
Classification-Enhanced Ranking

Paul N. Bennett
Microsoft Research

One Microsoft Way, Redmond
WA USA

paul.n.bennett@microsoft.com

Krysta Svore
Microsoft Research

One Microsoft Way, Redmond
WA USA

ksvore@microsoft.com

Susan T. Dumais
Microsoft Research

One Microsoft Way, Redmond
WA USA

sdumais@microsoft.com

ABSTRACT

Many have speculated that classifying web pages can im-
prove a search engine’s ranking of results. Intuitively re-
sults should be more relevant when they match the class of
a query. We present a simple framework for classification-
enhanced ranking that uses clicks in combination with the
classification of web pages to derive a class distribution for
the query. We then go on to define a variety of features that
capture the match between the class distributions of a web
page and a query, the ambiguity of a query, and the coverage
of a retrieved result relative to a query’s set of classes. Ex-
perimental results demonstrate that a ranker learned with
these features significantly improves ranking over a compet-
itive baseline. Furthermore, our methodology is agnostic
with respect to the classification space and can be used to
derive query classes for a variety of different taxonomies.

Categories and Subject Descriptors

H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; H.3.3 [Information Storage and
Retrieval]: Information Search and Retrieval; I.5.4 [Pattern
Recognition]: Applications—Text processing

General Terms

Algorithms, Experimentation

Keywords

query classification, learning to rank

1. INTRODUCTION
Many have speculated that classifying web pages can im-

prove a search engine’s ranking of results relevant to a query
[12, 23, 26, 13]. Intuitively results should be more relevant
when they match the class of a query as well as less rele-
vant when they do not. While much research has focused
on attempting to improve query and document classification
under the assumption that relevance gains would follow, we
focus on why and how classification can directly improve
relevance. In particular, we present a simple framework for
classification-enhanced ranking that uses clicks in combina-
tion with the classification of web pages to derive a class
distribution for the query. At the heart of our approach is

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

the assumption that clicks on a specific URL should not only
serve as a relevance signal for that URL but can also be used
as a relevance signal for other URLs that are related to the
same class.

This situation is depicted in Figure 1a, where we observe
a user issuing the query “historical deaths” and clicking on
the second result. The gray boxes depict the automatically
predicted classes for each result. Note these classes are not
actually displayed to the user. We interpret a click on the
second result to provide evidence that the user desires results
from the “Society/History” class in general - including both
the clicked URL as well as other URLs belonging to the
same class. That is to say, using the query logs we implicitly
derive the class of this query is “Society/History”. Rather
than create a heuristic to balance evidence for the class of
the URL versus other features, we introduce this evidence
within a machine learning framework and let the model learn
the weight to balance these competing features. Using click
information solely on a per URL basis would only improve
the ranking by moving the clicked result higher. However, in
Figure 1b, we see that by using class information to boost
results that share the same class as the clicked result, we
see improved relevance of results in positions 1-3 (with the
clicked result in position 1).

Although previous research [12] has demonstrated cate-
gorical interfaces can significantly decrease the time a user
spends finding a search result, these interfaces are fraught
with their own challenges that has prevented widespread
adoption (e.g. precision of the classifiers, labels of the classes,
ordering of the classes). As a consequence research in this
area has often focused on improving these components or
the underlying precision of the prediction mechanisms, as-
suming categories will be directly displayed to the user. In
this paper, we do not propose to show the categories to users
but rather to use them to improve ranking. By using the
classes of clicked results we can boost those results as well
as other results that share the same classes.

To achieve this, we define a variety of features that cap-
ture the match between the class distributions of a web page
and a query, the ambiguity of a query, and the coverage of a
retrieved result relative to a query’s set of classes. Experi-
mental results demonstrate that a ranker learned with these
features significantly improves ranking over a competitive
baseline. In an empirical study, we demonstrate significant
improvements over a large set of web queries. In a further
breakdown of those web queries, the statistical gains con-
tinue to hold even on tail and long queries where click data
is sparse. Furthermore, our methodology is agnostic with

(a)

(b)

Figure 1: (a) In the query logs, a user issues the query “historical deaths” and clicks on the second result.
Using automatically predicted classes for the documents (gray boxes which are not actually displayed to
the user) and the click information we automatically derive the query class as “Society/History”. (b) This
provides evidence to a learned ranking function that can boost results related to ”Society/History” to provide
improved results in the future.

respect to the classification space, and therefore is general
enough to be used as a mechanism to derive query classes
for a variety of alternative taxonomies.

In the remainder of the paper, we first give a brief overview
of related work, placing this work in the broader context
of query classification research. Then, we describe our ap-
proach in detail. After which, we present the results of an
empirical study which highlight the improvements achiev-
able via this method and conduct a small study of feature
importance to indicate promising avenues of further study.
Finally, we discuss future work and conclude.

2. RELATED WORK
While an exhaustive survey of query classification is not

possible, we highlight some of the key related studies. Our
study is most similar to work by Broder et al. and Gabrilovich
et al.[4, 13] In their work, they targeted improving the rele-
vance of advertising by improving the match between adver-
tisement classes and query classes. In order to classify the
queries, they perform a weighted aggregation of the classes
of URLs returned by a search engine. They focus on classify-
ing ads, but we address the end-to-end process of improving
web relevance and not just query classification accuracy. In
addition, they study only a narrow segment of queries, while
we examine a broad range of queries. To be used to improve
relevance ranking a method must be able to handle all types
of queries or at least detect when it should be applied. Fur-
thermore, while they argue it is possible to perform offline
classification and state, “we are currently working on incor-
porating classification of all indexed pages into the search
engine infrastructure”, we actually present experiments run
using classifications obtained from a classifier run during in-
dexing – using a compact representation that can be used at
scale. Finally, their approach assumes the initial output of
a ranker or search engine, which introduces a multiple rank-
ing architecture assumption that typically increases compu-
tational and communication load requirements at scale. In
contrast, we use a smoother weighting function directly de-
rived from the motivation above that enables more efficient
computation of the query class distribution without the ini-
tial output of a ranker.

Relatedly, Sahami and Heilman [24] also study aggregat-
ing the results returned in response to a query. However, in
their case, they aggregate the words of the returned URLs or
their snippets in order to construct an expanded “context”
representation of the query to be used in a kernel function
that produces query-query similarity estimates. This is then
used as the basis for related query suggestions – although
it could be used in any kernel-based machine learning al-
gorithm. Our approach differs from theirs both in that we
aggregate in the output space instead of the input space
(i.e. over classes of URLs and not their words) and in that
we target search relevance rather than related query sug-
gestion. Additionally, our aggregation is driven by weights
derived from user clicks.

Beeferman and Berger [2] present a clustering of queries
that are derived from a query log by viewing queries and
clicked upon URLs as a bipartite graph. While they claim
the content-independent nature of their algorithm is a strength,
we point out it can also be a weakness. In particular, it re-
quires click information on related URLs, for at least some
queries, to know when related URLs should be displayed.
The method we present here instead provides an avenue

for independent generalization based on the content alone.
We are able to demonstrate our approach works well on all
queries, even when click information for any URL is rela-
tively sparse.

Beitzel et al. [3] investigate using query logs to classify
queries. However, their classification target is more akin to
vertical selection where URLs have already been partitioned
into backend databases and the goal is to route the query to
the correct target (perhaps with target-specific query rewrit-
ing). In contrast, our approach is applicable even when
URLs have no such structure and instead provides a way
to leverage the URL relevance signal from one likely rele-
vant URL to others via the class information.

A variety of other work grew from the KDD Cup-2005
challenge [18] which presented participants with the chal-
lenge of classifying 800K queries into one of 67 categories
given only 111 queries as “training data”. The most success-
ful approaches [25, 17, 27, 26] developed during this chal-
lenge make use of external resources such as WordNet and
ODP or intermediate taxonomy mappings to improve query
classification performance however they typically do so in a
manner that does not scale. We not only adopt methods
that scale – in particular by augmenting a search index with
a small amount of automatically generated class metadata –
but we also use methods that work directly with the taxon-
omy of interest. In addition, they focus on improving query
classification over labels that were collected directly on ap-
proximately 800 queries (only 800 of the 800K queries were
evaluated). Thus, a relationship between improved query
classification and performance is only implicit. In contrast,
we focus directly on improving relevance and are able to ef-
fectively demonstrate our methods over a test set of 12K
queries that represents a broad spectrum of web queries.
Additionally, we demonstrate gains even over hard queries
where click data is sparse.

3. PROBLEM APPROACH
In contrast to other work, we focus on using class infor-

mation to improve relevance ranking directly, rather than
intermediate measures like query classification performance.
Our approach consists of two primary components. The first
is a method of using click-data to derive query class distri-
butions from class distributions over each result document.
Second, rather than try to handcraft the weight given to the
match between query and document class distributions, we
introduce a set of features that capture important proper-
ties of these two distributions. These features can then serve
as input to a ranking algorithm that can learn appropriate
weights during training and use them for prediction during
retrieval.

Furthermore, we demonstrate how to make direct use of
click-information to derive the weighting function used to
aggregate result classes into a query class distribution. This
generalizes the approach to situations where a multistage
architecture can be a computational burden. Additionally,
because our method can be applied to a large set of URLs
(no assumption of top k cutoff), it also can be applied to dis-
tributed retrieval where the weighting functions become an
approximation of the function that would be used if all click-
information were aggregated. By using click-information
within a session for a query, we are also implicitly lever-
aging the user’s context [7]. We achieve these gains not
only through query and URL classification but by introduc-

ing a novel set of information-theory inspired features which
capture the ambiguity of a query, the specificity of a URL,
and how well a URL covers a query’s set of topics. Fur-
thermore, to our knowledge we conduct the first large scale
study that uses classification performed offline during in-
dexing and compressed to a compact enough representation
to be used in a large-scale search engine. Finally, to our
knowledge this is the first work to demonstrate a fully scal-
able system where clicks on one URL can improve relevance
by boosting topically related URLs.

3.1 Query Classification
We start from a simple assumption. When only one URL

is relevant, we define the class of a query to be the class of
that URL. When multiple URLs are relevant to the user’s
information need, then it is natural to broaden this to say
the query class distribution is an aggregation over all relevant
URLs. Using a distribution rather than a single class can
be useful when result documents can have multiple aspects.
Similarly, when optimizing for a query over a set of users,
the distribution can be used to reflect the weighted average
of each user’s intent.

This definition is both natural and avoids several potential
pitfalls of query classification. In particular, model capac-
ity is not wasted on potentially esoteric intents of a query
never employed by system users. That is, from the sys-
tem’s point of view, the ranking is optimized for what users
actually mean when they type a query rather than what
they could mean. Also, while not addressed here, provid-
ing “gold-standard” query classification labels for queries for
some tasks can be problematic even for human judges pri-
marily because short queries are ambiguous. This definition
decomposes the task into two separate problems with better
reliability: (1) providing query-URL relevance judgments;
(2) providing URL class judgments.

3.1.1 Click-Weighted Query Classification

Given the definition above, we need only identify relevant
URL(s) to derive the query class distribution for a query.
Previous work has shown that click information can be lever-
aged to derive a relevance signal [8, 15]. Additionally, the
requirements here are actually weaker than if one tries to
directly assess relevance.

In particular, note that our model can also benefit from
a type of click that could be viewed as erroneous. That is,
suppose a promising-looking result entices a user to click on
it, but they then find the URL is not relevant. Because the
URL is more promising than many other results, the clicked
URL is likely to have a similar class to the desired result.
Thus by propagating the user’s relevance signal along the
class dimension, it is possible to increase the likelihood that
future searches yield more relevant results even though the
click was not on a relevant result.

Likewise, this approach can boost results that have never
been clicked but which match the query’s predicted class
distribution. This flexibility means that it is likely to yield
gains for tail queries, which do not have very much click
data, as well as head queries.

3.1.2 Model Formalities

More formally, P (c | q) is the probability that results from
class c are desired given query q was issued. P (u | q) is
the probability a particular result URL, u, is relevant given

query q was issued. P (c | u) is the probability that c is the
class of a relevant result URL u.1

By marginalizing over all URLs we then have:

P (c | q) =
∑

u

P (c | u, q)P (u | q) (1)

Independent by assumption that

class is determined by class of relevant URL

=
∑

u

P (c | u)P (u | q). (2)

We note that this is the same decomposition as that ar-
rived at by [4, 13], however we use a different weighting
function P (u | q) that is directly derived from click data
based on the above motivation. This enables integrating
the technique directly into the normal ranking procedure.
In contrast, their method requires the output of an original
ranker first before determining the weight. This would add
a layer of computation that is best avoided if possible.

We can estimate P (c | u) given standard classification
models and a set of labeled data where URLs have been as-
signed to classes. The choice of models and features will, of
course, depend on the nature of the classes we are model-
ing. In this work, we examine a set of topical classes and
use a standard text classification model based on content
extracted from the URLs.

This then leaves us with estimating the term P (u | q).
This term is essentially the same as what many approaches
have tried to model under the assumption that a particular
clicked upon URL is relevant. We also incorporate a click-
based feature that takes into account last-click behavior in
a simple way. In particular, given a click-based function,
evid(q, u), that returns the click-based weight for URL u’s
relevance to query q with a relevance prior of p, then we
perform a simple Bayesian m-estimate [19] smoothed com-
putation:

P̂ (u | q) =
evid(q, u) + mp

m +
∑

u
evid(q, u)

. (3)

Here p is set to uniform and the URLs in the summation are
limited to a candidate set returned by a retrieval algorithm
for ranking by the learned model.2 For any URLs not in the
candidate set P̂ (u | q) is defined to be 0. Obviously richer
models that have been developed for estimating P (u | q) can
also be applied here and should only increase performance
with improved predictive accuracy.

Note this model can be used in two cases. In the first
case, the classes are mutually exclusive and P (c | u) and
P (c | q) are multinomial variables conditional on u and q,
respectively. In the second case, the classes are not mutu-
ally exclusive and there is a multivariate Bernoulli vector of
variables, P (c | u) and P (c | q) each representing a binary
class property c. In either case, we can imagine a generative

1Semantically, one could also interpret this as the proportion
of the result covering or discussing class c. In this case, the
query classification semantics become the desired percentage
of results to cover a class. In either case, the application is
the same.
2As is common in the learning to rank literature (e.g. the
well-studied LETOR collection [21] implicitly assumes this),
we assume that a basic retrieval function has already reduced
the billions of possible URLs that could be retrieved down
to a relatively small candidate set – which could still be on
the order of thousands – for ranking.

(msn web, 0.668)
(webmessenger, 0.662)
(msn online, 0.640)
(windows web messenger, 0.632)
(talking to friends on msn, 0.613)
(school msn, 0.599)
(msn anywhere, 0.567)
(web message msn com, 0.548)
(msn messager, 0.531)
(hotmail web chat, 0.523)
(messenger web version, 0.501)
(browser based messenger, 0.381)
(im messenger sign in, 0.300)
(msn web browser download, 0.093)
(install msn toolbar, 0.003)
...

Figure 2: Extract of the query click field [14] for
the site http://webmessenger.msn.com. The first el-
ement of each tuple is the query that led to a click
on the URL http://webmessenger.msn.com, and the
second element is the query score for this query as
in Equation 4.

model where a user generates a query, q, and conditional on
the query, desired URLs are drawn from all possible URLs.

3.1.3 Click-Based Feature

We follow [1, 14] and derive the click-based feature, evid(q, u)
in Equation 3, from user session data. A session is defined to
be a sequence of interactions with results for the same query
within a window of time (here 30 minutes). Thus, clicking
on a result and going back to the results page to click on a
different result can be taken into account. First a click field
for each URL u is constructed. A click field contains queries
qs that resulted in u being shown in the top 10 results along
with session-click information. To obtain a query score for
query qs we use the heuristic function introduced in [14]

Score(u, qs) =
C(u, qs) + β ∗ LastC(u, qs)

Imp(u, qs)
, (4)

where Imp(u, qs) is the number of impressions where u is
shown in the top 10 results for qs, C(u, qs) is the number of
times u is clicked for qs, LastC(u, qs) is the number of times u

is the temporally last click for qs, and β is a tuned parameter
we set to 0.2 in our experiments. Since the last clicked URL
for a query is a good indicator of user satisfaction, the score
is increased in proportion to β by the last click count. Other
heuristic functions [1] also take into account the dwell time
of the click, assuming that reasonably long dwell time (e.g.,
10 - 60 sec) is a good indicator of user satisfaction. For
clarity, Figure 2 shows an example of the query click field
for the site http://webmessenger.msn.com, extracted from
[14].

Finally, to derive the evidence score for a query q and
URL u, we follow one of the formulations given in [14] and
consider all queries, qs in the click-field for a URL, u, which
contain all terms in q. That is q ⊆ qs. So we have:

evid(q, u) =
∑

qs∈ClickField(u)|q⊆qs

Score(u, qs). (5)

In Figure 2, if the figure contained all queries observed for
this URL, then evid(web messenger,webmessenger.msn.com)
= 1.134 from the sum of the “windows web messenger” and
“messenger web version” lines.3

3.1.4 Classification Space

While the approach presented here can be used with any
classification space that can be sensibly applied to docu-
ments (e.g. locality, topic, reading-level), we restrict our
current study to topical classes. We chose to use the ODP
[20] for classification because of its broad, general purpose
topic coverage and availability of reasonably high-quality
training data. For the experiments reported in this study
we used 219 topical categories from the top two levels of the
ODP. Additional details of category selection are presented
in Section 4.3.

3.1.5 Efficient Query Classification

Note that if estimates for P (c | u) are readily available,
then the query classification distribution can be computed
quite efficiently. In particular, Equation 3 requires one pass
over the candidate set to compute the normalizing constant,
and on the second pass, estimates for P̂ (u | q) can be pro-
duced at the same time the query class distribution estimate
is updated via Equation 1.

Since classifying the URL, that is estimating P (c | u),
can be a potential bottleneck, other studies have often re-
sorted to snippet classification4 because fetching the content
of a URL is an expensive operation to perform at retrieval
time. However, snippet classification can also be unreli-
able because snippets themselves are short [13]. Instead,
we perform classification on the whole content of the URL.
To ensure that this approach can scale, we store the class
predictions in the search index. With the efficiency of state-
of-the-art linear classifiers, it is possible to perform this type
of classification even at web scale.

Keeping search indices compact is desirable for perfor-
mance reasons. This can be motivated both from the point
of view of tradeoffs between what can be kept in memory
versus disk and in terms of possible metadata bloat. That
is, in the latter case, one can imagine that many types of
metadata (both manually generated and automatically gen-
erated as here) may be of use during retrieval. However, if
this were unchecked, then metadata could quickly outstrip
average document size. Thus space in the index of retrieval
architectures is typically carefully managed. To demonstrate
the suitability of our approach even under tight space con-
straints, we reduce the class prediction information stored.
We store at least one and up to the top three predictions for
each URL when they surpass a minimal threshold. We fur-
ther reduce the confidences to two bits or four levels (low,
low-medium, high-medium, and high confidence). For the
experiments described in this paper we have fewer than 256
categories, so we need only 8 bits to store the class ID and 2
bits for the confidence. Thus the extra storage requirement
for each URL due to class predictions is at most 30 bits and
minimal index bloat is incurred. When using the URL’s class

3Depending on whether the tokenizer chosen tokenizes
“webmessenger” as two terms or one then that line will also
match or not match, respectively.
4Although snippet classification may be an arguable re-
search substitute when forced by necessity by a lack of access
to a web-scale crawl.

distribution in computation, any class not stored in the in-
dex is defined to be zero. Any class stored in the index for
the URL has its confidence category replaced by the thresh-
old value required to fall into that category. Thus this is a
truncated discretized version of the class-prediction vector.

From an applications perspective, this means that this
method can easily scale. From a research perspective, this
reduction in information means results here are likely a pes-
simistic estimate on the amount of performance gains that
can be gained through class information.

3.2 URL and Query Class Distribution-Based
Features

After having computed both the URL class distribution
and query class distribution, we need to know how well they
match. Rather than trying to create ad-hoc rules to be used
in the retrieval engine, we follow a common machine learn-
ing paradigm and define features that capture our intuitions
of what factors might impact ranking and leave it to the
learning algorithm to learn the weights and model the in-
teractions with other features. Features for learning to rank
are usually broken into URL features (a feature whose value
only depends on the URL), Query features (a feature whose
value only depends on the query), and Query-URL features
(a feature whose value depends on both query and URL).
Table 1 summarizes the features used in our experiments.

The only URL feature we introduce based on the class
distribution information is URLClassEntropy. This is the
entropy of the estimated distribution of P (c | u). The intu-
ition is that documents on fewer topics, i.e. those with lower
entropy, may be preferred higher in the ranking because they
are more focused documents.

The only Query feature we introduce is QueryClassEntropy,
which measures the entropy of the class distribution for a
query. As demonstrated in [9], this entropy can capture the
ambiguity of a query with more ambiguous queries having
a higher entropy. As for ranking, the intuition is that the
weight given to Query-URL class matches may need to be
reduced for queries with high entropy since the ambiguity
dilutes the importance of a match.

Next, we introduce a variety of simple Query-URL fea-
tures that encode match quality of the most likely query
class to the most likely document class. QueryClassURL-
Match captures the specificity of the match by giving higher
weight to deeper matches in the hierarchy (outputs level
of most specific match). For example, comparing “Busi-
ness” to “Sports” would yield a value of 0, while “Sports”
to “Sports/Football” would give 1, and “Sports/Football” to
“Sports/Football” would be 2. QUClassNoMatch is a bi-
nary variable that indicates the condition that the classes
do not match exactly. For the three previous examples,
this variable would take the values 1, 1, and 0, respectively.
QUClassMatch is a binary variable indicating a partial or
complete match. Again, for the three previous examples,
this variable would take the values 0, 1, and 1, respectively.

The next two Query-URL features try to model the cases
where a URL captures some classes of the query better than
others. ArgMaxOdds measures how well a URL matches the
most likely class of a query weighted by how likely that class
is for the query. Let c∗q be the most likely class for the query,

Type Name All Lvl 1 Lvl 2

URL URLClassEntropy
√

– –
Query QueryClassEntropy

√

– –
QueryClassURLMatch

√

– –
QUClassNoMatch

√

– –
Query- QUClassMatch

√

– –
URL ArgMaxOdds

√ √ √

MaxOdds
√ √ √

KLDistance
√ √ √

CrossEntropy
√ √ √

Table 1: Class Features

that is c∗q = argmaxc P̂ (c | q). Then, ArgMaxOdds is:

P̂ (c∗q | q) log
P̂ (c∗q | u)

P̂ (c∗q)
, (6)

which is the change over the prior (a measure of odds) caused
by observing the content of this URL for the query’s most
likely class weighted by the probability of observing that
class. Likewise, we can ask how well a URL matches any
aspect of the query. MaxOdds does this by loosening the
definition of ArgMaxOdds to be over all classes and com-
putes:

max
c

P̂ (c | q) log
P̂ (c | u)

P̂ (c)
. (7)

The last two Query-URL features capture the match be-
tween the entire class distribution for both query and URL.
Let cq be the class distribution for a query and cu for a
URL where cu is smoothed with a uniform prior over classes
to handle the truncation for class compression discussed in
Section 3.1.5. KLDistance measures the KL distance in bits
between cq and cu. That is,

DKL(cq||cu) =
∑

i

cq[i] log
cq[i]

cu[i]
, (8)

where 0 log 0
.
= 0. CrossEntropy is related to KL-divergence

and here it is motivated as a measure of how much a topic
present in the query is not covered by the URL. Taking once
again 0 log 0

.
= 0, CrossEntropy is

−
∑

i

cq[i] log cu[i]. (9)

Finally, each of the features described can be defined as
operating over the whole classification space, over just the
top-level (or Level 1) categories in the hierarchy or over just
the Level 2 categories in the hierarchy. Except for the final
four, we compute only the versions over all classes. We de-
note features restricted to only Level 1 or Level 2 classes by
appending a “1” or “2” to them respectively. The breakdown
of which versions are computed are given in Table 1.

4. EXPERIMENT ANALYSIS

4.1 Datasets
We evaluate our method on a real-world Web-scale data

collection. The data consists of a set of input-output pairs
(x, y), where x is a feature vector that represents a query-
URL pair (q, u), and y is a human-judged label indicating
the relevance of u to q on a 5-level relevance scale from 0 to

4, with 4 meaning URL u is the most relevant to query q and
0 meaning u is not relevant to q. The data contains queries
sampled from query log files of a commercial search engine
and corresponding URLs; each query is associated with, on
average, 150-200 URLs. All queries are English queries and
can contain up to 10 query terms. The features consist of
several hundred query-URL match features, such as BM25
[22], query-only features, and URL-only features.

Our train/validation/test data contains 54K/15K/12K que-
ries, respectively. We report overall results over the 12K
queries in the test set. In addition, we examine two splits of
our test set to understand the performance of our methods
on different query types. One split separates short queries
(< 4 terms in query) from long queries (≥ 4 terms in query).
The other split separates head (more popular) queries from
tail (less popular) queries. We use the amount of click
and anchor information as an indicator of query popular-
ity5. The short/long test sets contain 9K/3K queries, re-
spectively. The head/tail test sets contain 6K/6K queries,
respectively. We choose these two breakdowns in particular
because our query classification method is click-based. One
would expect to see much sparser click information in both
tail queries and long queries. Therefore these splits enable
us to examine the robustness of the class-based features for
difficult queries.

4.2 Rankers

4.2.1 LambdaRank

Because of its competitiveness in other published studies
and widespread familiarity within the ranking community,
we choose to focus on a state-of-the-art ranking algorithm
called LambdaRank [6] that optimizes for IR measures. We
review it briefly here and refer the reader to [6] for complete
details. LambdaRank is both a list-based and a pair-based
neural network learning algorithm; it is trained on pairs of
URLs per query, where URLs in a pair have different rel-
evance labels. It is an extension of RankNet [5], another
pair-based ranking algorithm whose cost function is a sig-
moid followed by a pair-based cross-entropy cost.

In most machine learning tasks, a target evaluation mea-
sure is used to evaluate the accuracy of the model at test
time, and an optimization measure, generally a smooth ap-
proximation to the target measure, is used to train the sys-
tem. Typical IR target costs, such as mean NDCG, are ei-
ther flat or non-differentiable everywhere. Hence, direct op-
timization of the target measure is quite challenging. Lamb-
daRank [6] leverages the fact that neural net training only
needs the gradients of the measure with respect to the model
scores, and not the function itself, thus avoiding the prob-
lem of direct optimization. The gradients are defined by
specifying rules about how swapping two URLs, after sort-
ing them by score for a given query, changes the measure.
Recently, it has been shown that LambdaRank [6] has been
shown empirically to find a local optimum [11, 29] for Mean
Average Precision, Mean Reciprocal Rank, and NDCG, and
likely for other IR measures as well.

4.2.2 LambdaMART

To explore the importance of features for future study, we
use the LambdaMART [28] algorithm. While it is a state-of-

5We could also split based on the frequency (number of times
issued by users) of the query.

the-art ranking algorithm in its own right – based on boosted
regression trees and LambdaRank [6] – we choose it for fea-
ture exploration because of its robustness and interpretabil-
ity. In particular, it is more robust to a set of features with
different ranges of values such as categorical features. Addi-
tionally, since LambdaMART produces a tree-based model,
it can be employed as a feature selection algorithm or as
an algorithm for determining a ranked list of important fea-
tures in the model. The feature importance is determined by
adding the contribution of the feature across all splits and all
trees in the model, based on the decrease in mean-squared
error when applying the given feature and split value.

4.3 Classifiers
To train topic classifiers, we used a crawl of ODP from

early 2008. We first split the data into a 70%/30% train/
validation set, then identified the topic categories (some cat-
egories like regional are not topical and were discarded) that
had at least 1K documents as good candidates for models
that could be learned well and would be broadly applicable.
This resulted in 219 categories at the top two levels of the
hierarchy. To simplify the prediction-phase of the classifi-
cation model, we simply flattened the two levels to a m-of-
N (where N = 219) prediction task. A logistic regression
classifier using an L2 regularizer was trained over each of
the ODP topics identified. The resulting models were then
applied at indexing time in the manner described in Section
3.1.5.

4.4 Performance Measures
We evaluate the quality of the ranking produced by the

learned ranker using NDCG, Normalized Discounted Cumu-
lative Gain (NDCG) [16], a widely used measure for search
metrics. NDCG for a given query q is defined as follows:

NDCG@Lq =
100

Z

L∑

r=1

2l(r) − 1

log(1 + r)
(10)

where l(r) ∈ {0, . . . , 4} is the relevance label of the URL
at rank position r and L is the truncation level to which
NDCG is computed. Z is chosen such that the perfect rank-
ing would result in NDCG@Lq = 100. Mean NDCG@L is

the normalized sum over all queries: 1
N

∑N

q=1 NDCG@Lq.
NDCG is particularly well-suited for Web search applica-
tions since it accounts for multilevel relevance labels and the
truncation level can be set to model user behavior. In our
work, relevance is measured on a 5-level scale. We evaluate
our results using mean NDCG@1 to NDCG@5. We focus
on improvements on the very top of the ranking since those
are typically harder to achieve and have a more significant
impact on the user. In particular, we want to be certain that
class information will pull relevant information not simply
into the top 10 but to a level that will be felt by the user.
We also perform significance tests, using a paired t-test with
a significance level of 0.05. A significant difference should
be read as significant at the 95% level.

4.5 Experimental Methodology
For each experiment, we train 2-layer LambdaRank mod-

els on the training set and choose the best epoch, learning
rate, and number of hidden nodes based on the validation
set. We find consistently that a learning rate of 10−5 and 15
hidden nodes performs best. The chosen epoch varies across
experiments but is typically between 200 and 300 epochs.

Baseline +Class Features Delta
NDCG@1 50.10 50.22 +0.13
NDCG@2 47.52 48.01 +0.49
NDCG@3 46.63 47.16 +0.53
NDCG@4 46.27 46.93 +0.66
NDCG@5 46.26 46.91 +0.65

Table 2: Overall results. Best performance in each
row is in bold. Significant differences are denoted
using bold in the delta column.

Baseline +Class Features Delta
Overall 46.26 46.91 +0.65
Head 57.71 58.55 +0.83
Tail 34.42 34.88 +0.47
Short 49.30 50.08 +0.78
Long 37.67 37.98 +0.31

Table 3: Overview of NDCG@5 overall and broken
down over subsets. Best performance in each row
is in bold. Significant differences are denoted using
bold in the delta column.

Similarly, we choose the optimal number of leaves and
epochs for LambdaMART based on the validation set. We
find 10–15 leaves works well, with a shrinkage of 10−2, and
roughly 500–1000 epochs.

In Equation 3, m is set to 0.04. We have not found per-
formance to be particularly sensitive to changes in this pa-
rameter. The primary function of this parameter is simply
to provide some smoothing for queries that have little or no
click information.

We focus on the performance of two models – one without
category information and one with it. The Baseline model
uses a large number of query, URL, and query-URL features
to learn a very competitive state-of-the art ranker. The
+Class Features ranking model is learned using those same
features plus the Class Features from Table 1.

4.6 Results & Discussion
First, in examining NDCG at the top 5 positions in the

overall test set (Table 2), the class-based features yield sta-
tistically significant improvements in all cases except NDCG@1.
Furthermore, these gains increase steadily as one goes down
in the ranking until finally leveling off. This suggests that
part of the power of this approach is based on leveraging
some information regarding the class information of top-
ranked clicked results to pull additional relevant results higher.

The fact that any gains occur at NDCG@1 hints that
clicks occurring on relevant classes but not the top ranked
URL might indeed be a source of relevance information avail-
able in the logs. If so, richer models may be able to yield
significant gains in this position.

More surprising is that in Table 3, where the performance
is broken down into the head/tail and short/long splits de-
scribed above, significant improvements are gained in every
cell. Since click information is important in our approach,
we expected that the head and short queries (both of which
have large amounts of click data) would have gains larger
than the average, and indeed we find this to be the case.
Although the tail and long queries have gains that are less
than the average, the improvement seen even for these dif-

Feature Score
Most Important QueryClassEntropy 0.1108

−−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−→

KLDistance1 0.0970
KLDistance2 0.0767
KLDistance 0.0599

CrossEntropy2 0.0568
CrossEntropy 0.0441
ArgMaxOdds 0.0322

URLClassEntropy 0.0287
MaxOdds 0.0286

CrossEntropy1 0.0226
ArgMaxOdds2 0.0213

MaxOdds2 0.0196
MaxOdds1 0.0185

ArgMaxOdds1 0.0184
QueryClassURLMatch 0.0091

QUClassNoMatch 0.0076
Least Important QUClassMatch 0.0068

Table 4: Feature Importance

ficult queries is significantly better than the baseline. Tech-
niques that can further improve the coverage of the query
classification model are most promising. This might include
more sophisticated methods of smoothing that backoff to
something other than a uniform prior. For example, back-
ing off to click-evidence that uses partial query matches may
be preferable and give broader coverage.

Finally, we note that we were able to achieve these gains
using only 2-bits of confidence per class prediction. We feel
this is due in part to the robustness of the model. By deriv-
ing the query class directly from the classes of the results,
our method is tolerant of errors in the underlying text clas-
sification. That is, suppose all URLs about “football” are
classified as “biology”. As long as queries rarely tend to
retrieve true “biology” results together with “football”, the
model can still yield improvements. All that matters is that
the classes separate an intent of a query from its other in-
tents.

4.6.1 Feature Importance Analysis

In order to understand the relative importance of the dif-
ferent features to prioritize them for future study, we used
LambdaMART to obtain feature importance scores since it
tends to be more robust for this type of analysis. As men-
tioned in Section 4.2.2, feature importance is determined by
adding the contribution of the feature across all splits and all
trees in the model, based on the decrease in mean-squared
error when applying the given feature and split value. We
present the results of the feature importance analysis in Ta-
ble 4.

It is interesting to note that QueryClassEntropy has by far
the largest importance score. This feature has been shown
to be a measure of query ambiguity [9], and its importance
here implies that different ranking functions may be called
for when a query has many intents versus when it has a few.

This score is followed by the features that capture the
match of the entire distributions and coverage of the docu-
ment’s topics to aspects of the query. Finally, we see that in
general the features based on information theory dominate
the top positions while the simple matching features seem
to have less impact.

4.6.2 Oracle Study

We are interested in understanding the extent to which the
performance we have observed in our experiments could be
increased by improving the accuracy of specific components
of the process. Of particular interest is the query classifica-
tion component. In order to estimate this, we conducted an
oracle study designed to discover how much improved query
classification could improve the relevance of results. We used
the same URL classifications, but we derived the query class
distribution by reducing the candidate set for query class
estimation to only those documents rated in the top three
levels of relevance on our 5 point scale. This is a direct im-
plementation of the motivation discussed in Section 3.1, i.e.,
the ideal query class distribution is the aggregated distribu-
tion of relevant results. We then learned a model using this
“ideal”query class distribution with the same category-based
features as described here. When few results are marked as
relevant, this may be an overly optimistic upper-bound. For
example, for a single relevant result, this “ideal” distribution
can essentially encode the identity of the result. To avoid
this, we limited ourselves to cases where there were more
than five URLs meeting the relevance criterion for a query.
This condition still allows us to use significantly more than
half of the queries in our test set in this analysis. Over these
queries, the model based on the ideal query class distribution
yielded a 3.5 point NDCG@5 gain over the baseline.

This result is important in several ways. First, it indi-
cates that even given this particular taxonomy, significant
room is still available for improvement given better query
classification. Thus, improving query classification remains
a significant research challenge that is likely to yield further
improved relevance. Furthermore, we believe that this kind
of oracle experiment is more broadly applicable. That is, the
relevance judgments that are available in existing test collec-
tions can be leveraged to perform similar oracle experiments.
These existing judgments can be used in the same manner
we have described above to provide ground truth for query
classification experiments. Such experiments could be used
to evaluate the influence of query classification on search
ranking, and in particular, assuming a similar positive out-
come, create a dataset where increased query classification
accuracy is known to impact ranking relevance.

5. FUTURE WORK
There are a variety of avenues for future work. As men-

tioned, the method for computing the URL relevance weight-
ing was simple and more sophisticated methods (e.g., cas-
cade models [10] and related ones [8, 15] that can account
for positional biases more accurately) might be able to im-
prove upon the estimation. Furthermore, it may not be the
case that click information should be used in the same way
when incorporated directly into ranking as a feature and
when used to derive a weighting for class data. For exam-
ple, clicking on a result and going back to the results page
to click on a different result may carry positive weight on
the first result’s class for deriving class distributions but not
when directly inferring relevance. Thus, it might be possible
to loosen some assumptions used when inferring relevance
from click data to gain additional inference power for query
classification.

Another interesting possibility is to explore the use of
negative data. For example, the classes of URLs that are

skipped may provide negative information about what a user
is not seeking and this can be used to downweight certain
intents of the query.

Because the framework is agnostic with respect to the clas-
sification space, studying the empirical performance using
alternate choices (e.g. other topic hierarchies) and alterna-
tive classification spaces (e.g. reading level) is of interest.
Furthermore, understanding both the tradeoffs of depth of
classification into a topic hierarchy as well as optimal choices
of hierarchies as they relate to click behavior and confusable
query intents is an open and challenging problem.

6. SUMMARY
In this work we demonstrated that topical class informa-

tion can be used to improve the relevance of retrieval results
by generalizing along the class dimension to identify other
relevant results. In order to do this, we introduce a natural
definition of query class that stems from the results that are
relevant for that query and can be estimated using click-
behavior. Our approach is notable for its focus on directly
improving ranking relevance rather than indirect measures
like query classification. Furthermore, it scales well to large
search engines. We use the class distributions we estimate to
compute several information-theory inspired measures that
capture query ambiguity, URL specificity, and the match be-
tween query and URLs classes. These features based on the
query and URL class distributions not only yielded signifi-
cant improvements overall but also yield improvements over
tail and long queries where click data tends to be sparse.
Future work that broadens the coverage of the click-based
weighting by considering related queries as well as improved
models of classification and weighting hold great promise.

7. REFERENCES

[1] E. Agichtein, E. Brill, and S. Dumais. Improving web
search ranking by incorporating user behavior
information. In SIGIR ‘06, pages 19–26, 2006.

[2] D. Beeferman and A. Berger. Agglomerative clustering
of a search engine query log. In KDD ‘00, pages 407 –
416, 2000.

[3] S. M. Beitzel, E. C. Jensen, D. D. Lewis,
A. Chowdhury, and O. Frieder. Automatic
classification of web queries using very large unlabeled
query logs. ACM Transactions on Information
Systems, 25(2), 2007.

[4] A. Broder, M. Fontoura, E. Gabrilovich, A. Joshi,
V. Josifovski, and T. Zhang. Robust classification of
rare queries using web knowledge. In SIGIR ‘07, pages
231–238, 2007.

[5] C. Burges, T. Shaked, E. Renshaw, A. Lazier,
M. Deeds, N. Hamilton, and G. Hullender. Learning to
rank using gradient descent. In ICML ‘05, pages
89–96, 2005.

[6] C. J. Burges, R. Ragno, and Q. V. Le. Learning to
rank with nonsmooth cost functions. In NIPS ‘06,
pages 193–200, 2007. See also MSR Technical Report
MSR-TR-2006-60.

[7] H. Cao, D. H. Hu, D. Shen, D. Jiang, J.-T. Sun,
E. Chen, and Q. Yang. Context-aware query
classification. In SIGIR ‘09, pages 3–10, 2009.

[8] O. Chapelle and Y. Zhang. A dynamic bayesian
network click model for web search ranking. In WWW
‘09, pages 1–10, 2009.

[9] K. Collins-Thompson and P. N. Bennett. Estimating
query performance using class predictions. In SIGIR
‘09 as a Poster-Paper, pages 672–673, 2009.

[10] N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. An
experimental comparison of click position-bias models.
In WSDM ‘08, pages 87–94, 2008.

[11] P. Donmez, K. Svore, and C. Burges. On the local
optimality of LambdaRank. In SIGIR ‘09, pages
460–467, 2009.

[12] S. T. Dumais, E. Cutrell, and H. Chen. Optimizing
search by showing results in context. In CHI ‘01,
pages 277–284, 2001.

[13] E. Gabrilovich, A. Broder, M. Fontoura, A. Joshi,
V. Josifovski, L. Riedel, and T. Zhang. Classifying
search queries using the web as a source of knowledge.
ACM Transactions on the Web, 3(2), 2009.

[14] J. Gao, W. Yuan, X. Li, K. Deng, and J.-Y. Nie.
Smoothing clickthrough data for web search ranking.
In SIGIR ‘09, pages 355–362, 2009.

[15] F. Guo, C. Liu, A. Kannan, T. Minka, M. Taylor,
Y.-M. Wang, and C. Faloutsos. Click chain model in
web search. In WWW ‘09, pages 11–20, 2009.

[16] K. Jarvelin and J. Kekalainen. IR evaluation methods
for retrieving highly relevant documents. In SIGIR
‘00, pages 41–48, 2000.

[17] Z. Kardkovacs, D. Tikk, and Z. Bansaghi. The ferrety
algorithm for the KDD Cup 2005 problem. SIGKDD
Explorations, 7(2):111–116, 2005.

[18] Y. Li, Z. Zheng, and H. Dai. KDD CUP-2005 report:
Facing a great challenge. SIGKDD Explorations,
7(2):91–99, 2005.

[19] T. M. Mitchell. Machine Learning. McGraw-Hill
Companies, Inc., 1997.

[20] Netscape Communication Corporation. Open
directory project. http://www.dmoz.org.

[21] T. Qin, T.-Y. Liu, J. Xu, and H. Li. LETOR: A
benchmark collection for research on learning to rank
for information retrieval. Information Retrieval
Journal, 2010. DOI: 10.1007/s10791-009-9123-y.

[22] S. Robertson and S. Walker. Some simple effective
approximations to the 2-Poisson model for
probabilistic weighted retrieval. In SIGIR ‘94, pages
232 – 241, 1994.

[23] D. E. Rose and D. Levinson. Understanding user goals
in web search. In WWW ‘04, pages 13–19, 2004.

[24] M. Sahami and T. D. Heilman. A web-based kernel
function for measuring the similarity of short text
snippets. In WWW ‘06, pages 377–386, 2006.

[25] D. Shen, R. Pan, J. Sun, J. Pan, K. Wu, and J. Yin.
Q2c@ust: Our winning solution to query classification
in KDDCUP 2005. SIGKDD Explorations,
7(2):100–110, 2005.

[26] D. Shen, J. Sun, Q. Yang, and Z. Chen. Building
bridges for web query classification. In SIGIR ‘06,
pages 131–138, 2006.

[27] D. Vogel, S. Bickel, P. Haider, R. Shimpfky, and
P. Siemen. Classifying search engine queries using the
web as background knowledge. SIGKDD Explorations,
7(2):117–122, 2005.

[28] Q. Wu, C. Burges, K. Svore, and J. Gao. Adapting
boosting for information retrieval measures. Journal of
Information Retrieval, 2009. DOI
10.1007/s10791-009-9112-1.

[29] Y. Yue and C. Burges. On using simultaneous
perturbation stochastic approximation for IR
measures, and the empirical optimality of
LambdaRank. NIPS ‘07 Machine Learning for Web
Search Workshop, 2007.

