
Classification, Denoising, and

Deinterleaving of Pulse

Streams With Recurrent

Neural Networks

ZHANG-MENG LIU

National University of Defense Technology, Changsha, China

PHILIP S. YU, Fellow, IEEE

University of Illinois at Chicago, Chicago, USA

Pulse streams of many emitters have flexible features and com-

plicated patterns. They can hardly be identified or further processed

from a statistical perspective. In this paper, we introduce recurrent

neural networks (RNNs) to mine and exploit long-term temporal pat-

terns in streams and solve problems of sequential pattern classifica-

tion, denoising, and deinterleaving of pulse streams. RNNs mine tem-

poral patterns from previously collected streams of certain classes via

supervised learning. The learned patterns are stored in the trained

RNNs, which can then be used to recognize patterns-of-interest in

testing streams and categorize them to different classes, and also

predict features of upcoming pulses based on features of preceding

ones. As predicted features contain sufficient information for distin-

guishing between pulses-of-interest and noises or interfering pulses,

they are then used to solve problems of denoising and deinterleaving

of noise-contaminated and aliasing streams. Detailed introductions

of the methods, together with explanative simulation results, are pre-

sented to describe the procedures and behaviors of the RNNs in solving

the aimed problems. Statistical results are provided to show satisfying

performances of the proposed methods.

Manuscript received January 24, 2018; revised June 1, 2018; released for

publication September 22, 2018. Date of publication October 4, 2018; date

of current version August 7, 2019.

DOI. No. 10.1109/TAES.2018.2874139

Refereeing of this contribution was handled by H. Mir.

This work was supported by the National Science Foundation of China

(61771477).

Authors’ addresses: Z.-M. Liu is with the State Key Laboratory of

Complex Electromagnetic Environment Effects on Electronics and In-

formation System, National University of Defense Technology, Changsha

410073, China, E-mail: (liuzhangmeng@nudt.edu.cn); P. S. Yu is with

the Department of Computer Science, University of Illinois at Chicago,

Chicago, IL 60607 USA, E-mail: (psyu@uic.edu). (Corresponding

author: Zhang-Meng Liu.)

0018-9251 C© 2018 OAPA

I. INTRODUCTION

Analyses of pulse streams play important roles in cate-

gorizing mixed data, locating emitters, and identifying their

attributes [1]. Three of the most widely studied topics in the

area of pulse stream processing are classification [2]–[4],

denoising [5], and deinterleaving [6]. These problems are

becoming more and more difficult nowadays, as the elec-

tromagnetic environment is much more crowded than ever

before due to fast developments and usages of various ad-

vanced communication [7], navigation [8], and radar [9]

systems.

A simple but previously effective idea for classification

is categorizing pulses according to their statistical features,

such as frequency, pulse width (pw), angle-of-arrival, and

so on [1]. Intrapulse features embedded in emitter signals

can also be exploited to categorize pulses [3], [4], but they

are not available in some applications when emitter sig-

nals are not retained due to heavy storage and transmission

burdens. Therefore, we only take into account the above-

mentioned descriptive features to address pulse processing

tasks in this paper. If pulses from more than one emitter can

not be separated directly with respect to statistical features,

the temporal feature of pulse repetitive interval (pri) has

been exploited via numerical clustering to make in-depth

analyses into interleaved streams [10], which falls into the

area of denoising and deinterleaving [5], [6]. This idea ex-

ploits the pri feature also from a statistical perspective, by

preassuming that typical pris of an emitter’s pulse streams

will be highlighted on the pri spectrum if the stream is

long enough [11], [12]. Some denoising and deinterleaving

methods have been proposed following this guideline, such

as cumulant difference histogram (CDIF) [6] and sequen-

tial difference histogram (SDIF) [13], and they have been

widely studied and used in the past few decades.

There are many significant shortcomings in these stream

processing ideas and methods. First, only sufficiently long

streams can be processed by them, that is because statistical

features can hardly be extracted from short streams stably,

such as the pri spectra [11], [12]. Moreover, counting statis-

tical characteristics to realize pulse processing can only be

realized after collecting all the pulses, which greatly blocks

online applications of these algorithms. Second, features

of pulses and pulse tuples are separated to obtain multiple

statistical characteristics to realize stream categorization,

while joint patterns between them and temporal long-term

patterns are abandoned, which causes losses to available

features. For example, streams consisting of pulses with

feature combinations (A1, B1) and (A2, B2) are undistin-

guishable from ones consisting of pulses with feature com-

binations (A1, B2) and (A2, B1) if the features are consid-

ered separately. And long-term patterns are as important

as statistical features for processing streams consisting of

functional pulse tuples. Typical examples are streams of

advanced electronic systems, such as imaging radar [14].

Some theoretically intense methods, such as Kalman fil-

ter based methods [15], [16], hidden Markov model based

methods [17], [18], and multiple hypothesis tracking based

1624 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 55, NO. 4 AUGUST 2019

https://orcid.org/0000-0001-9472-279X


methods [19], have also been proposed to categorize pulses

of different emitters from mixed streams. They treat the

stream analysis problem like a signal processing one, and

introduce techniques in the latter community to solve the

former problem. The algorithmic processes of these meth-

ods work only when some preassumptions are met for the

streams, and they are a bit too complicated to be packaged

for practical usages.

In this paper, we introduce recurrent neural networks

(RNNs) [20] to address the problems of classification, de-

noising, and deinterleaving of pulse streams. The usage of

neural networks in pulse stream processing dates back to

early 1990s [21]. In previous literatures, shallow networks

were reported to extract features of each pulse very well and

succeed to categorize pulses according to separated or joint

features [21]–[24]. However, the problem of pulse catego-

rization is rather simple when compared with the problems

of classification, denoising, and deinterleaving, and can be

well solved by other numerical methods [6], [11]–[13]. Re-

cent developments in the area of machine learning indicate

that deep neural networks have much enhanced abilities of

representation than shallow ones [25], and RNNs have been

used to gain satisfying results on many sequence processing

problems, such as machine translation [26], [27] and stock

price prediction [28].

The RNN is used in this paper to extract long-term

patterns (patterns that last for more than two successive

pulses) from previously collected streams via supervised

learning. A classification RNN is then established to map

these patterns to emitter class indexes, and a group of

forward/backward prediction RNNs are established to

understand the current context of the pulses and predict

features of upcoming pulses, so as to deal with denoising

and deinterleaving problems. A new representation of pulse

features is presented to prepare streams for RNN process-

ing, and detailed explanations are made on how the RNN

outputs contribute to the solution of the oriented problems.

The training and using of the RNNs for classification,

denoising, and deinterleaving are end-to-end. All the net-

work parameters are tuned automatically during training

based on inputted streams and outputted ground truths

(class indexes of streams and features of upcoming pulses),

and the trained networks output necessary information

when testing streams are inputted. No expert knowledge

is required during processes of training and testing of the

RNNs. Simulation results also show that the RNNs are

able to learn abstract (instead of determined) patterns in

training streams, such as flexible scopes of constant pris

and dynamic modes of stagger pris, and embody them to

deterministic values according to local contexts. Statistical

simulation results demonstrate the satisfying performances

of the proposed methods on classification, denoising, and

deinterleaving, despite of demanding settings of short

streams, missing pulses, and interferential noises.

The rest of this paper is organized as follows. Section II

presents a new representation of pulse streams and pro-

vide clues for potential applications of the RNN in stream

processing. Then, the three problems of classification,

denoising, and deinterleaving are addressed in details in

Section III–V, respectively. Simulations are carried out in

Section VI to demonstrate the performances of the pro-

posed methods. Section VII makes some complementary

discussions on aspects of the research that are not covered

in the text. Section VIII concludes the whole paper.

II. PROBLEM FORMULATION

In most previous literatures, pulse streams have been

described with multiple numerical features, including fre-

quency, pw, time-of-arrival, etc. [1]. Such a representation

well fits the requirements of statistical methods. But nu-

merical values can hardly be understood by machines, they

should be digitized and regularized to facilitate their usage

in machine learning models. We present a new representa-

tion of pulse streams in this section, and analyze prelim-

inarily why RNN techniques can be introduced to solve

the tasks of classification, denoising, and deinterleaving of

pulse streams.

A. Representation of Pulse Streams

Sequential patterns are intrinsic characteristics that dis-

tinguish pulse streams from random noise trains, and also

from pulse streams of other emitters. These patterns contain

not only statistical features of each pulse, such as frequency,

pw, and angle-of-arrival, but also how pulses emerge along

the time axis, which derives a new feature of pri [1]. Af-

ter categorizing pulses according to preliminary statistical

features, pri can be exploited as a major feature to separate

pulses-of-interest from noises and aliasing pulses of other

emitters [6], [13].

In this paper, we mainly exploit the pri feature to han-

dle the tasks of classification, denoising, and deinterleav-

ing of pulse streams, and also take pw into consideration

to show how the other features can be used jointly with

pri. In order to prepare for stream processing afterward, we

convert the widely used numerical representations of pulse

streams, i.e.,
pri1
−→ pw1

pri2
−→ · · ·

prin
−→ pwn

prin+1
−−−→ · · · , to dis-

crete event sequences as {pri1, pw1}, . . . , {prin, pwn}, . . ..

In both representations, we append an extra pri of 0 before

the first pulse to facilitate stream description and process-

ing. Sequential patterns of consecutive pulses can then be

represented by a series of feature combinations {prin, pwn},

where pri is defined as the interval between the current

data sample and the previous one without distinguishing

pulses and noises. Each of the feature combinations con-

tains not only information about the characteristics of the

pulse itself, but also the preceding context close to it. By

processing feature combinations of successive pulses effec-

tively, the sequential patterns of long pulse streams can be

extracted and further exploited in testing streams.

The feature combinations are then digitized to obtain

regularized formulations. We introduce two large enough

upperbounds for pri and pw, and denote them by Dpri and

Dpw, respectively. Outliers larger than the bounds are set to

0. Valid feature values in scopes of [0, Dpri] and [0, Dpw] are

digitized linearly with respect to units of dpri and dpw, i.e.,

LIU AND YU: CLASSIFICATION, DENOISING, AND DEINTERLEAVING OF PULSE STREAMS 1625



Fig. 1. Pulse stream example with three pulses and one noise.

pridigital = ⌊prinumeric/dpri⌋ and pwdigital = ⌊pwnumeric/dpw⌋,

where subscripts (·)numeric and (·)digital are used to indicate

numerical and digitized versions of features, ⌊α⌋ repre-

sents the largest integer not larger than α. After digitiz-

ing, pri and pw are represented by digits within scopes of

[0, ⌊Dpri/dpri⌋] and [0, ⌊Dpw/dpw⌋] with tolerable quanti-

zation errors. As we will mainly use digitized forms of the

features in this paper, the subscripts of (·)numeric and (·)digital

will be omitted for conciseness and digitized features will

be referred to by default unless otherwise stated.

In the following, we provide an example to explain

the new representation of pulse streams, as is shown in

Fig. 1. Four pulses are observed in total, with the three

represented by rectangles come from an emitter, and the

other one represented by a circle being noise. The emitter

pulses have a constant pri of 800 µs. An emitter pulse is

lost between the two emitter pulses with their pws labelled

as pw2 and pw4. The noise pulse is 500 µs apart from the

preceding emitter pulse. All four pulses have the same pw

of 2 µs. Observation inaccuracies are not considered for the

pris and pws to simplify description.

The traditional representation of the pulse stream is

0 µs
−−→ 2 µs

800 µs
−−−→ 2 µs

500 µs
−−−→ 2 µs

1100 µs
−−−−→ 2 µs.

The feature combination sequence is

{0 µs, 2 µs}, {800 µs, 2 µs}, {500 µs, 2 µs},

{1100 µs, 2 µs}.

After that, if we choose digitizing units as dpri = 5 µs

and dpw = 0.2 µs, the digitized representation of the pulse

stream is rewritten as

{0, 10}, {160, 10}, {100, 10}, {220, 10}.

Each of the digitized pris and pws can be represented

by a one-hot vector, with the location of its only nonzero

element of 1 indicating the value of the digitized features.

For example, if pri is upperbounded by Dpri = 5000 µs

and digitized with a unit of dpri = 5 µs, then the one-hot

representation of 6.7 µs is [0, 1, 0, 0, . . . , 0]T ∈ R1001×1.

Similarly, if pw is upperbounded by Dpw = 4 µs and digi-

tized with a unit of dpw = 0.2 µs, the one-hot representation

of 0.15 µs is [1, 0, 0, 0, . . . , 0]T ∈ R21×1. One-hot features

can be processed more easily by machine learning tech-

niques than their numerical counterparts.

However, one-hot features are much too sparse and may

make the learning process unstable. Researchers in the ma-

chine learning community have developed embedding ideas

to condense the dimension of the features to stabilize the

learning process [29]. This idea has gained great successes

in areas of natural language processing [29], recommen-

dation [30], and so on. According to the embedding tech-

nique, the one-hot pri and pw features can be transformed as

follows:

epri = E(pri)gpri (1)

and

epw = E(pw)gpw (2)

where gpri ∈ R
L1×1 and gpw ∈ R

L2×1 are one-hot pri and pw

vectors, E(pri) ∈ R
l1×L1 and E(pw) ∈ R

l2×L2 are embedding

matrices for the two features with l1 ≪ L1 and l2 ≪ L2,

epri ∈ R
l1×1, and epw ∈ R

l2×1 are embedded vectors. The

embedding matrices should be initialized properly and

trained via supervised learning.

Embedding matrices in (1) and (2) act like look-up ta-

bles. When a one-hot feature is given, one column of the

matrix is selected according to the location of the nonzero

vector element to represent the feature. The embedded fea-

tures are then fed to the neural networks as a train of inputs.

Well designed neural networks are required to extract inner

patterns within successive pulses, so as to identify differ-

ent emitters, and be aware of pulse contexts to distinguish

pulses from outliers.

B. How RNN Fits the Processing Tasks

Deep learning techniques have been developing fast in

the past decade, and systems based on the techniques have

been reported to reach or even surpass the level of human

beings [31], [32]. Two kinds of neural networks have been

widely used for deep learning, i.e., convolutional neural

networks and RNNs [25], [33]. The RNNs are designed

for processing sequential data and have gained great suc-

cesses in areas, such as machine translation and finance

[26]–[28]. They process sequential samples one by one to

extract information contained in streams [26], [27], or pre-

dict upcoming samples based on previous ones [28]. Some

of the successful applications of RNN are similar to the

pulse stream processing problems in this paper.

Emitters radiate pulse streams to implement certain

functions, which behave like human beings speaking out

sentences to express themselves. Sentences have been pro-

cessed with RNN for sentiment analysis in recent years

to judge whether the attitude of the speaker is positive,

negative, or neutral [34]. The networks read the embed-

ded words one by one, and extract information contained

in key words and phrases to distinguish between different

sentiments. Such networks are also expected to be able to

process pulse features sequentially, and extract distinguish-

ing patterns between pulse streams of different emitters.

There are preliminary patterns, such as particular values of

pri and pw, and also complicated patterns, such as dynamic

modes of successive pris. By extracting distinguishable pat-

terns from pulse streams, the trained RNN may succeed to

solve the problem of stream classification.

Another widespread application area of RNN is se-

quence prediction [28], [35]. RNNs have been used to pre-

dict upcoming data samples to forecast stock prices [28]

1626 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 55, NO. 4 AUGUST 2019



Fig. 2. Structure of the RNN for classification. Digitized one-hot features are embedded and concatenated to obtain an input vector f of the GRU

unit; the GRU unit processes the input vector and output state vector h; a fully connected layer transforms the GRU output to a probability distribution

vector.

and protein structures [35]. They extract stream patterns

from previously collected data, understand current context

based on preceding samples, and then succeed to predict

upcoming samples. Pulse streams are generally regularized

data trains, consisting of constant, periodic, or combina-

tional feature patterns. Features of pulses in the near future

are predictable based on these of the past ones. However,

practical pulse streams may be contaminated by noises or

interferential pulses, which cause negative effects to pat-

tern identification and prediction. Therefore, the RNN will

be introduced in this paper to predict features of upcoming

pulses based on that of the past ones, and distinguish be-

tween expected pulses and outliers, so as to realize stream

denoising and deinterleaving.

There have been long-lasting researches on RNN [33],

[36], and great progresses have been made in the machine

learning community since the proposal of long short-term

memory (LSTM) in 1997 [37]. LSTM introduces a forget-

ting mechanism into the original RNN framework, which

well solves the problem of vanishing gradients and suc-

ceeds to extract long-term patterns. The progresses con-

tribute a lot to the widespread applications of RNN [25],

[33], [38]. Recently, a gated recurrent unit (GRU) is pro-

posed as a substitution of LSTM [39], [40]. GRU has fewer

tunable parameters than LSTM, and gains comparable per-

formances in many applications. In this paper, we establish

GRU-based RNNs to solve the problems of classification,

denoising, and deinterleaving of pulse streams.

III. RECURRENT LEARNING FOR CLASSIfiCATION

In this section, we present our ideas for classifying pulse

streams with RNN. Detailed discussions will be provided

on the structure of GRU, how the embedded features are fed

into RNN for pattern learning, and how the trained networks

are exploited for testing.

A. Structure of RNN for Classification

A sketch of the classification RNN is shown in Fig. 2.

Digitized pris and pws at time instants of each pulse are

first represented with one-hot vectors, and then embedded

to lower dimensional features according to (1) and (2). The

two embedded features are then concatenated to form a

combined feature of xn = [eT
pri,n, eT

pw,n]T , which is the input

to the GRU module. This module extract sequential patterns

contained in pulse streams, and store them in the state of

GRU, which is denoted by hn and also treated as the output

of this module. Finally, a fully connected layer is appended

to the GRU module to map its state vector to a probability

distribution along different classes.

Detailed algorithmic procedures of the GRU module

are described in (3)–(6) [39], [40]. Equation (3) describes

the update gate of GRU. In this equation, xn represents the

concatenation of embedded pri and pw at time instant n,

hn−1 represents the GRU state at time instant n − 1 and

h0 = 0, with each time instant corresponding to the arrival

of a data sample (may be a pulse or noise). The two vectors

are transformed linearly with respect to matrices W(u) and

U(u), and then added with a bias vector b(u) to obtain the

final update vector zn via a logistic sigmoid function σ (·).

In (4), a reset vector is obtained in a similar way with

the same input vectors but different tunable parameters.

Another group of tunable parameters of W, U, and b are

introduced to map inputs xn and hn−1 to memory vector

fn using the new reset vector rn and a hyperbolic tangent

function tanh(·). In (6), the GRU state is updated from hn−1

to hn based on the inputs and newly obtained update and

LIU AND YU: CLASSIFICATION, DENOISING, AND DEINTERLEAVING OF PULSE STREAMS 1627



reset vectors, and 1 is an all-one vector. In the equations, ⊙

stands for element-wise multiplication, and the dimensions

of tunable matrices and vectors can be derived from context

zn = σ (W(u)xn + U(u)hn−1 + b(u)) (3)

rn = σ (W(r)xn + U(r)hn−1 + b(r)) (4)

fn = tanh(Wxn + rn ⊙ Uhn−1 + b) (5)

hn = zn ⊙ fn + (1 − zn) ⊙ hn−1. (6)

Denote the dimension of the GRU state vector by l, i.e.,

hn ∈ R
l×1, and the number of candidate classes by K , the

GRU state is finally mapped to a probability distribution

on classes c1, c2, . . . , cK via a fully connected layer. The

mathematical model of this layer is

p̂ = s(W(o)hn + b(o)) (7)

where W(o) ∈ R
K×l is a weight matrix, b(o) ∈ R

l×1 is a bias

vector, s(·) is the softmax function.

Each element of the output vector p̂ indicates the prob-

ability that the pulse stream belongs to a certain class. The

class with the largest probability is then chosen as the clas-

sification result.

B. Training of RNN Classifier

Many parametric weight matrices and bias vectors are

introduced for the implementation of RNN-based classifi-

cation. They should be tuned to output correct class labels

for pulse streams. An efficient way to tune the parameters is

supervised learning. That is, a set of pulse streams tagged

with true class labels is fed into the RNN, a probability

distribution will be computed based on current network

parameters. The estimated probability distribution is then

compared with the given label to calculate a loss, which

measures the deviation between the estimated and targeted

probability distributions. Finally, the parameters are tuned

to decrease the loss to obtain better classification results.

After several rounds of parameter tuning, the trained RNN is

expected to perform satisfyingly in classifying test streams.

Before training starts, the GRU state h0 is initialized to

0, and all the weight matrices and bias vectors are initialized

randomly according to Gaussian distributions with variance

0.1. Each time when a new data sample is observed, the

corresponding pw and pri are digitized and transformed

to one-hot vectors. The one-hot vectors are fed into the

RNN, and then embedded and concatenated to form an

input vector xn of the GRU module. The GRU module

processes the input vector according to (3)–(6) and finally

output a state vector hn, which is updated recurrently when

new data samples arrive. When the last sample of a stream

has been processed, the final state vector is inputted to the

fully connected layer to obtain a probability distribution

estimate p̂ = [p̂1, . . . , p̂K ]T ∈ R
K×1 on the K classes.

The ground truth of the probability distribution estimate

associated with a stream is p = [0, . . . , 0, 1, 0, . . . , 0]T ∈

R
K×1, with the location of the only nonzero element indi-

cating the true label. The estimate of the probability dis-

tribution vector may deviate from its truth for both zero

and nonzero elements, i.e., the estimated probability for the

Fig. 3. Probability distribution estimates of the classifier RNN at

different time instants when tested on a pulse stream with stagger pris.

true class is smaller than 1, and these for the other classes

are larger than 0. A loss function is defined following the

binary cross-entropy criterion to evaluate the deviation of

the estimated probability vector from its groud truth, i.e.,

loss = −�K
k=1[pk log(p̂k) + (1 − pk) log(1 − p̂k)]. (8)

The loss function reaches the only minimum of 0 when

p̂ = p, and has positive values otherwise. The farther that

p̂ deviates from p, the larger the loss will be. The training

process tunes RNN parameters to minimize the loss, and

gradually modifies the RNN to become a better classifier.

Backpropagation is the most widely used method for

minimizing loss functions in neural networks [41], [42]. It

calculates the derivations of the loss function with respect

to each tunable parameter [43], including elements of em-

bedding matrices, weight matrics, bias vectors, and then

modify the parameters along the opposite direction of the

derivations, i.e.,

αnew = αold − η
∂loss

∂α
(9)

where α represents any one of the tunable parameters, η is

a self-defined positive learning rate smaller than 1. Many

literatures have made in-depth discussions on the details

of backpropagation of RNN [43], [44], and most machine

learning platforms, such as Pytorch [45] and Tensorflow

[46], provide callable instructions for computing the gra-

dients automatically. Therefore, we skip over details of the

backpropagation process here and refer readers interested

in it to these literatures and platform documents for detailed

explanations.

Parameter settings and dataset descriptions for training

and testing the classifier RNN are delayed to Section VI.

Missing pulses and observation noises are included in the

datasets to better simulate practical pulse streams. As an

example to show how RNN behaves in classification, we

feed a noise-free stream with stagger pris to the RNN for

testing. The streams of this emitter have undistinguishable

statistical features from these of the other emitters, which

have constant pris, but have different long-term patters that

last for several successive pulses. Fig. 3 shows dynamic

probability distributions of the trained RNN after receiving

the first, second, fourth, and tenth pulses.

1628 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 55, NO. 4 AUGUST 2019



When only one or two pulses have been received, the

RNN can not collect enough information to distinguish be-

tween different classes; thus, all the four classes have signif-

icantly nonzero probabilities. After receiving four pulses,

the probability of the third class vanishes to 0 as it has a

different pw from the received pulses, and the fourth class

now has a much larger probability than the first and second

classes, which have undistinguishable statistical features

from the fourth class. This phenomenon indicates that the

RNN has succeeded to gathered temporal patterns from very

limited successive pulses to complement statistical features.

When as many as ten pulses are processed, the probability

associated with the fourth class overwhelms these associ-

ated with the other ones, and the outputted probability vec-

tor approaches the ground truth of [0, 0, 0, 1]T very well.

IV. FEATURE PREDICTION FOR STREAM DENOISING

In practical applications, pulse streams may be contam-

inated by interferential pulses from other emitters or ran-

dom noises, which are called observation noises or outliers

in this paper. Measurement inaccuracies in the features will

not be considered except in the simulations in Section VI,

and the term “noise” is used to indicate outliers exclusively

to avoid confusions unless otherwise stated.

In this section, we assume that pulse streams have been

classified correctly beforehand using the RNN presented in

Section III, and establish another RNN to realize feature

prediction of upcoming features and deal with the problem

of stream denoising.

A. Structure of RNN for Feature Prediction

Statistical features such as pw can be exploited before-

hand to filter out outliers that diverge largely in appearance

from pulses-of-interest, and the remained outliers are gener-

ally undistinguishable from pulses directly. A feasible way

to separate pulses from outliers is to make use of contextual

features, e.g., pri, according to a criterion that whether the

context centered at a certain data sample obeys the pattern

of an emitter’s pulse streams.

The feature prediction RNN has a structure shown in

Fig. 4. The digitized one-hot features are first embedded,

concatenated, and recurrently processed in the same way as

that in the classifier RNN shown in Fig. 2. The GRU output

state is then inputted to a fully connected layer to predict

features of the upcoming pulse separately. We take pri and

pw as pulse features in this paper, and mathematical models

of the output layer are

p̂(pri)
n = s(W(pri)hn + b(pri)) (10)

p̂(pw)
n = s(W(pw)hn + b(pw)) (11)

where superscripts (·)(pri) and (·)(pw) indicate variables as-

sociated with features of pri and pw, respectively, subscript

(·)n indicates variables corresponding to the nth time in-

stant, and s(·) stands for the softmax function.

The final outputs associated with the features are nor-

malized vectors, and they have the same dimensions as the

inputted one-hot feature vectors. Each element of the output

Fig. 4. Structure of the RNN for next-pulse feature prediction. The

network has the same structure as the classifier RNN, except that the final

outputs divide into multiple vectors associated with different pulse

features.

vector indicates the probability of the next pulse feature tak-

ing a certain digitized value. Take the pulse stream in Fig. 1,

for example. Suppose that the prediction RNN is able to

distinguish the pulse features and temporal patterns of this

stream based on the first two pulses, i.e., constant pw of 2 µs

and constant pri of 800 µs. Then, bias-free pri and pw pre-

diction vectors should be p
(pri)

3 = [0, . . . , 0, 1, 0, . . . , 0]T ,

with 1’s index being 161, 321, 481, . . . to indicate pri values

of 800 µs, 1600 µs, 2400 µs, . . . by taking missing pulses

into account, and p
(pw)

3 = [0, . . . , 0, 1, 0, . . . , 0]T , with 1’s

index being 11 to indicate a pw value of 2 µs. According

to the predictions, the noise that departs from the second

emitter pulse by 500 µs does not have an expected time-of-

arrival, thus, is distinguished as noise and skipped over to

the next data, which obeys the predictions and is processed

as a pulse for further predictions.

B. Training of RNN Predictors

The prediction RNN is trained with labeled pulse

streams beforehand to predict features of upcoming pulses.

Our training strategy of the prediction RNN is shown in

Fig. 5(a), where rectangles stand for pulses and circles for

noises, dashed, and arrowed lines point to pulses to be

predicted at each time instant. Pulse streams belonging to

known classes are simulated or collected with electrical

systems, and noises are added to the streams artificially to

enhance the robustness of trained RNNs. Each of the data

sample in the noise-contaminated streams are tagged with

a pulse or noise label. The streams are fragmentary as some

of the pulses are missed with a certain probability, and the

added noises interrupt the pri features.

During RNN training, data samples in the stream are

processed sequentially without discriminating pulses and

noises. However, only pulse features are taken as ground

truths for RNN prediction. Moreover, both forward and

LIU AND YU: CLASSIFICATION, DENOISING, AND DEINTERLEAVING OF PULSE STREAMS 1629



Fig. 5. Sketch map for training and using prediction RNN. (a) Forward and backward RNN are trained by processing pulses up to a certain time

instant and taking next-pulse features as ground truths. (b) Pulse, together with its context, that best obeys the learned sequential patterns is chosen as

a start-pulse for denoising. (c) Forward and backward denoising are applied after warming up.

backward RNNs are trained for each class to mine and

exploit bidirectional patterns in pulse streams. We take

the four-sample stream in Fig. 1 for example to explain

more concretely the training process. The stream samples

have tags PPNP, where P stands for pulse and N for noise.

The numerical representation of the stream is
pri1
−→ pw1

pri2
−→

pw2

pri3
−→ pw3

pri4
−→ pw4, and the event-like representation

is {{pri1, pw1}, {pri2, pw2}, {pri3, pw3}, {pri4, pw4}} with

pri1 = 0. The feature combinations are processed by a

forward RNN one-by-one, and the corresponding ground

truths at the four time instants are {{pri2, pw2}, {pri3 +

pri4, pw4}, {pri4, pw4}, {−, −}}, where the noise is skipped

over in the expected prediction outputs and the last pro-

cessing step has no outputs. The inversed formulation of the

stream is {{pri1, pw4}, {pri4, pw3}, {pri3, pw2}, {pri2, pw1}}

with pri1 = 0, and the ground truths of prediction are

{{pri4 + pri3, pw2}, {pri3, pw2}, {pri2, pw1}, {−, −}}.

Denote the outputted feature vectors of the prediction

RNN by p̂
(pri)
n and p̂

(pw)
n , and the corresponding ground

truths by p
(pri)
n and p

(pw)
n , which are one-hot formulations

of the upcoming pulse features. Then, the prediction loss at

time instant n is

lossn = η1loss(pri)
n + η2loss(pw)

n (12)

where loss(pri)
n and loss(pw)

n are cross-entropy loss functions

between (p̂
(pri)
n , p

(pri)
n ) and (p̂

(pw)
n , p

(pw)
n ) defined in a similar

way as that in (8), and η1 and η2 are weight coefficients

indicating different importances of pri and pw prediction

accuracies. In this paper, we set η1 = η2 = 1 for simplicity.

The total loss of the RNN for predicting a whole noise-

contaminated pulse stream is calculated by cumulating

losses at each time instant, i.e.,

Loss = �N
n=1lossn (13)

where N represents the length of the stream. It should be

noted that some of lossn are set to 0 when n is close to N

and there are no upcoming pulses. The total loss is then

used to tune RNN parameters via backpropagation as that

in (9).

Another important issue in feature prediction is the

scope of pri and pw, i.e., Dpri and Dpw in Section II-A.

Dpw can be set according to the statistical mean and stan-

dard deviation (STD) of pws in a certain class, and the

setting of Dpri is relatively complicated. More concretely,

Dpri should be large enough for the RNN to predict the time

instant of the next pulse in despite of missing pulses, and

meanwhile, too large pri s may be very difficult to predict as

they seldom emerges in training datasets. Detailed settings

of Dpw and Dpri will be made clear in Section VI, and we

mention them here to complete the introduction for testing

the prediction RNN.

C. Using RNN Predictors for Denoising

In the classification task, the RNN is trained and tested

in the same way by processing each pulse stream from

start to end, and outputs a classification result when all the

1630 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 55, NO. 4 AUGUST 2019



pulses have been processed. However, denoising via next-

pulse prediction is a sequential task, only pulse features

(with noises skipped over) are taken as ground truths of

RNN output during training. The testing process is dynamic

and more complicated. Data samples of a to-be-denoised

stream should be distinguished one-by-one in a temporal

order to determine whether they are pulses or noises. Pulses

will be remained for future processing and predicting, and

noises will be skipped over to avoid causing interferences

to temporal patterns of successive pulses.

A brief sketch of using the trained prediction RNN for

denoising is shown in Fig. 5(b) and (c). The pulse stream is

first processed with the forward RNN sample-by-sample,

since no prior information can be exploited to distinguish

pulses from noises. A confidence degree is computed for

each sample as follows:

P̂n = �
Q
q=1p̂

(pri)

iq
p̂

(pw)

jq
(14)

where Q represents the number of data samples with tem-

poral distances smaller than Dpri from the current sample,

iq and jq are indexes of digitized temporal distance and

width of the qth upcoming sample in p̂(pri) and p̂(pw). For

example, in Fig. 5(b), there are two samples with temporal

distances smaller than Dpri with respect to the pulse indexed

by n − 3, thus Q = 2, i1 and i2 equal to digitized values of

prin−2 and prin−2 + prin−1, and j1 and j2 equal to digitized

values of pwn−2 and pwn−1.

The confidence degree indicates how much the context

of each sample obeys the temporal pattern of emitters in a

certain class, the better the pattern is obeyed, the larger the

degree will be. Two major factors contribute to the degree.

One is whether the prediction RNN is well warmed-up

based on previous data samples, the other is how much the

subsequent samples within a temporal scope of [0, Dpri]

is consistent with the predicted features in p̂(pri) and p̂(pw).

Noises generally have small confidence degrees, since the

RNN state may be significantly interfered by processing a

new {pri, pw} combination of a noise, which does not obey

the stream pattern, and features of the pulses following up

can hardly be predicted as they do not have regularized pri

s with respect to the noise. The larger the confidence degree

is, the more probable the data sample is actually a pulse, and

the better the features of upcoming pulses can be predicted.

Therefore, we tag the sample with the largest confidence

degree as a pulse, and choose it as the start-point of the

forward/backward denoising processes.

After selecting the starting pulse, we first warm up the

forward prediction RNN by processing the substream be-

fore the selected pulse, as is shown in Fig. 5(c). Then, in

the rest of the stream, we update pri and pw probability

distributions of p̂(pri) and p̂(pw) after processing each pulse,

and distinguish each upcoming pulse by evaluating how

much its features match the predictions. All samples with

temporal distances smaller than Dpri from the current pulse

are evaluated according to a matching score defined as

β = p̂
(pri)

i p̂
(pw)

j (15)

Fig. 6. Row-wise coherence of the weight matrices in the output layer

of the denoising RNN. (a) W(pri). (b) W(pw).

where i and j are indexes of the sample’s digitized temporal

distance and pw in p̂(pri) and p̂(pw). The sample with the

largest matching score is chosen as the next pulse, and all

the other samples between the current and the chosen pulses

are tagged as noises.

When the forward denoising process has been com-

pleted, we exploit the trained backward RNN to denoise

the preceding substream of the starting pulse. The tagged

noises are skipped over during the warm-up procedure of

the backward RNN, and the prediction for denoising pro-

cedure begins at the initially chosen starting-pulse, as is

shown in Fig. 5(c).

A major concern may arise on the ability of the de-

noising RNN for predicting diversed feature values. Take

pri for example, the time instant of the next pulse may be

pri, 2pri, . . . in a stream with constant pri due to pulse miss-

ing. As pri is significantly nonzero, these feature candidates

are much diverged in value, then how can the prediction re-

sult p̂(pri) be able to indicate all the possibilities of the next

pri?

Actually, all information about the possibilities of can-

didate feature values are contained in the GRU output hn,

which is then mapped onto the feature spectra p̂
(pri)
n and p̂

(pw)
n

using mapping matrices W(pri) and W(pw). The similarity of

different feature values in the prediction space can be in-

dicated by the coherence between different rows of W(pri)

and W(pw). In Fig. 6, we plot grey images of the coherence

matrices associated with a denoising RNN trained for an

emitter with constant pri between 700 µs and 900 µs and

perturbed pw with a mean of 3 µs. It can be concluded from

the matrices that rows of W(pri) corresponding to harmon-

ics of a certain pri within [700 µs, 900 µs] are exclusively

correlated with each other, which means that if the GRU

module is able to learn the constant pri pattern from pre-

ceding pulses, the output layer will map the GRU state to

harmonics of the stream’s basic pri. The pw cohenrence

matrix also indicate that values close to 3 µs are strongly

recommendated by the RNN. Therefore, if the RNN is able

to learn stream patterns from preceding pulses correctly,

the output layer will map the state vector to numerically

diversed but contextually close feature candidates.

In Fig. 7, we provide more concrete results to describe

the behaviors of the denoising RNN in feature prediction.

Two forward denoising RNNs are trained for two emit-

ters in Section VI, one has a constant but unknown pri

LIU AND YU: CLASSIFICATION, DENOISING, AND DEINTERLEAVING OF PULSE STREAMS 1631



Fig. 7. Behaviors of forward denoising RNN in predicting next-pulse

features. (a) pri prediction spectrum of the second pulse in a constant pri

stream. (b) pri prediction spectrum of the second pulse in a stagger pri

stream. (c) pri prediction spectrum after processing ten pulses in a stream

with constant pri of 975 µs. (d) pw prediction spectrum after processing

ten pulses in a stream with perturbed pw having a mean of 2 µs. (e) pri

prediction spectrum after processing ten pulses in a stream with stagger

pri of 780 µs/880 µs/1080 µs/1280 µs. (f) pw prediction spectrum after

processing ten pulses in a stream with perturbed

pw having a mean of 3 µs.

within the scope of [700 µs, 1200 µs], its pw has a mean

of 2 µs and STD of 0.1 µs; the other has stagger pris

τ/(τ + 100µs)/(τ + 300 µs)/(τ + 500 µs) with τ selected

randomly within [700 µs, 800 µs] for each stream, its pw

has a mean of 3 µs and a STD of 0.1 µs. Then, two noise-

free complete pulse streams with a constant pri of 975 µs

and stagger pris with τ = 780 µs are inputted to the two

RNNs, respectively, for feature prediction. Detailed settings

of the two emitters can be found in Section VI labelled as

emitters of Class 3 and 4.

Fig. 7(a) and (b) shows the p̂(pri) s of the two RNNs af-

ter receiving the first pulse. Although no information about

the pri is contained in the first data sample, the predicted

pri spectra are still able to indicate pri scopes of the next

pulse. The second pulse of the stream with constant pri is

expected to emerge after 700–1200 µs with high proba-

bilities, and if this pulse is missed, the temporal distance

will be 1400–2400 µs with lower probabilities. This scope

overlaps with the distance scope of [2100 µs, 3600 µs]

when two successive pulses are both missed. The next pri

of the stagger stream has more special characteristics, as is

shown in Fig. 7(b). Each of the single pris in the stagger

pri sequence of 780 µs/880 µs/1080 µs/1280 µs and the

sum of any two or more successive pris are indicated by the

probability distribution.

When as many as ten pulses have been received and

processed, the prediction spectra of the next pri and pw are

shown in Fig. 7(c)–(f). The predicted pw [see Fig. 7(d)]

and pri [see Fig. 7(c)] of the first stream concentrate around

2 µs and on harmonics of the basic pri of 975 µs, and

slight deviations exist due to measurement noises in the

training dataset. For the stream with stagger pris, the tenth

pulse with a pri of 780 µs has just been processed, and the

upcoming pris should be 880 µs, 1080 µs, 1280 µs, 780 µs,

. . . in a temporal order, therefore, the time instant of the next

pulse should be 880 µs, 1960 µs, 3240 µs, 4020 µs, etc.

Candidates within [0, 5000 µs] have all been indicated by

the predicted pri spectrum in Fig. 7(e). The predicted pw

concentrates around 3 µs in Fig. 7(f).

The results in Figs. 6 and 7 imply that the prediction

RNNs are able to mine and store abstract temporal patterns

in streams of a certain class during training, and understand

the current context and embody originally dim patterns ac-

cording to detailed features in the testing stream, such as

refining pri values within a certain scope or determining

a certain stagger mode. Moreover, different probabilities

of feature estimates also indicate diverged chances of up-

coming pris and pws. If pulses of a stream are missed with

the same probability ρm, then the cumulant probability of

missing q successive pulses is ρ
q
m(1 − ρm), which decays

with q. Therefore, probabilities of predicted pris according

to higher order harmonics decrease in Fig. 7(a)–(c) and (e).

V. DEINTERLEAVING VIA ITERATIVE DENOISING

Interleaved pulse streams contain multiple substreams

radiated by different emitters. From the perspective of each

emitter, the interleaved stream can be deemed as a noise-

contaminated one, and may be processed using the denois-

ing RNNs. Actually, the denoising RNNs do help to solve

the deinterleaving problem, but two major differences be-

tween the denoising and the deinterleaving problems should

be considered during this process. First, it is difficult to

classify interleaved streams using the classification RNN

proposed in Section III before deinterleaving them. That

is because the classification RNN is designed to output a

single class label, and is unable to analyze the substream

components in detail and output multiple labels for them.

Second, a deinterleaving task requires extracting each of

the substreams associated with the interleaved emitters, in-

stead of focusing on a certain substream and eliminating

the rest ones.

Due to these reasons, we skip over the classification

procedure before deinterleaving, and integrate all prediction

RNNs corresponding to each candidate class to propose a

deinterleaving sketch, as is shown in Fig. 8. Substreams

belonging to each emitter are extracted from the original

stream in an iterative manner, and the remained stream is

processed according to the same procedures until very few

pulses are left behind.

Each iteration of stream deinterleaving follows a sim-

ilar procedure as denoising. But as the stream class is not

known beforehand, all the trained forward denoising RNNs

1632 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 55, NO. 4 AUGUST 2019



Fig. 8. Integrated deinterleaving sketch based on trained denoising

RNNs of all classes.

are used to process the interleaved stream and choose a

starting-point according to (14). Then, the largest confi-

dence degree associated with the mth denoising RNN and

the nth data sample is chosen for starting the current deinter-

leaving iteration. Forward and backward prediction based

deinterleaving procedures are then implemented in the same

way as that shown in Fig. 5(c), and a substream can be

extracted when the backward deinterleaving process is fin-

ished. The deinterleaved pulses are deleted from the origi-

nal stream, and the remained stream is inputted for a new

deinterleaving iteration.

In Fig. 9, we provide a descriptive sketch of the dein-

terleaving procedures by showing detailed steps for dein-

terleaving a stream consisting of rectangles and triangles.

Two groups of forward and backward denoising RNNs are

assumed to have been trained beforehand for the rectangle

streams and triangle streams, respectively, and we denote

them by REC-RNN and TRI-RNN. In step (a), both forward

REC-RNN and TRI-RNN are used to process the stream se-

quentially, and confidence degrees are calculated for each

data sample according to (14). Suppose that the line-filled

rectangle has the largest confidence degree according to

the REC-RNN, the REC-RNN, and the line-filled rectangle

are chosen for starting this deinterleaving iteration. For-

ward and backward denoising procedures are implemented

in turn to extract rectangles from the original stream. This

deinterleaving iteration may be not perfectly accurate, and

some of the rectangles are left behind in the remained stream

when this iteration is finished. Then, the remained stream is

processed in a second iteration. By choosing the TRI-RNN

model and a proper starting pulse, the triangle substream

can be extracted via forward and backward deinterleav-

ing procedures. When the second iteration finishes, only a

few rectangles and triangles are left behind. The remained

stream is shorter than a user-defined threshold and the dein-

terleaving procedure is terminated.

VI. SIMULATIONS

In this section, we carry out simulations to demonstrate

the performances of the RNN-based classification, denois-

ing, and deinterleaving methods. The simulation settings

are much different from the ones addressed in previous

literatures. The streams considered in this paper are gen-

erally very short, incomplete and noise-contaminated, and

pulses of different emitters can hardly be distinguished us-

ing statistical features. Most of existing methods fail in

such circumstances and cannot be used as baseline meth-

ods for performance comparison. Therefore, we concen-

trate mainly on the behaviors of the proposed methods in

this section.

A. Simulation Settings

Five classes of pulse streams are considered in this sec-

tion, with their attributes listed in Table I. Stream features

of different classes overlap in a statistical perspective, and

can hardly be categorized straightforwardly.

Gaussian distributed deviations (STD) are added to pri

and pw observations to simulate measurement noises, and

the pris of emitters belonging to the first four classes are

set within a certain scope to increase the difficulty of the

processing tasks. The fifth emitter class has stagger pw

and pri features that can hardly be distinguished from each

of the other classes directly, so as to further increase the

difficulty of classification and deinterleaving. In each of the

training and testing streams, a certain τ is selected and kept

unchanged throughout the stream.

Missing pulses and observation noises are included in

training and testing streams of the classification and de-

noising tasks. Each pulse is assumed to miss with a certain

probability ρm, and noises are added between each two

adjacent pulses with their number obeying a poisson distri-

bution with a mean of ρn(1 − ρm). In this way, the ratio of

noise number to pulse number is guaranteed to be ρn in av-

erage in the streams. Noise pws obey the same distribution

as pulse pws in the same stream, and their time instants are

selected randomly. In interleaved streams, no noises are in-

cluded, and substreams belonging to different emitters are

generated with the same missing probability ρm and then

interleaved with respect to an initial time shift randomly

chosen within [0, Dpri]. The number of samples (including

both pulses and noises) in each stream in denoising tasks

and also that of pulses in each substream in deinterleaving

tasks are set randomly within [20, 25]. Stream lengths in rel-

atively easier classification tasks are shortened to the scope

of [10, 15]. During RNN training for both classification and

prediction, ρm and ρn are fixed at 0.5 and 0.2, respectively.

But different values of ρm and ρn are chosen during test-

ing, so as to show the generalization ability of the trained

networks. A deinterleaving process is terminated when the

remained stream is shorter than 10 or the iteration number

exceeds 5.

LIU AND YU: CLASSIFICATION, DENOISING, AND DEINTERLEAVING OF PULSE STREAMS 1633



Fig. 9. Visual sketch of deinterleaving a stream consisting of rectangles and triangles. (a) Choose denoising RNN and starting pulse by comparing all

candidate RNN and pulse choices. (b) Deinterleaving rectangles via forward and backward denoising. (c) Deinterleaving triangles via forward and

backward denoising.

TABLE I

Attributes of Simulated Stream Classes

A classification RNN is trained for distinguishing each

stream among the five classes in Table I, and a group of

forward/backward prediction RNNs are trained for each of

the classes. Ten thousands of streams are generated to train

each of the RNNs, while the forward and backward pre-

diction RNN of the same class share the same group of

training datasets. The RNNs are trained on the platform of

Pytorch [45] with a batch size of 64 and a learning rate

of η = 0.05. Each of the batch is selected randomly from

the corresponding dataset, and 5000 batches are selected in

total to train each RNN. The pri feature is upperbounded

by Dpri = 5000 µs, and digitized with a unit of dpri = 5 µs,

and the pw feature is upperbounded by Dpw = 3.5 µs, and

digitized with a unit of dpw = 0.2 µs. Thus, the dimen-

sions of the one-hot pri and pw features are L1 = 1001 and

L2 = 18. The two features are embedded to vectors with

dimensions l1 = 120 and l2 = 8 according to (1) and (2),

respectively, and the dimension of the GRU input x has a

dimension of 128. The dimension of the GRU output vector

h is also set to be l = 128.

B. Classification

Five thousands of testing streams are generated in to-

tal, with each stream belonging to one of the five classes

with randomly chosen τ according to Table I. Four pulse

missing probabilities of ρm = 0.0, 0.2, 0.5, 0.7 are set for

Fig. 10. Classification performance of streams belonging to the four

classes for different ρm s when ρn varies from 0 to 1. (a) ρm = 0.0.

(b) ρm = 0.2. (c) ρm = 0.5. (d) ρm = 0.7.

the streams, and noise-to-pulse ratio ρn varies from 0.0 to

1.0. The classification performance is evaluated in terms of

detection probabilities, i.e., the ratio of correct classifica-

tion number to total stream number for each class. Fig. 10

1634 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 55, NO. 4 AUGUST 2019



shows detection probabilities of all the five classes under

different settings.

It can be concluded from Fig. 10 that streams belonging

to the third class are classified with probability 1 in all en-

vironments. That is because their pw are totally 2 µs, while

the pws of the other classes are totally or partially 3 µs. The

pw feature distinguishes streams belonging to the third class

well from these belonging to the other classes. Such a re-

sult indicates that different features provide complementary

information in solving steam processing tasks. The classi-

fication performance of the fifth class deteriorates slightly

from that of the third class, that is mainly because the pw

feature now partially overlaps with that of the other three

classes, and the difference will be more difficult to track in

cases of large missing probabilities and noise ratios. De-

tection probabilities of streams in classes 2 and 4 decrease

with ρn in a similar manner for different ρm s. When ρn is

as large as 1.0, the classification probabilities is still higher

than 50%. The reason for the performance deteriorations is

that observation noises emerge between pulses randomly,

causing great damages to originally regularized pri pat-

terns, and making them undistinguishable from streams in

the other classes. The classification probabilities of streams

in class 1 are very high when ρm is small, and only de-

crease slightly with increasing ρn. However, for larger ρm

s, the probabilities decrease more quickly with ρn. That is

because only large pris exist in streams with high missing

probabilities, and the smaller pris, which distinguish class 1

from classes 2, 4, and 5, disappear partially in the streams.

C. Denoising

A sketch of training and testing the forward and back-

ward denoising RNNs for each class is shown in Fig. 5.

A slight modification is made in the simulations to take

measurement inaccuracies of pri and pw into considera-

tion, i.e., a small neighborhood of 5 units are included to

calculate the confidence degree of each sample for pre-

diction, and p̂
(pri)

i and p̂
(pw)

j are replaced by �2

=−2p̂

(pri)

i+


and �2

=−2p̂

(pw)

j+
, respectively, in (14) and (15). Three hun-

dreds of noise-contaminated streams are generated for each

class to evaluate the performance of the method in each

environment.

As the aim of denoising is to distinguish observation

noises from pulses, we count the numbers of three different

kinds of pulses for the performance evaluation:

1) true positive (TP): noises being detected as noises;

2) false positive (FP): pulses being detected as noises;

3) false negative (FN): noises being detected as pulses.

And two criteria of precision and recall are calculated

to evaluate denoising performances [47]

precision =
TP

TP + FP
(16)

recall =
TP

TP + FN
. (17)

Fig. 11. Denoising performance of streams belonging to the four

classes for different ρm s and ρn s. (a) and (b) Show precision and recall

with fixed ρm = 0.5 and varying ρn from 0.1 to 1. (c) and (d) Show

precision and recall with fixed ρn = 0.2 and varying ρm from 0 to 0.7.

(e) and (f) Show precision and recall with fixed ρn = 0.5 and varying ρm

from 0 to 0.7.

The criterion of precision indicates the ratio of actual noises

in the collection of samples being detected as noises, and

recall indicates how many of the observation noises are

correctly detected as noises.

In the simulations, we fix one of ρm and ρn and vary the

other one within a certain scope. The obtained statistical

precision and recall are shown in Fig. 11. In Fig. 11(a) and

(b), ρm is fixed at 0.5 and ρn varies from 0.1 to 1, and

precision increases with ρn while recall decreases. That

is because the number of FP does not change largely for

different ρn s, and precision increases with the number of

TP when ρn increases and more noises are contained. But

for larger ρn s, noises have more chances to emerge at

neighborhoods of missed pulses and will be misdetected as

pulses, so recall decreases slightly with ρn. However, recall

is still larger than 90% when ρn is as larger as 1, which

indicates that the prediction RNNs have satisfying abilities

in distinguishing pulses from noises even in highly noisy

environments.

We then fix ρn at 0.2 and 0.5 and vary ρm to obtain

precision and recall in Fig. 11(c) and (d) and Fig. 11(e)

and (f), respectively. The recalls are close to 1 when the

streams are complete, i.e., ρm = 0, and are still larger than

0.96 and 0.93 for ρn = 0.2 and ρn = 0.5 when ρm is as

large as 0.7. The results again demonstrate the ability of

LIU AND YU: CLASSIFICATION, DENOISING, AND DEINTERLEAVING OF PULSE STREAMS 1635



TABLE II

Probabilities of Correct Deinterleaving

the prediction RNNs in distinguishing pulses from noises.

However, precision decreases faster with respect to ρm than

recall, that is mainly because more pulses are not detected

during prediction due to heavier interferences in RNN states

caused by noises. Moreover, we obtained larger precisions

for ρn = 0.5 than ρn = 0.2, just because TP is larger in the

former case.

D. Deinterleaving

Interleaved streams are deinterleaved with the trained

denoising RNNs following the sketch shown in Fig. 8.

Pulses in aliasing streams may be deinterleaved correctly or

incorrectly, or left behind when the deinterleaving process

is terminated. The performance of deinterleaving is evalu-

ated according to the ratio of correctly deinterleaved pulses

to the length of the original stream.

The missing probabilities of the substreams are set to be

ρm = 0.3, 0.5, and 0.7. For each ρm and each combination of

two streams generated from the class set {c1, c2, c3, c4, c5},

300 streams are generated for deinterleaving, and the ob-

tained statistical probabilities of correct deinterleaving are

shown in Table II.

Most of the deinterleaving probabilities are larger than

92% when ρm = 0.3, and do not decrease significantly when

ρm increases from 0.3 to 0.7, which indicates that the predic-

tion RNNs perform satisfyingly even when the streams are

highly incomplete and interfered heavily by other emitter

streams. Aliasing streams can be deinterleaved more easily

when one of the substream belongs to class 3, as pulses of

streams belonging to this class have a more distinguishable

pw feature, and its pri feature is simple. Interleaved streams

corresponding to the class combination of {c1, c2} also have

very large deinterleaving probabilities for different ρm s,

that is because streams belonging to the two classes both

have easily recognizable constant pri patterns. However, as

substreams of class 4 have more complicated stagger pris,

and the pri values overlap with that of the other classes, the

interleaved streams with a substream generated from class

4 have slightly smaller deinterleaving probabilities than

streams generated from class combinations of {c1, c2, c3}.

Substreams generated from class 5 have coupled pw and

pri patterns, both of which are stagger and change syn-

chronously, the complex patterns make their pulses very

difficult to track. As a result, when a substream of the in-

terleaved streams is generated from class 5 and the other

substream from one of the other classes, the deinterleaving

probabilities further lowers but is still higher than 90% in

most of the cases considered.

A more demanding task is deinterleaving streams con-

sisting of substreams with similar or the same patterns,

such as combinations of two substreams generated from

the same class in Table I. The deinterleaving probabilities

in such environments decrease by about 5% to 10% due to

the hardly undistinguishable patterns of the two interleaved

substreams. The deinterleaving performance becomes the

worst when both substreams are generated from class 5,

that is because the pw pattern is stagger and the pris are

determined (instead of chosen randomly from a scope and,

thus, can be diverse in the two substreams), making it more

difficult to track along a certain substream and distinguish

between the two substreams with the same patterns. In de-

spite of the performance deteriorations, we can still ob-

tain deinterleaving probabilities higher than 80% in all the

simulations. As traditional deinterleaving methods, such as

CDIF [6] and SDIF [13], are unable to deinterleave such

substreams having the same statistical features, the pro-

posed method has gained great performance margins over

its existing counterparts.

VII. FURTHER DISCUSSIONS

This paper introduces RNNs to solve the problems

of classification, denoising, and deinterleaving of pulse

streams. The networks have been demonstrated to be able

to “remember” statistical and local patterns of streams, and

can also embody the originally abstract patterns in a stream

after processing a few pulses. Actually, the proposed ideas

can be extended in various aspects to gain performance

enhancements, or solve new problems that have not been

addressed in previous literatures. Due to space limitations,

we only provide brief discussions on some of them in this

section, and leave in-depth research for future work.

1) Prediction for classification: A major reason for the de-

terioration of the classification performances in Fig. 10

is that noises and missing pulses damage temporal pat-

terns of streams. But the results in Fig. 11 and Table II

demonstrate that the prediction RNNs are robust to these

imperfections in streams. Moreover, the step-wise pre-

diction results in Fig. 7 show that the difference in pre-

1636 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 55, NO. 4 AUGUST 2019



dicted patterns of streams corresponding to different

classes are obvious. Performance improvements are ex-

pected to be obtained by using the prediction RNNs to

solve the classification problem.

2) Adaptation to streams with more complicated patterns:

Only streams with constant or stagger pws and pris are

considered in the simulations in this paper mainly for

reasons of enhancing readability of the text and visual-

ization of the results. The results in Fig. 7 have partially

shown that the trained prediction RNNs are able to store

temporal patterns and predict multiple features of up-

coming pulses. For some advanced emitters with more

complicated patterns, the RNNs can also be trained to

extract and store the manner of the joint variations of

multiple features, and predict the features of upcom-

ing pulses when the preceding ones are given. The pre-

dicted features can be exploited to realize denoising

and deinterleaving of streams with more complicated

patterns.

3) Application in online processing: In this paper, the prob-

lems of classification, denoising, and deinterleaving are

solved in an offline manner, just for convenience of the

performance evaluation. But actually, both the classifi-

cation RNN and the forward prediction RNN process

the streams sequentially. This processing manner adapts

to online processing requirements very well (the back-

ward prediction procedure can be abandoned here). In

online processing tasks, pulses and noises are received

one-by-one, the RNNs can be used to reveal stream at-

tributes and identify local patterns in current contexts,

and then classify the stream or predict features of up-

coming pulses to realize classification, denoising, and

deinterleaving on line.

VIII. CONCLUSION

In this paper, several RNN frameworks are established

based on the GRU, so as to address problems of classifi-

cation, denoising, and deinterleaving of pulse streams. The

RNNs are trained via supervised learning and tested in var-

ious environments. Typical simulation results show that the

RNNs are able to mine and abstract statistical and local pat-

terns of streams with different feature types, and the mined

patterns can be used easily to refine classification and pre-

diction results when only a few pulses are available. Statisti-

cal performances show that the proposed methods solve the

classification, denoising, and deinterleaving problems well

in despite of demanding simulation settings, such as short

stream lengths, large pulse missing probabilities, and noise

ratios. Classification and denoising performances generally

deteriorate with increasing pulse missing probabilities and

noise ratios. But in most of the environments considered,

the performances deteriorate not very significantly, which

demonstrates the robustness of the proposed methods to

different environments. Some possible extensions of the

presented work have also been discussed briefly as clues of

future research.

REFERENCES

[1] R. G. Wiley

ELINT: The Interception and Analysis of Radar Signals. Nor-

wood, MA, USA: Artech House, 2006.

[2] J. Liu, J. P. Lee, L. Li, Z.-Q. Luo, and K. M. Wong

Online clustering algorithms for radar emitter classification

IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8,

pp. 1185–1196, Aug. 2005.

[3] F. Digne, A. Baussard, A. Khenchaf, C. Cornu, and D. Jahan

Classification of radar pulses in a naval warfare context using

bezier curve modeling of the instantaneous frequency law

IEEE Trans. Aerosp. Electron. Syst., vol. 53, no. 3, pp. 1469–

1480, Jun. 2017.

[4] T. R. Kishore and K. D. Rao

Automatic intrapulse modulation classification of advanced

LPI radar waveforms

IEEE Trans. Aerosp. Electron. Syst., vol. 53, no. 2, pp. 901–

914, Apr. 2017.

[5] S. Sirianunpiboon, G. Noone, and S. D. Howard

Robust and recursive radar pulse train parameter estimators

In Proc. 4th Int. Symp. Signal Process. Appl., Gold Coast, Qld,

Australia, 1996, pp. 475–478.

[6] H. Mardia

New techniques for the deinterleaving of repetitive sequences

Proc. Inst. Electr. Eng. Radar, Sonar Navigat., vol. 136, no. 4,

pp. 149–154, 1989.

[7] H. Arslan

Cognitive Radio, Software Defined Radio, and Adaptive Wire-

less Systems. Berlin, Germany: Springer, 2007.

[8] D. C. Robbins, R. K. Sarin, E. J. Horvitz, and E. B. Cutrell

Advanced navigation techniques for portable devices

U.S. Patent 7 327 349, Feb. 5, 2008.

[9] M. A. Richards, J. Scheer, W. A. Holm, and W. L. Melvin

Principles of Modern Radar. Stevenage, U.K.: Scitech Pub-

lishing, 2010.

[10] P. S. Ray

A novel pulse TOA analysis technique for radar identification

IEEE Trans. Aerosp. Electron. Syst., vol. 34, no. 3, pp. 716–

721, Jul. 1998.

[11] R. J. Orsi, J. B. Moore, and R. E. Mahony

Spectrum estimation of interleaved pulse trains

IEEE Trans. Signal Process., vol. 47, no. 6, pp. 1646–1653,

Jun. 1999.

[12] K. Nishiguchi and M. Kobayashi

Improved algorithm for estimating pulse repetition intervals

IEEE Trans. Aerosp. Electron. Syst., vol. 36, no. 2, pp. 407–

421, Apr. 2000.

[13] D. Milojević and B. Popović

Improved algorithm for the deinterleaving of radar pulses

Proc. Inst. Electr. Eng. Radar, Sonar Navigat., vol. 139, no. 1,

pp. 98–104, 1992.

[14] R. Sullivan

Radar Foundations for Imaging and Advanced Concepts.

Herts., U.K.: IET, 2004.

[15] J. B. Moore and V. Krishnamurthy

Deinterleaving pulse trains using discrete-time stochastic

dynamic-linear models

IEEE Trans. Signal Process., vol. 42, no. 11, pp. 3092–3103,

Nov. 1994.

[16] T. Conroy and J. B. Moore

The limits of extended kalman filtering for pulse train deinter-

leaving

IEEE Trans. Signal Process., vol. 46, no. 12, pp. 3326–3332,

Dec. 1998.

[17] A. Logothetis and V. Krishnamurthy

An interval-amplitude algorithm for deinterleaving stochastic

pulse train sources

IEEE Trans. Signal Process., vol. 46, no. 5, pp. 1344–1350,

May 1998.

LIU AND YU: CLASSIFICATION, DENOISING, AND DEINTERLEAVING OF PULSE STREAMS 1637



[18] N. Visnevski, S. Haykin, V. Krishnamurthy, F. A. Dilkes, and P.

Lavoie

Hidden Markov models for radar pulse train analysis in elec-

tronic warfare

In Proc. IEEE Int. Conf. Acoust., Speech, Signal Process..,

vol. 5, 2005, pp. 597–600.

[19] J. Liu, H. Meng, Y. Liu, and X. Wang

Deinterleaving pulse trains in unconventional circumstances

using multiple hypothesis tracking algorithm

Signal Process., vol. 90, no. 8, pp. 2581–2593, 2010.

[20] J. B. Pollack

On connectionist models of natural language processing

Ph.D. dissertation, Dept. Comput. Sci., Univ. Illinois, Peoria,

IL, USA, 1987.

[21] J. A. Anderson, M. T. Gately, P. A. Penz, and D. R. Collins

Radar signal categorization using a neural network

Proc. IEEE, vol. 78, no. 10, pp. 1646–1657, Oct. 1990.

[22] E. Granger, Y. Savaria, P. Lavoie, and M.-A. Cantin

A comparison of self-organizing neural networks for fast clus-

tering of radar pulses

Signal Process., vol. 64, no. 3, pp. 249–269, 1998.

[23] A. Ata’a and S. Abdullah

Deinterleaving of radar signals and PRF identification algo-

rithms

IET Radar, Sonar Navigat., vol. 1, no. 5, pp. 340–347, 2007.

[24] N. Petrov, I. Jordanov, and J. Roe

Radar emitter signals recognition and classification with feed-

forward networks

Procedia Comput. Sci., vol. 22, pp. 1192–1200, 2013.

[25] Y. LeCun, Y. Bengio, and G. Hinton

Deep learning

Nature, vol. 521, no. 7553, pp. 436–444, 2015.

[26] T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. Khudanpur

Recurrent neural network based language model

In Proc. Interspeech, 2010, vol. 2, p. 3.

[27] D. Bahdanau, K. Cho, and Y. Bengio

Neural machine translation by jointly learning to align and

translate

in Proc. Int. Conf. Learn. Represent., San Diego, CA, May

7–9, 2015.

[28] T.-J. Hsieh, H.-F. Hsiao, and W.-C. Yeh

Forecasting stock markets using wavelet transforms and recur-

rent neural networks: An integrated system based on artificial

bee colony algorithm

Appl. Soft Comput., vol. 11, no. 2, pp. 2510–2525, 2011.

[29] T. Mikolov, K. Chen, G. Corrado, and J. Dean

Efficient estimation of word representations in vector space

in Proc. Int. Conf. Learn. Represent., Scottsdale, Arizona, May

2–4, 2013.

[30] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor

Recommender Systems Handbook. Berlin, Germany: Springer,

2015.

[31] D. Silver et al.

Mastering the game of go with deep neural networks and tree

search

Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[32] D. Silver et al.

Mastering the game of go without human knowledge

Nature, vol. 550, no. 7676, pp. 354–359, 2017.

[33] J. Schmidhuber

Deep learning in neural networks: An overview

Neural Netw., vol. 61, pp. 85–117, 2015.

[34] D. Tang, B. Qin, and T. Liu

Document modeling with gated recurrent neural network for

sentiment classification

In Proc. Conf. Empirical Methods Natural Lang. Process.,

2015, pp. 1422–1432.

[35] G. Pollastri, D. Przybylski, B. Rost, and P. Baldi

Improving the prediction of protein secondary structure in three

and eight classes using recurrent neural networks and profiles

Proteins: Structure, Function Bioinformatics, vol. 47, no. 2,

pp. 228–235, 2002.

[36] I. Goodfellow, Y. Bengio, and A. Courville

Deep Learning. Cambridge, MA, USA: MIT Press, 2016.

[37] S. Hochreiter and J. Schmidhuber

Long short-term memory

Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[38] F. A. Gers, J. Schmidhuber, and F. Cummins

Learning to forget: Continual prediction with LSTM

Neural Comput., vol. 12, no. 10, pp. 2451–2471, 2000.

[39] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio

On the properties of neural machine translation: Encoder-

decoder approaches

In Proc. 8th Workshop Syntax, Semantics Structure Statist.

Translation, 2014, pp. 103–111.

[40] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio

Empirical evaluation of gated recurrent neural networks on

sequence modeling

in Proc. NIPS 2014 Workshop Deep Learn., Dec. 2014.

[41] D. Williams and G. Hinton

Learning representations by back-propagating errors

Nature, vol. 323, no. 6088, pp. 533–538, 1986.

[42] D. E. Rumelhart, G. E. Hinton, and R. J. Williams

Learning representations by back-propagating errors

in Neurocomputing: Foundations of Research, J. A. Anderson

and E. Rosenfeld, Eds., Cambridge, MA, USA: MIT Press,

pp. 696–699, 1988.

[43] B. A. Pearlmutter

Gradient calculations for dynamic recurrent neural networks:

A survey

IEEE Trans. Neural Netw., vol. 6, no. 5, pp. 1212–1228, Sep.

1995.

[44] J. Martens and I. Sutskever

Learning recurrent neural networks with hessian-free optimiza-

tion

In Proc. 28th Int. Conf. Mach. Learn., 2011, pp. 1033–1040.

[45] N. Ketkar

Introduction to Pytorch

in Deep Learning with Python. Berkeley, CA, USA: Apress,

2017, pp. 195–208.

[46] M. Abadi et al.

Tensorflow: Large-scale machine learning on heterogeneous

distributed systems

in Proc. 12th USENIX Symp. Operat. Syst. Design Implement.

Savannah, GA, Georgia, Nov. 2–4, 2016.

[47] D. M. Powers

Evaluation: From precision, recall and f-measure to ROC, in-

formedness, markedness and correlation

J. Mach. Learn. Technol., vol. 2, no. 1, pp. 37–63, 2011.

1638 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 55, NO. 4 AUGUST 2019



Zhang-Meng Liu received the Ph.D. degree in statistical signal processing from National

University of Defense Technology (NUDT) of China, Changsha, China, in 2012.

He is currently an Associate Professor with NUDT, working in the interdiscipline

of electronics engineering and computer science, especially electronic data mining and

machine learning for information processing. He was a visiting scholar with the Computer

Science Department, University of Illinois at Chicago, from April 2017 to March 2018,

researching on data mining and deep learning in the group led by Philip S. Yu. He has

authored or coauthored more than 30 journal papers in various areas of array signal

processing, passive localization, and pulse data processing.

Philip S. Yu (F’93) received the B.S. degree in electrical engineering from National Taiwan

University, Taipei, Taiwan, in 1972, the M.S. and Ph.D. degrees in electrical engineering

from Stanford University, Stanford, CA, USA, in 1976 and 1978, respectively, and the

M.B.A. degree from New York University, New York, NY, USA, in 1982.

He is currently a Disthinguished Professor with the Department of Computer Science,

University of Illinois at Chicago (UIC), Chicago, IL, USA, and also holds the Wexler

Chair in Information and Technology. Before joining UIC, he was with the Software Tools

and Techniques Department, IBM Thomas J. Watson Research Center, where he was a

Manager. He has authored or coauthored more than 970 papers in refereed journals and

conferences with more than 74 500 citations and an H-index of 127. He holds or has applied

for more than 300 U.S. patents. His main research interests include big data, data mining

(especially on graph/network mining), social network, privacy preserving data publishing,

data stream, database systems, and Internet applications and technologies.

Dr. Yu is currently a Fellow of the ACM. He is the recipient of ACM SIGKDD 2016

Innovation Award for his influential research and scientific contributions on mining, fusion,

and anonymization of big data, the IEEE Computer Society’s 2013 Technical Achievement

Award for “pioneering and fundamentally innovative contributions to scalable indexing,

querying, searching, mining, and anonymization of big data,” and the Research Contri-

butions Award from the IEEE International Conference on Data Mining in 2003 for his

pioneering contributions to the field of data mining. He was also the recipient of the IEEE

Region 1 Award for “promoting and perpetuating numerous new electrical engineering

concepts” in 1999. He is the Editor-in-Chief for the ACM Transactions on Knowledge Dis-

covery from Data. He is on the steering committee of ACM Conference on Information and

Knowledge Management and was a steering committee member of the IEEE Conference

on Data Mining and the IEEE Conference on Data Engineering.

LIU AND YU: CLASSIFICATION, DENOISING, AND DEINTERLEAVING OF PULSE STREAMS 1639


