) dis-

tinction was significant for overall outcome in the multivariate

analysis, even in the presence of standard ER status by IHC

(Additional file 2, Supplemental Table 7).

Testing the proliferation meta-gene for relapse in early-

stage breast cancers

In order to further validate our observations and to determine

whether our proliferation meta-gene was simply identifying the

Luminal B subtype of tumors, previously described as having

high proliferation and poor outcome [4], we applied the prolif-

eration meta-gene to a large microarray dataset containing

337 patients with long-term follow-up and containing a Lumi-

nal B group. This microarray data set is the combined and non-

redundant sample sets presented in van 't Veer and

colleagues [7] and in Chang and colleagues [14], and repre-

sents a set of breast cancer patients from The Netherlands

Cancer Institute (NKI dataset). Each sample was assigned an

'intrinsic subtype' using five subtype centroids (Luminal A,

Luminal B, Basal-like, HER2+/ER-, and Normal-like), as

described earlier.

By applying the proliferation meta-gene to these subtypes, we

show that proliferation only added prognostic information for

RFS in the Luminal A subtype (Figure 4). The proliferation

meta-gene was also prognostic when samples were classified

more generally into 'Luminal' (Luminal A and Luminal B com-

bined) versus 'HER2/Basal' (Additional file 1, Supplemental

Figure 4), or into ER-positive versus ER-negative as clinically

defined by IHC (Additional file 1, Supplemental Figure 5). It

should be noted that the proliferation signature fails to further

stratify ER-negative tumors (or Basal-like and HER2+/ER-

tumors) because these 'groups' uniformly have high prolifera-

tion. Multivariate analyses of the NKI dataset showed that the

Figure 3

Intrinsic subtype stratified by the proliferation indexIntrinsic subtype stratified by the proliferation index. Tumors were given 
an 'intrinsic' subtype assignment based on the minimal 37-gene quanti-
tative reverse-transcription-PCR classifier (Figure 1b). Patients were 
classified as having Luminal (estrogen receptor (ER)-positive) or HER2/
Basal (ER-negative) subtypes. In order to have groups of similar size 
and because the subtypes largely follow ER status, tumors in the HER2 
and Basal-like groups (both ER-negative) were combined. Continuous 
expression data for the proliferation meta-gene (log2 average of the 14 
selected markers) were used in a Cox regression model to determine 
the probability of relapse over time. Differences in relapse for low 
(green), medium (red), and high (blue) expression are shown as tertiles 
in the Kaplan-Meier plots. Stratification by proliferation added informa-
tion for relapse in the Luminal subtype (P = 0.00039) but not the ER-
negative subtypes (P = 0.74).

Figure 4

Stratification of five 'intrinsic' subtypes by the proliferation meta-geneStratification of five 'intrinsic' subtypes by the proliferation meta-gene. A large microarray breast cancer data set (337 samples × 16,000 genes) from 
women with early-stage disease was used to confirm the significance of the proliferation meta-gene to further risk-stratify the Luminal tumors. 
Tumors were classified as Basal, HER2+/ER-, Luminal A, Luminal B, and Normal-like. The microarray data for the proliferation meta-gene was then 
used in a Cox regression model to determine probability of relapse in women with the different tumor subtypes. Differences in relapse for low 
(green), medium (red), and high (blue) expression are shown as tertiles in the Kaplan-Meier plots. The Kaplan-Meier curves show that proliferation 
adds significant survival information, beyond that gleaned from the intrinsic subtype, only for patients with Luminal A tumors (P = 0.012).
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grade, the ER status, age, and proliferation were all significant

and independent predictors of survival (Additional file 2, Sup-

plemental Tables 8 and 9).

Co-clustering qRT-PCR and microarray data

In order to determine whether qRT-PCR data and microarray

data could be analyzed together as a single dataset, we used

DWD to combine data for 50 genes across the 126 samples

profiled by both qRT-PCR and microarray analyses (252 sam-

ples in total). Hierarchical clustering of these data show that

98% (124/126) of the paired samples were classified as the

same intrinsic subtype and 83/126 (66%) were clustered

directly adjacent to their corresponding partner (Figure 5).

Microarray and real-time qRT-PCR data can therefore be com-

bined into a seamless data set without sample segregation

based on the platform. Overall, the microarray and qRT-PCR

expression data showed high correlation before (0.76) and

after (0.77) DWD correction.

Conclusion
In this study we have shown that the microarray signatures for

the 'intrinsic' subtype and proliferation are reproducible and

prognostic using a real-time qRT-PCR assay. The biological

classification by real-time qRT-PCR makes the important clini-

cal distinction between ER-positive and ER-negative tumors

and identifies additional subtypes that have prognostic value.

We found that our proliferation meta-gene is a robust predictor

of survival across all breast cancer patients and is particularly

important for prognosis in Luminal A (ER-positive) breast can-

cers, which have a worse outcome than expected when prolif-

eration is high. Work by others also supports the finding that a

genomic signature of proliferation is important for predicting

relapse in breast cancer, especially in ER-positive patients

[28,34].

Combining microarray and qRT-PCR data provides a powerful

system for discovering and then translating genomic markers

into the clinical laboratory. Although these platforms are funda-

Figure 5

Co-clustering of real-time quantitative reverse-transcription (qRT)-PCR and microarray data using 50 genes and 252 samplesCo-clustering of real-time quantitative reverse-transcription (qRT)-PCR and microarray data using 50 genes and 252 samples. The relative copy 
number (qRT-PCR) and R/G ratio (microarray) for each gene was log2-transformed and combined into a single dataset using distance-weighted dis-
crimination. Two-way hierarchical clustering was performed on the combined dataset using Spearman correlation and average linkage. (a) The sam-
ple-associated dendrogram shows the same classes as seen in Figure 1. Samples are classified as Basal-like (red), HER2+/ER- (pink), Luminal 
(blue), and Normal-like (green). The expression level for each gene is shown relative to the median expression of that gene across all the samples, 
with overexpressed genes in red and underexpressed genes in green. Genes with average expression are black. (b) The gene-associated dendro-
gram shows that the Luminal tumors and Basal-like tumors differentially express estrogen-associated genes (cluster 1); as well as basal keratins 
(KRT 5 and KRT 17), inflammatory response genes (CX3CL1 and SLPI), and genes in the Wnt pathway (FZD7) (cluster 3). The main distinguishers 
of the HER2+/ER- group are low expression of genes in cluster 1 and high expression of genes on the 17q12 amplicon (ERBB2 and GRB7) (clus-
ter 4). The proliferation genes (cluster 2) have high expression in the estrogen receptor (ER)-negative tumors (Basal-like and HER2+/ER-) and low 
expression in ER-positive (Luminal) and Normal-like samples.
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mentally different, the quantitative data across the methods

showed a high correlation. Real-time qRT-PCR is attractive for

clinical use because it is fast, reproducible, tissue-sparing,

quantitative, automatable, and can be performed from

archived (formalin-fixed, paraffin-embedded tissue) samples

[35,36]. The benefit of using real-time qRT-PCR for cancer

diagnostics is that new markers can be readily validated and

implemented, making tests expandable and/or tailored to the

individual. For instance, the proliferation meta-gene could be

used within the context of the intrinsic subtypes or used as an

ancillary test in breast cancer and other tumor types where an

objective and quantitative measure of grade is important for

risk stratification. As more prognostic and predictive signa-

tures are discovered from microarray, it should be possible to

build on our current biological classification and develop cus-

tomized assays for each tumor subtype.
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