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Abstract

Background: Limb prosthetics, exoskeletons, and neurorehabilitation devices can be intuitively controlled using

myoelectric pattern recognition (MPR) to decode the subject’s intended movement. In conventional MPR,

descriptive electromyography (EMG) features representing the intended movement are fed into a classification

algorithm. The separability of the different movements in the feature space significantly affects the classification

complexity. Classification complexity estimating algorithms (CCEAs) were studied in this work in order to improve

feature selection, predict MPR performance, and inform on faulty data acquisition.

Methods: CCEAs such as nearest neighbor separability (NNS), purity, repeatability index (RI), and separability index

(SI) were evaluated based on their correlation with classification accuracy, as well as on their suitability to produce

highly performing EMG feature sets. SI was evaluated using Mahalanobis distance, Bhattacharyya distance, Hellinger

distance, Kullback–Leibler divergence, and a modified version of Mahalanobis distance. Three commonly used

classifiers in MPR were used to compute classification accuracy (linear discriminant analysis (LDA), multi-layer

perceptron (MLP), and support vector machine (SVM)). The algorithms and analytic graphical user interfaces

produced in this work are freely available in BioPatRec.

Results: NNS and SI were found to be highly correlated with classification accuracy (correlations up to 0.98 for both

algorithms) and capable of yielding highly descriptive feature sets. Additionally, the experiments revealed how the

level of correlation between the inputs of the classifiers influences classification accuracy, and emphasizes the

classifiers’ sensitivity to such redundancy.

Conclusions: This study deepens the understanding of the classification complexity in prediction of motor volition

based on myoelectric information. It also provides researchers with tools to analyze myoelectric recordings in order

to improve classification performance.
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Background

Decoding of motor volition via myoelectric pattern rec-

ognition (MPR) has many clinical applications such as

prosthetic control [1], phantom limb pain treatment [2],

and rehabilitation after stroke [3]. Research on MPR has

focused on classifiers [4], pre-processing algorithms [5],

and electromyography (EMG) acquisition [6], among

other factors that influence the classification outcome.

Reaz et al. studied different attributes of EMG signals,

such as signal-to-noise ratio, that decrease the complex-

ity of MPR [7]. However, limited studies have been

conducted on the complexity of the classification task it-

self. Information on complexity prior to classification

can inform on specific conflicting classes and flawed

data acquisition. Understanding of classification com-

plexity can also be used to select optimal features and

evaluate trade-offs between the amount of classes and

their separability.

Most MPR algorithms use EMG features extracted

from overlapping time windows as the classifier input.

Therefore, the resulting classification accuracy is

dependent on the features used to describe the EMG

signals. The performance of a variety of such features,

and feature selection algorithms, have been studied

previously [8, 9]. Two feature selecting algorithms,
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namely minimum redundancy and maximum rele-

vance [10], and Markov random fields [11], were ap-

plied to an electrode array by Liu et al. [12], who

used Kullback–Leibler divergence and feature scatter

to rate the relevance and redundancy of features. The

features were then ranked and selected into sets ac-

cording to these ratings. Similarly, Bunderson et al.

defined three data quality indices – namely, repeat-

ability index (RI), mean semi-principal axis, and sep-

arability index (SI) – to evaluate the changes in data

quality over repeated recordings of EMG [13].

Classification complexity estimation was not investi-

gated in the aforementioned studies, but algorithms

intended to quantify attributes relevant to the com-

plexity of pattern recognition tasks were introduced.

Classification complexity has been studied outside

the field of MPR. Singh suggested two nonparametric

multiresolution complexity measures: nearest neighbor

separability (NNS) and purity [14]. These complexity

measures were compared with common statistical

similarity measures, such as Kullback–Leibler

divergence, Bhattacharyya distance, and Mahalanobis

distance, and were found to yield a higher correlation

with classification accuracy. These classification

complexity estimating algorithms (CCEAs), along with

Hellinger distance, were investigated in the present

study with a focus on their relevance for MPR.

In the present study, CCEAs were evaluated based on

their correlation with offline classification accuracy and

real-time classification performance. Consequently,

different attributes were revealed about the CCEAs,

classification algorithms, and features descriptiveness.

One such attributes – channel correlation dependency –

was investigated further. The CCEAs that were found to

yield high correlation with classification accuracy (NNS

and SI) were then used for feature selection and

benchmarked against features sets found in the

literature.

The result of these experiments provided evidence

of the suitability of CCEAs to predict MPR perform-

ance. The algorithms used in this work were

implemented and made freely available in BioPatRec,

an open-source platform for development and bench-

marking of algorithms used in advanced myoelectric

control [15, 16].

Methods

Data sets

Two data sets were used in this study and both were

recorded on healthy subjects. The first set contained

individual movements (IM data): 20 subjects, four

EMG channels, 14 bits Analog to Digital Conversion

(ADC), and 11 classes (hand open/close, wrist

flexion/extension, pro/supination, side grip, fine grip,

agree or thumb up, pointer or index extension, and

rest or no movement) [15]. The second set contained

individual and simultaneous movements (SM data):

17 subjects, eight EMG channels, 16 bits ADC, and

27 classes (hand open/close, wrist flexion/extension,

pro/supination, and all their possible combinations)

[17]. Disposable Ag/AgCl (Ø = 1 cm) electrodes in a

bipolar configuration (2 cm inter-electrode distance)

were used in both sets. The bipoles were evenly

spaced around the most proximal third of the

forearm, with the first channel placed along the ex-

tensor carpi ulnaris. Subjects were seated comfortably

with their elbow flexed at 90 degrees and forearm

supported, leaving only the hand to move freely. The

data sets, along with details on demographics and

acquisition hardware, are available online as part of

BioPatRec [16]. Table 1 summarizes these data sets.

Signal acquisition, pre-processing and feature extraction

BioPatRec recording routines guided the subjects to

perform each movement three times with resting

periods in between. The instructed contraction time,

as well as the resting time, was 3 s. The initial and

final 15% of each contraction was discarded as this

normally corresponds to delayed response and

anticipatory relaxation by the subject, while the

remaining central 70% still preserves portions of the

dynamic contraction [15].

Time windows of 200 ms were extracted from the

concatenated contraction data using 50 ms time

increment. Features were then extracted from each

time window and distributed in sets used for training

(40%), validation (20%), and testing (40%) of the

classifiers. The testing sets were never seen by the

classifier during training or validation. A 10-fold

cross-validation was performed by randomizing the

feature vectors between the three sets before training

and testing.

The following EMG signal features were used as

implemented in BioPatRec [15, 16, 18]. In the time

domain: mean absolute value (tmabs), standard

deviation (tstd), variance (tvar), waveform length

(twl), RMS (trms), zero-crossing (tzc), slope sign

changes (tslpch), power (tpwr), difference abs. Mean

(tdam), max fractal length (tmfl), fractal dimension

Higuchi (tfdh), fractal dimension (tfd), cardinality

Table 1 Summary of data sets

Reference Movements Subjects Channels ADC (bits) Classes

IM data Individual 20 4 14 11

SM data Simultaneous 17 8 16 27

Summary of the data sets used in the experiments of this study. The reference

column contains the name used when referring to that data set throughout

the report
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(tcard), and rough entropy (tren). In the frequency

domain: waveform length (fwl), mean (fmn) and me-

dian (fmd). Feature vectors were constructed by sets

of these features extracted from all channels, as com-

monly done in MPR and implemented in BioPatRec

(for a detailed explanation see reference [15]).

Classification complexity estimating algorithms

The classification complexity estimating algorithms

(CCEAs) were designed to return classification complex-

ity estimates (CCEs) for each movement separately (indi-

vidual result), and averaged over all movements (average

results). Individual results provide information that facil-

itates the choice of movements to be included in a given

MPR problem by distinguishing conflicting classes. Aver-

age result considers the complete feature space, includ-

ing all movements, and can therefore be used to

evaluate and compare feature sets used to build the fea-

ture space. The CCEAs used are outlined below.

Separability index

Separability index (SI) was implemented as introduced

by Bunderson et al.; that is, the average of the distances

between all movements and their most conflicting

neighbor [13]. Figure 1a illustrates the distance and con-

flict between two classes in an exemplary two-

dimensional feature space.

The aforementioned distance was defined by Bunder-

son et al. to be half the Mahalanobis distance, resulting

in the following equation:

SI ¼
X

K

i¼1

min
j¼1;…;i−1;iþ1;…;K

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μi−μj

� �T

S−1i μi−μj

� �

r

 !

where K is the number of classes or movements, and μx

and Sx are mean vectors and covariance matrices for

class x, respectively.

This definition only considers the covariance of the

target movement (Si), and not that of the comparing

movement (that is, Sj). We considered this particular

formulation as a potential limitation, so we introduced

additional distance definitions. The distance definitions

were used under the assumption of normality as Maha-

lanobis distance was defined under the same assumption

[19]. The introduced distance definitions are described

in Table 2.

Nearest neighbor Separability

Nearest neighbor separability (NNS) was inspired by the

algorithm with the same name defined by Singh [14]. It

is based on the dominance of nearest neighbors, in fea-

ture space, belonging to the same class (movement) as a

target data point. The contributions of the nearest

neighbors are weighted by their proximity to the target

point and the result is normalized to be a value between

0 and 1. Let

b pt ; pið Þ ¼ 1;

0;

�

if pt ; pi∈C

if pt∈C; pi∉C

Where pt. is the target point, pi is pt.:s i-th nearest neigh-

bor and C is a class. The aforementioned dominance is

then defined as:

dt ¼
X

k

i¼1

1

i

 !

−1
X

k

i¼1

b pt ; pið Þ
i

A target point and its six nearest neighbors are illus-

trated in Fig. 1b.

The end result is the average dominance:

NNS ¼ 1

N

X

N

i¼1

di

Where N is the total number of samples.
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Fig. 1 Illustration of a two-dimensional feature space. Inset a shows the distance between two classes in a two-dimensional features space. The

ellipses representing the classes are constructed according to the covariance of the two-dimensional data. The figure emphasizes the overlap of

classes, which is a big challenge in pattern recognition. Inset b shows the six nearest neighbors of the marked target data point. NNS is based on

the fraction of the neighbors from the same class as the target point
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Unless stated otherwise, the parameter k is set to 120,

which is the maximum number of nearest neighbors

from the same class for the data sets of this study.

Purity

Purity was computed by dividing the feature hyperspace

into smaller hyper cuboids called cells [14]. The cells

were rated individually and high dominance of one class

in one cell meant high purity for that cell. The final

purity of a data set was the average over all cells and dif-

ferent cell resolutions.

Repeatability index

The repeatability index (RI) measures how much indi-

vidual classes varies between different occurrences using

Mahalanobis distance [13]. The three repetitions during

the recording session were the occurrences that were

evaluated. The end result is the average Mahalanobis

distance between the first repetition and the following

ones for all movements.

Classifiers and topologies

Three common classifiers for MPR were used in this

study: linear discriminant analysis (LDA), multi-layer

perceptron (MLP), and support vector machine (SVM).

A quadratic kernel function was used for SVM. The

classifiers were utilized as implemented in BioPatRec

[15] (code available online [16]), where LDA and SVM

were implemented using Matlab’s statistical toolbox.

MLP and SVM are inherently capable of simultaneous

classification when provided with the feature vectors of

mixed (simultaneous) outputs, hereafter referred as

“MIX” output configurations; that is, there is one output

for every individual movement and combinations of

movements produce the corresponding mix of outputs

to be turned on. LDA’s output is computed by majority

voting, which means it cannot produce simultaneous

classification by creating a mixed output. However, clas-

sifiers like LDA can still be used for simultaneous classi-

fication using the label power set strategy, where the

classifier is constructed having the same number of out-

puts as the total number of classes. This configuration is

referred to here as “all movements as individual” (AMI).

Ortiz-Catalan et al. showed that AMI could also favor

classifiers capable of mixed outputs [17]; therefore, MLP

and SVM were evaluated in both MIX and AMI configu-

rations for simultaneous predictions. In addition, LDA

was also used in the One-Vs-One topology (OVO), as

this has been shown to improve classification accuracy

for individual movements [17, 20].

Evaluation and comparison

In order to evaluate the correlation between Classification

Complexity Estimates (CCEs) and classification accuracy,

all features were used individually to classify all move-

ments from each subject in both data sets, which provided

a wide range of classification accuracies and their related

CCEs. Correlations were then calculated considering the

classification of each movements individually (individual

results), or the average over all movements (average

results).

The CCEAs were further used to select one set of two,

three, and four features. CCEs were calculated for all

possible combinations of features and the three sets –

one for every number of features – predicting the high-

est accuracy were selected. The selected sets are referred

hereafter as the best sets and were obtained using the IM

data set.

Ortiz-Catalan et al. used a genetic algorithm to find

optimal feature sets of two, three, and four features

based on classification performance [8]. Their proposed

sets of two and three features were used as benchmark-

ing sets in this study, along with the commonly used

four-feature set proposed by Hudgins et al. [21]. These

sets are referred in this study as reference sets:

� Ref 2F: tstd, trms [8]

� Ref 3F: tstd, fwl, fmd [8]

� Ref 4F: tmabs, twl, tslpch, tzc [21]

The best and reference sets of equal number of features

were compared to each other based on the resulting

classification accuracy, as given by the three different

classifiers. Classification accuracy corresponds to offline

computations unless otherwise stated. Real-time testing

was done using the Motion Tests as implemented in

BioPatRec [15, 22]. CCEAs’ proficiency at predicting

real-time performance was evaluated by their correlation

with the completion time obtained from motion tests,

which is the time from the first prediction not equal to

rest until 20 correct predictions are achieved. Similar to

offline computations, one prediction was the classifica-

tion of one 200 ms time window, and new predictions

were produced every 50 ms (time increment). The subject

was instructed to hold the requested movement until 20

correct predictions were achieved. If the number of cor-

rect predictions was less than 20 after 5 s, the completion

time was set to 5 s. The real-time results were obtained

from IM data set and related Motion Tests [22].

Wilcoxon signed-rank test (p < = 0.05) was used to

evaluate statistical significant differences. Correlations were

calculated using Spearman’s rho, since there was no clear

linearity in the dependencies between accuracy and CCE.

Results

Separability index (SI)

The correlations found between classification accuracy

and SI using different distance definitions are summarized
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Table 3 Correlations for the different distance definitions

Average result Individual results

LDA (AMI)
Single/OVO

MLP AMI/MIX SVM AMI/MIX LDA (AMI) Single/OVO MLP AMI/MIX SVM AMI/MIX Data set

Mahalanobis 0.72/0.91 0.90/0.91 0.79/0.80 0.81/0.92 0.84/0.85 0.70/0.68 SM

0.78/0.88 0.86/NA 0.71/NA 0.85/0.91 0.80/NA 0.60/NA IM

Bhattacharyya 0.74/0.97 0.98/0.97 0.79/0.82 0.69/0.91 0.93/0.91 0.66/0.65 SM

0.83/0.96 0.96/NA 0.68/NA 0.79/0.89 0.94/NA 0.68/NA IM

Kullback–Leibler 0.60/0.88 0.93/0.90 0.65/0.70 0.54/0.76 0.84/0.82 0.63/0.60 SM

0.51/0.72 0.80/NA 0.32/NA 0.65/0.75 0.87/NA 0.65/NA IM

Hellinger 0.68/0.94 0.98/0.96 0.75/0.77 0.69/0.90 0.93/0.91 0.66/0.65 SM

0.80/0.95 0.97/NA 0.66/NA 0.79/0.89 0.94/NA 0.68/NA IM

Modified Mahalanobis 0.92/0.97 0.92/0.95 0.94/0.95 0.79/0.91 0.88/0.89 0.74/0.71 SM

0.93/0.94 0.87/NA 0.83/NA 0.85/0.90 0.86/NA 0.71/NA IM

Correlations under “individual results” were calculated using classification accuracies and SIs from every individual movement, subject and feature, while those

under “average result” were derived using the average SI and classification accuracy per subject and feature. Both methods provide one correlation, although

“individual results” use more data. Classifiers were configured using AMI or MIX. Classifiers were used in the conventional “single” topology, apart from LDA, which

was used in “single” and OVO. The highest correlation values per column are highlighted in bold. All correlations were found to be statistically significant at

p < 0.01. The MIX configuration is not applicable (NA) for individual movements since there is not mixed outputs
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Fig. 2 The distribution of distance definitions and classifiers data using individual movement (IM set). Plot matrix where the insets show classification

accuracy plotted against the SI for the individual movements data set. One marker represents the average over all movements for one subject and one

feature. The classifiers are grouped in rows and the distance definitions for the SI are grouped in columns. Classifiers were used in the conventional “single”

topology, apart from LDA, which was used in “single” and “one vs. one” (OVO). All correlations were found statistically significant at p < 0.01. Classifiers and

distance definitions are stated at the left side and the bottom of the plot matrix, respectively. The highest correlating distance definition for every classifier

is marked by a thicker frame around the plot
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in Table 3, where the highest value for every classifier

is highlighted. Figures 2 and 3 shows plots of average

result for IM and SM data sets, respectively, with the

most correlating distance definition highlighted for

classifiers individually. Table 3, Figs. 2 and 3 indicates

that the most adequate distance definitions vary with

the classifier.

Mahalanobis distance

Mahalanobis distance was found as the distance defin-

ition that most closely correlated with LDA in an OVO

topology for individual results using SM data. The cor-

responding classification accuracy against SI is plotted in

Fig. 4a.

Kullback–Leibler divergence

Kullback–Leibler divergence was not found to yield

higher correlation than any other distance definition for

any of the classifiers; however, it was found to correlate

most closely with the average results of MLP using both

topologies. This correlation is visualized in Figs. 2 and 3.

Owing to its low correlation with classification accuracy,

Kullback–Leibler divergence was not used in the reaming

experiments.

Bhattacharyya distance

Bhattacharyya distance was the most correlating dis-

tance definition for MLP in both AMI and MIX configu-

rations. Plots of classification accuracy for the two

classifiers against SI based on Bhattacharyya distance is

shown in insets B and C of Fig. 4. Individual results are

presented and IM data and SM data are used for AMI

and MIX configurations, respectively.

Hellinger distance

Bhattacharyya distance and Hellinger distance are highly

related as they are both based on the Bhattacharyya

Coefficient. Table 3 confirms their resemblance as the

correlations related to the two distance definitions are

very similar in all cases. Naturally, Hellinger distance

and Bhattacharyya distance are the distance definitions

that most closely correlate with MLP MIX and AMI for

individual result, and with MLP AMI for average result.

MLP AMI classification accuracy is plotted against
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Fig. 3 The distribution of distance definitions and classifiers data using simultaneous movements (SM set). Plot matrix where the insets shows

classification accuracy plotted against the SI for the simultaneous movements data set. One marker represents the average over all movements

for one subject and one feature. The classifiers are grouped in rows and the distance definitions for SI are group in columns. Classifiers were configured

using “all movements as individual” (AMI) or “mixed outputs” (MIX). Classifiers were used in the conventional “single” topology, apart from LDA, which was
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frame around the plot
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Hellinger distance based SI in Fig. 4e, where individual

results using IM data is represented.

Modified Mahalanobis

Modified Mahalanobis was found as the distance defin-

ition that correlates most closely with average results of

LDA and SVM classification accuracy for all topologies

and configurations. The same is true for individual

results, except for LDA in an OVO topology. Insets E

and F of Fig. 4 show LDA AMI and SVM MIX classi-

fication accuracy plotted against SI based on Modified

Mahalanobis. Modified Mahalanobis was the version

of Mahalanobis distance used in the remaining results

because of its overall higher correlation with classifi-

cation accuracy.

Nearest neighbor separabillity (NNS)

A summary of correlations with all classifiers for both

data sets is presented in Table 4.

Table 4 also shows the influence of the parameter k.

Figures 5 and 6 show plots of average result for the IM

and SM data, respectively.

NNS is most correlated with LDA in an OVO top-

ology, which is equivalent to the results obtained by SI

based on Bhattacharyya distance for the same classifier.

0 5 10 15

Mahalanobis

0

10

20

30

40

50

60

70

80

90

100

A
c
c
u

ra
c
y

corr = 0.92

0 0.5 1 1.5 2 2.5

Bhattacharyya

0

10

20

30

40

50

60

70

80

90

100

A
c
c
u

ra
c
y

corr = 0.94

0 0.5 1 1.5 2 2.5

Bhattacharyya

0

10

20

30

40

50

60

70

80

90

100

A
c
c
u

ra
c
y

corr = 0.91

0 0.2 0.4 0.6 0.8 1

Hellinger

0

10

20

30

40

50

60

70

80

90

100

A
c
c
u

ra
c
y

corr = 0.94

0 0.5 1 1.5 2 2.5 3

Mahalanobis Modified

0

10

20

30

40

50

60

70

80

90

100
A

c
c
u

ra
c
y

corr = 0.79

0 0.5 1 1.5 2 2.5 3

Mahalanobis Modified

0

10

20

30

40

50

60

70

80

90

100

A
c
c
u

ra
c
y

corr = 0.71

LDA AMI (OVO) and SM data MLP and IM data MLP MIX and SM data

MLP and IM data LDA AMI and SM data SVM MIX and SM data

Fig. 4 Data distribution for the most correlating distance definitions. Plot matrix where the insets show classification accuracy plotted against the

SI. One dot represents one movement, one subject, and one feature, which means that the number of dots is the number of movements

multiplied by the number of subjects times the number of features. The plots represent the highlighted correlations in Table 3

Table 4 Correlations between classification accuracy and nearest neighbor separability

Average result Individual results

LDA (AMI)
Single/OVO

MLP AMI/MIX SVM AMI/MIX LDA (AMI)
Single/OVO

MLP AMI/MIX SVM AMI/MIX Data set

K = 20 0.86/0.98 0.96/0.97 0.90/0.90 0.83/0.93 0.92/0.92 0.72/0.72 SM

0.86/0.97 0.98/NA 0.74/NA 0.84/0.92 0.97/NA 0.70/NA IM

K = 120 0.90/0.97 0.92/0.95 0.92/0.92 0.87/0.90 0.87/0.89 0.73/0.73 SM

0.90/0.98 0.97/NA 0.78/NA 0.89/0.93 0.94/NA 0.73/NA IM

The correlation between classification accuracy and NNS with different values of the parameter k. Correlations under “individual results” were calculated using classification

accuracies and NNS from every individual movement, subject and feature, while those under “average result” were derived using one average NNS and classification accuracy

for every subject and feature. Both methods provide one correlation, although “individual results” use more data. Classifiers were configured using AMI or MIX. Classifiers were

used in the conventional “single” topology, apart from LDA, which was used in “single” and OVO. The highest correlation values per column are highlighted in bold. All

correlations were found statistically significant at p < 0.01. The MIX configuration is not applicable (NA) for individual movements since there are no mixed outputs
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The individual results for LDA using OVO are plotted

for both data sets in Fig. 7.

Purity and repeatability index

Purity and repeatability index resulted in low correlation

with classification accuracy for all classifiers. The corre-

lations for IM data can be found in Table 5. Figure 8

shows Individual results of MLP for the two algo-

rithms and the aforementioned data set. Because of

the low correlation, purity was excluded from the fol-

lowing experiments, and RI from the Feature Sets

experiment.

Feature sets

In this section, the best sets are compared with each

other and the reference sets. In Fig. 9, the best sets corre-

sponding to the distance definitions of SI are compared.

The modified Mahalanobis sets are significantly higher

than the other distance definitions sets in eight out of 12

cases, and averagely higher in all but the case where

MLP is used with sets of three features. In that case,

Bhattacharyya distance and Hellinger distance sets per-

forming higher average classification accuracy.

The influence of parameter k of the NNS algorithm is

shown in Fig. 10 by comparing the best sets for k = 120

and k = 20. The higher value of k leads to higher average

classification accuracy in all cases. However, it is statisti-

cally significant for SVM and three features only.

The members with the highest average classification

accuracy were selected from Figs. 9 and 10 – modified

Mahalanobis and k = 120, respectively – to be

compared with the reference sets in Fig. 11. The NNS

sets leads to significantly higher classification accuracy

than the reference in all but one case, while modified

Mahalanobis is significantly higher for nine out of 12.

The average classification accuracy for the NNS sets is

higher than modified Mahalanobis for all classifiers

except LDA in an OVO topology, where Modified

Mahalanobis is consistently higher.

Real time

Figure 12 summarizes the correlations between the mo-

tion test result completion time and CCEs corresponding
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Fig. 7 Highest correlation for NNS. LDA (OVO) classification accuracy plotted against NNS for individual result. One dot represents one movements, one

subject and one feature, meaning that the number of dots is the number of movements multiplied by the number of subjects multiplied by the number

of features. The plots illustrate the highest correlation from Table 4. a LDA (OVO) and IM data. b LDA AMI (OVO) and SM data

Table 5 Correlation for purity and repeatability index regarding classification accuracy

Average result Individual results

LDA (AMI)
Single/OVO

MLP AMI SVM AMI LDA (AMI)
Single/OVO

MLP AMI SVM AMI Data set

Purity 0.31/0.0062 −0.14 0.51 0.3/0.15 0.14 0.54 IM

Repeatability 0.64/0.8 0.85 0.57 0.23/0.36 0.45 0.16 IM

The correlation with classification accuracy for purity and repeatability index. Correlations under “individual results” were calculated using classification accuracies and

CCES from every individual movement, subject and feature, while those under “average result” were derived using one average CCE and classification accuracy for every

subject and feature. Both methods provide one correlation, although “individual results” use more data. Classifiers were configured using AMI. All correlations were found

to be statistically significant (p < 0.05)
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to RI, NNS, and SI based on modified Mahalanobis and

Bhattacharyya distance. Statistically significant correla-

tions (p < 0.001) are highlighted by a darker frame.

Feature attribute

As the correlations used to evaluate the CCEAs were

derived by use of one feature at a time, attributes of

features individually were revealed. Examples of such

attributes are average classification accuracy and clas-

sification accuracy variance. These two attributes are

illustrated in Figs. 13 and 14 for IM and SM data, re-

spectively. Figure 13 shows the five features that re-

sulted in the highest and lowest average classification

accuracy for classifiers separately.
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Fig. 10 Classification accuracy for the best sets corresponding to distance definitions of the SI. Boxplot of average classification accuracy over all

movements when using the best sets representing the distance definitions found in the legends. The middle line of the box is the median, the

marker is the mean, and the box extends to the 25th and 75th percentiles for the bottom and the top, respectively. The different insets compare

sets of different number of features. The result is derived from the IM data set. Classifiers were used in the conventional “single” topology, apart

from LDA, which was used in “single” and OVO
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is derived from the IM data set. Classifiers were used in the conventional “single” topology, apart from LDA, which was used in “single”

and OVO
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One attribute that was observed to highly influence

the CCEAs’ correlation with classification accuracy was

channel correlation; that is, correlation between feature

sequences extracted from the channels separately using

only the feature considered. To illustrate this attribute,

average determinants of the channel correlation matrices

over all subjects for the different features were extracted

from SM data and shown in the bar diagram in Fig. 15.

The features marked by red color have low average cor-

relation matrix determinants, which means a high
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correlation between channels, while the blue color repre-

sents features of low channel correlation. Figure 16 shows

how the two groups of features, red and blue from Fig. 15,

cluster differently in classification accuracy against CCE

plots.

The blue group has similar dependency on classifica-

tion accuracy for the three classifiers, while the red

clearly varies between them.

Discussion

Offline results

Separability index

Modified Mahalanobis was the distance definition that

had the greatest correlation with classification accuracy

(Table 3). However, the distance definitions based on

Bhattacharyya coefficient, being Bhattacharyya distance

and Hellinger distance, had a higher correlation with
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MLP’s classification accuracy. The Feature Attributes

section shows that Bhattacharyya distance compensates

for the change in dependency to MLP classification ac-

curacy caused by input correlation that is found in the

other CCEAs. It should therefore be a more adequate

distance definition for estimation of MLP classification

complexity. However, as features are combined into sets,

the feature correlation tend to decrease as larger feature

vectors are formed using multiple features. This is prob-

ably a reason for the absence of significantly higher clas-

sification accuracy for Bhattacharyya distance (Fig. 9).

Nearest neighbor separability

NNS has high correlation with classification accuracy

for all classifiers, as shown in Table 4. Figure 10

shows that the best sets corresponding to NNS per-

form higher overall classification accuracy then both

the SI best sets and the reference sets. The greatest

benefit of NNS is that it does not assume normality

of the distribution, which makes it more general.

However, there is a dependency to input correlation,

as can be seen in Fig. 16; however, just as for modi-

fied Mahalanobis, this influence will decrease as fea-

tures are combined into sets and input correlation

decrease.

The drawback of NNS is that it is more computation-

ally demanding than SI. As implemented for this study,

the computation time for NNS using two features is ap-

proximately 20 and 16 times longer than for SI with

modified Mahalanobis as distance definition using the

IM and SM data, respectively. The absolute time to

compute SI in the aforementioned configuration for IM

data when using Matlab R2015b on a MacBook, 2 GHz

Intel Core 2 Duo, 8 GB RAM is approximately 26 ms.

Purity and repeatability index

Purity and RI do not show as high correlation with

with classification accuracy as the other CCEAs

evaluated in this study, and were therefore not

included in the feature set experiment. However, the

correlation for RI average result is relatively high and

positive. It is worthy of notice that RI measures the

inconsistence during recording. Higher RI means

larger cluster shifts in feature space between record-

ing repetitions. Larger shifts were expected to limit

the classifiers abilities to identify boundaries and thus

reduce classification accuracy.

Real time

The statistically significant correlations with comple-

tion time in Fig. 12 argue that both NNS and SI are
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relevant for prediction of performance in real-time.

However, SI with modified Mahalanobis as distance

definition yields higher correlation with completion

time than NNS, while the offline tests show that the

NNS best sets are performing with higher classifica-

tion accuracy for both MLP and LDA also repre-

sented in the real-time test. The parametric models of

the distributions used for SI are probably more robust

to changes present in a real-time situation, similar to

what is shown for LDA, also dependent on the as-

sumption of normality [23].

We expected consistent intra-class distribution in fea-

ture space, as represented by RI, to be beneficial in the

real-time tests, but the low correlation with completion

time in Fig. 12 does not confirm that hypothesis.

Even though correlations between the CCEAs and

the completion time are significant for many CCEAs,

the correlations with offline accuracy are clearly

higher. The complexity of real-time testing is illus-

trated in Fig. 17, where classifier training data is

compared to corresponding real-time data for one

movement per inset.

The distribution clearly shifts between the time when

training data was recorded and the time when the real-

time test was executed.

Channel correlation dependency and feature attributes

The change in dependency between CCEs and classifica-

tion accuracy due to channel correlation of the features

presented in the Channel Correlation Dependency sec-

tion reveals some interesting attributes of the classifiers.

Figure 16 shows that features with high channel correl-

ation result in higher average classification accuracy for

MLP compared to LDA, but LDA used in an OVO top-

ology is less influenced by the feature correlation. MLP

uses the redundant information in the features more ef-

ficiently than what is observed for LDA, which suggests

that redundancy reduction is of higher importance

when selecting both channels and features for a LDA

application.

The feature attributes emphasized in Figs. 13 and 14

provide information about the performance of the fea-

tures in different setups. The variation in the top five

features shows how dependent the features’ performance

is to other conditions of the classification task, which

emphasizes the importance of dynamic feature selection

methods for MPR.

Data analysis tool: example

We implemented the best-performing CCEAs found in

this work in a new module for data analysis in BioPatRec
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[15]; namely, Separability Index with both Bhattacharyya

distance and Modified Mahalanobis, and the Nearest

Neighbor Separability. The graphical user interface of this

module is shown in Fig. 18. Scatter plots show the feature

space of different movements and their neighbors. Infor-

mation about the most conflicting classes based on their

interference with other movements is displayed in table

format. These attributes are derived from the selected

algorithm and are useful inputs when deciding whether

to re-record or exclude a particular movement(s).

Conclusion

This study compared algorithms that estimates the clas-

sification complexity of MPR. Two such algorithms,

Separability Index (SI) and Nearest Neighbors Separability

(NNS), were found to yield high correlation with classifica-

tion accuracy. The utility of these algorithms for MPR was

demonstrated with the high classification accuracy yielded

by the feature sets selected using these two algorithms. SI

was evaluated using different distance definitions, from

which best performance was achieved using a modified

version of the Mahalanobis distance, which also considers

the covariance of the neighboring class. Overall, the offline

results indicated that NNS is a more stable CCEA, while SI

is less demanding to compute. In addition, feature correl-

ation dependency was found to influence the correlation

between CCEs and classification accuracy.
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