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Abstract. This paper presents a novel technique for improving face recognition 

performance by predicting system failure, and, if necessary, perturbing eye co-

ordinate inputs and repredicting failure as a means of selecting the optimal per-

turbation for correct classification. This relies on a method that can accurately 

identify patterns that can lead to more accurate classification, without modify-

ing the classification algorithm itself. To this end, a neural network is used to 

learn 'good' and 'bad' wavelet transforms of similarity score distributions from 

an analysis of the gallery. In production, face images with a high likelihood of 

having been incorrectly matched are reprocessed using perturbed eye coordi-

nate inputs, and the best results used to "correct" the initial results. The overall 

approach suggest a more general approach involving the use of input perturba-

tions for increasing classifier performance in general. Results for both commer-

cial and research face-based biometrics are presented using both simulated and 

real data. The statistically significant results show the strong potential for this 

to improve system performance, especially with uncooperative subjects. 

1   Introduction 

Face detection is a critical preprocessing step for all face recognition systems. Its 

ultimate purpose is to localize and extract the face region of an image (which may or 

may not contain one or more faces) and to prepare it for the recognition stage of a 

face processing engine. In general, as a face preprocessor, it must achieve this task 

regardless of illumination, orientation or size of the input face image. As daunting as 

this task is for computers, it is a task that humans appear to do rather effortlessly. 

Face detection approaches can be broadly organized into two categories: feature-

based approaches [1], and image-based approaches [2]. The former relies primarily 

on he extraction of low level features incorporating face knowledge explicitly, while 

the latter treats the face as a pattern that can be learned from the two-dimensional  
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image array, incorporating face knowledge implicitly. However, regardless of the 

approach, the result of face detection must enable some method for face registration, 

in order to maximize the effectiveness of the recognition stage of the face processor. 

In all cases, this relies on the accurate determination of fiducial marks on the face, 

ultimately needed for scaling and normalization. 

Symmetry of the eyes and their consistent relationship  with respect to other fidu-

cial marks on faces make them extremely useful for parameterizing and normalizing 

geometric features of the face. Because eye separation does not change significantly 

with facial expression, nor with up and down movements of the face, eye separation 

distance is often used for face normalization. Nose distance, another feature often 

extracted, is relatively constant with respect to side to side movements of the face and 

also depends on accurate eye localization. In addition, orientation of the line between 

the eyes is often used to correct for pose variations. Lastly, eyes are essentially unaf-

fected by other facial features like beards and mustaches, making them invaluable 

features to most face recognition systems. As a result, eye localization is often the 

critical thread connecting face detection and face recognition algorithms, regardless 

of the underlying details of either algorithm.  

Previous studies have emphasized the critical importance of eye localization and 

have demonstrated the dramatic effect poor eye localization can have on face recogni-

tion [3][4]. Given that the accuracy of eye localization has an effect on face recogni-

tion performance, this paper seeks to address the following research question: can we 

observe the effect that input eye perturbations have on an arbitrary recognition 

algorithm for a given face gallery, and use that information to improve classifi-

cation performance?  The goal of this paper is to predict classification failure and, in 

instances in which it is expected to occur, use a failure prediction module to select an 

alternative eye location (perturbation) that has the greatest chance of yielding a cor-

rect classification, thus improving overall system performance.  

The paper is organized as follows. A description of the method used to identify 

candidate face images for eye input perturbation is presented. Next, statistical results 

of simulated experiments explore the costs/benefits of our technique. The technique is 

also applied to a set of “real-world” face images to show the utility of the approach. 

Finally, we conclude with a discussion of the results and comment on the viability of 

a general approach to improving pattern classification using perturbations of critical  

input data. 

2   Failure in the Context of Face Recognition 

All face classifiers ultimately yield some sort of similarity score for an input image 

against all images in the face gallery. Typically, the scores are ranked to determine 

the most likely set of matching face images. The definition of “failure” in the context 

of face recognition typically depends on the application. For example, in identity 

verification, a serious failure occurs whenever a face not in the database is matched 

by the system, i.e. there is a false positive. In this case, the input face image matches 

an image in the database with a similarity score that is above a certain threshold. The 



 

decision of the system is based entirely on a comparison between two images, to 

determine whether the person is who the person claims to be. 

In identification, the application of interest in this paper, a known or unknown in-

dividual is matched against all of the face images in the database, and a set of ranked 

potential matches is returned. In this case, the definition of failure is more complex. If 

the person is in the database, failure occurs if too many face images different from 

that person are ranked higher than the face image of that person in the database. Here, 

“too many” depends on the criteria of the system and how the results are interpreted. 

If the person is not in the database, it becomes problematical to determine whether or 

not the face is in the database based on ranking alone. 

We postulate that the relationship between the similarity scores of the matched 

images (more specifically, the shape of their distribution) contains valuable informa-

tion that can yield insight into the likelihood that a given match will lead to a correct 

classification. For example, intuitively, if all top ranked images have very close simi-

larity scores, we might tend to believe there is a low probability that the top ranked 

image is the correct match. On the other hand, if the top ranked image has a similarity 

score that is significantly higher than all of the rest, we might tend to believe there is 

a high probability that the top ranked image is the correct match. In the former case, 

the distribution of sorted scores may be broad and flat, while in the latter case, narrow 

and peaked. Note that the criteria for “closeness” of similarity scores also depends on 

the characteristics of the particular recognition algorithm, since (usually) similarity 

score is not a metric. 

In this paper, we use a machine learning approach to learn the characteristics of 

“good”’ and “bad” similarity score distributions, given a particular recognition algo-

rithm,  a specific gallery of images, and various degrees of eye location error. “Good” 

similarity score distributions are those that result in a correct ID match (rank 1), 

where each individual (regardless of the number of images in the gallery) has a 

unique ID. “Bad” distributions are all others.   

We make the general assumption that input eye locations are primarily responsible 

for classification failure as supported by [3]. Using our failure prediction model, we 

identify images that are likely to be classified incorrectly and then re-process those 

images using a limited set of perturbed input eye coordinates to yield new similarity 

score distributions. For each such image, the distribution most likely to yield a correct 

classification is identified and used to obtain a modified classification. 

3   Face Algorithms 

Two different face recognition algorithms were used in all of the following experi-

ments: Elastic Bunch Graph Matching (EBGM)[5] and FaceIt, a commercial applica-

tion based on an LFA algorithm [6]. The EBGM algorithm was provided by the Colo-

rado State University (CSU) Face Identification Evaluation System (Version 5.0) [7]. 

FaceIt was implemented using programs built  from a software development kit li-

censed from Identix Inc. The reader is referred to the relevant publications for details. 



 

4   Learning Similarity Score Distributions 

In order to learn similarity score distributions, a sample of “good” and “bad” simi-

larity score distributions was required.  If the intent were to learn "good" and "bad" 

similarity score distributions for face images in general, one might be inclined to train 

on similarity score distributions from a large set of "real" images of individuals in a 

given gallery. From an operational perspective and excluding synthetically altered 

gallery images, this would require considerable data collection and ground truth. 

However, the very specific intent here is to predict the behavior of a given algorithm 

on a given gallery with respect to input eye perturbations and to enable the recogni-

tion of potential instances where incorrect eye localization can result in misclassifica-

tion. Generating the perturbation data is quite straightforward. Given some basic 

training/testing sets, one simply forces the eye locations to different positions and 

reprocesses the images.  

As was shown in previous research, the behavior with respect to input eye pertur-

bations of a number of face recognition algorithms on degraded images, seems to be 

quite similar to their behavior on clean, gallery images [3], only slightly smoother. 

Consequently,  the training set in this instance involved only the similarity score dis-

tributions obtained by perturbing input eye coordinates of gallery images. The predic-

tion module therefore learns the sensitivity of the algorithm to eye localization error 

in the context of the gallery for which classification improvement is desired, which 

we later apply, with good success, to images in the field. 

 

4.1   Preprocessing 

The images used to obtain training data consisted of a gallery of 256 individuals, 

each with four different frontal view poses (for a total of 1024 images) and obtained 

from the FERET database. The exact set of images can be obtained from the authors. 

It was hypothesized that the number of poses of a given individual would affect 

the relevant characteristics of similarity score distributions. For example, if an indi-

vidual had ten different poses in a given database, it is conceivable that all ten poses 

might cluster very closely in the top ranks of the similarity score distribution. On the 

other hand, with only one pose in the database, an individual's score might be dis-

tinctly different from all others, resulting in a similarity score distribution that is 

much more peaked. This suggested that a multi-resolution approach might be benefi-

cial to extract relevant detail, which might depend on the number of poses each indi-

vidual has in the database.   

Recall that a wavelet basis is described by two functions (the scaling and the 

mother wavelet function), and a basis is obtained by translating and resizing these 

functions. Any signal can be represented uniquely and exactly by a linear combina-

tion of these basis functions, provided the basis functions are orthornormal.  Wavelet 

basis functions also have a characteristic called compact support, meaning the basis 

functions are non-zero only on a finite interval. In contrast, the sinusoidal basis func-

tions of the Fourier transform are infinite in extent. The compact support of the wave-



 

let basis functions allows the wavelet transformation to efficiently represent functions 

or signals which have localized features. 

In this application, a 4 point discrete Daubechies wavelet transform [8] was used 

to process the top 2k sorted similarity scores, where k is the number of poses for each 

individual. In this case, k=4, resulting in a total of 8 wavelet coefficents,. Reflection 

generated the necessary points for the function boundary. A Daubechies wavelet 

transform was used due to its (coarse) similarity to the distributions as well as its 

overlapping iterations, enabling it to pick up detail that might be missed by, say, the 

Haar transform. 

Two additional features were also computed. The first was the next highest rank 

of the same ID as the top ranked image.  Since only the top 2k similarity scores were 

observed, this number was clamped at a rank of 2k+1. Very high numbers for ranks 

are known, from previous experience, to be relatively unstable as predictive features. 

The intuition here is that the likelihood of the winner being correct is higher if the 

image of one of its other poses is also highly ranked.  

The second feature was the number of pairs of identical Ids in the top 2k similarity 

scores that have a different ID from the winner. In this case, it was hypothesized that 

the presence of two (or more) same-ID highly ranked images in the top ranks might 

also have some bearing on the possibility of classification failure. 

 

4.2   Training 

Gallery images were run through each algorithm using all combinations of input eye 

offsets shown in figure 1, resulting in 9x9=81 runs per algorithm. Note, the same pair 

of eye offsets was applied to all of the gallery images for any given run. Random eye 

offsets for each individual image were not trained on, since any feasible method used 

in production would have to apply the same pair of offsets to the entire probe set (see 

section 4.3).  

Figure 1. Eye offsets used for training. 

  

The distance between points in the images tested was six pixels. In general, this 

perturbation depends on the scale of the imaged face, with the goal to select points to 

span the extent of the eyelids and the whites of the eyes. Similarity scores of the 8 top 

ranked images were stored along with the other two features discussed previously for 

all images.  Feature vectors were generated and organized into two datasets, one for 

images whose rank was one (correct matches) and all others (incorrect matches). 

A random sampling of 5000 out of 1024x81=82944 feature vectors was used to 

train a backpropogation neural network [11]. All other 77944 feature vectors were 

used for testing. This was done for both the FACEIT algorithm and the EBGM algo-

rithm. Thresholds that maximized performance on the test set were fixed for all sub-



 

sequent experiments and are shown in table 1, along with network architectures and 

performance.  The neural net trained in approximately one day on a G4 Macintosh, 

and due to the small size of the network, and the relatively small wavelet transform, 

processed inputs very quickly. Behavior was also observed to be relatively smooth 

around the peak threshold and relatively stable. Overall performance of the neural net 

resulted in good generalization, with rates for testing showing only a small loss over 

training set accuracy. 

Table 1. Backpropogation network architecture and performance. 

4.3 Random Eye Perturbation Experiments 

 

To study the effectiveness of our approach, we first analyze our prediction ability 

with respect to controlled simulation experiments. The images used in this experiment 

are from one session of outdoor data arbitrarily selected from our larger data set col-

lected as follows. Each session consists of the same 1024 FERET images used for 

training, but displayed on an outdoor LCD monitor and re-acquired under varying 

time and weather conditions. Images are projected on a 15" LCD monitor and ac-

quired asynchronously by two cameras at high speed from a distance of approxi-

mately 100 and 200 ft. Images are zoom adjusted so that facial images have approxi-

mately 50-100 pixels between the eyes. Eye coordinates for all images are computed, 

using the known location of the eyes from the gallery image and a pair of easily iden-

tifiable markers located in the projected image.  

A series of random Gaussian offsets were applied to the eye coordinates of all im-

ages to create a series of probe sets with varying degrees of eye localization error. For 

this set of experiments, we selected offsets with a mean of zero and four  different 

standard deviations: 2, 4, 6 and 8 pixels radially from the center of the known loca-

tion of the eye.  Note that different random perturbations were applied to each image, 

and 30 different random seeds were used for each standard deviation. This resulted in 

4x30=120 runs of each algorithm on the same set of 1024 images. The intent of this 

experiment was to show the effectiveness of our approach as eye localization in-

creases in error. 

The data flow for the analysis of a single probe image is shown in figure 2.  For 

each probe, the similarity scores are processed and the feature vector passed through 

the previously trained neural net. If neural net output exceeds the fixed threshold, the 

image is determined to have a high probability of being correctly classified and its 

classification is left intact. However, if the neural net output is below the threshold, 

the image is assumed to have a low probability of being correctly classified, and is 

then passed onto to the next stage of processing.  

Three different subsets of eye offsets were investigated for their effectiveness. In a 

production setting, it may not be feasible to try all (for example) 81 combinations of 

Face  Fixed

Algorithm Input Hidden Output Learning Momentum Sigmoid Training Test Threshold

FACEIT 10 5 1 0.05 0.5 0.05 95.7 94.5 0.4

EBGM 10 5 1 0.05 0.5 0.5 95.2 92.4 0.45

Number of Nodes Percent CorrectConstants



 

offsets (or more) from a resource point of view. It would be beneficial to determine a 

smaller set of eye perturbations that have a high likelihood of achieving good per-

formance gains versus the cost of reprocessing images. As a result, three subsets of 

eye offset combinations were tested, referred to as: SCALE (6 offsets), 

TRANSLATE_SCALE (26 offsets and X_SEP_CONSTANT (8 offsets).  

SCALE included those offsets that simply increased or decreased the x separation 

between the eyes, embodying the implicit hypothesis that scaling is a significant fac-

tor affecting face algorithm performance. 

X_SEP_CONSTANT included those offsets that simply translated the given x co-

ordinates for both eyes, keeping the distance between them the same.  

Finally, TRANSLATE_SCALE included all previous offsets, including scaling in 

conjunction with translation. No offsets in which one eye was translated in relation to 

the other were included in the analysis due to the prohibitive cost of post-processing. 

Once a probe is identified as having a low probability of being correctly classified, 

it is then perturbed with an offset, and reprocessed by the face algorithm. This is 

repeated for all offsets in the subset. The feature vectors each time are input to the 

neural net, and the largest output (out of all of the offsets applied) is noted. The rank-

ing information for this result supercedes the original classification only if: 

1. its neural net output exceeds the fixed threshold 

2. its neural net output exceeds that of the original 

Results. First, it is instructive to look at how the algorithm behaves with respect to 

the decisions that are made during processing. As shown in figure 3, the neural net 

performs extremely well on the initial data, achieving a classification accuracy ex-

ceeding 90% over the entire range of initial input eye perturbation. Recall that the eye 

perturbation in this case is a random Gaussian variable and different for every single 

image, resulting in a rigorous test for the neural net. Note also, the very low false 

negative and false positive rates, indicating a relatively high efficiency (at least at this 

level) of the algorithm. 

Not unexpectedly, as the variance of initial eye perturbation increases, perform-

ance decreases. However, it is interesting to note that there is a greater relative gain 

as variance increases, and as performance in general decreases. This is shown quite 

clearly in figure 4. This suggests that such a method might be even more useful as eye 

localization errors increase since at least one of the perturbations used to try to correct 

the classification error may be in the direction of the needed change. Changes in and 

around the correct location may not result in significant benefits. Nevertheless, even 

in the case of small initial perturbations, significant improvements (albeit small) were 

noted. 

In general, TRANSLATE_SCALE performed slightly better than SCALE, but at a 

significantly higher cost (see  figure 5). With only six offsets, SCALE was able to 

improve recognition performance significantly with much lower cost. This fact is not 

very surprising if one considers the importance of scaling in face analysis systems. 

These results suggest that adjusting factors that affect normalization(specifically eye 

separation distance) and then re-processing is a prudent approach to improving face 

recognition. This is consistent with observations made in [4] that eye separation   



 

 

 

 

 

Figure 2. Flowchart showing data flow 

for the analysis of a single probe image 

 

 

 

 

 

 

Figure 3. Classification accuracy of 

the neural network for FACEIT and 

EBGM algorithms  

 

Figure 4. Percent difference in per-

formance gain for various subsets of 

eye offsets 

 
 

Figure 5. Maximum number of images 

reprocessed for each algorithm 

 

distance seemed to have a greater effect on face recognition performance than the 

actual location of the eyes themselves. 

Not surprisingly, X_SEP_CONSTANT performed considerably worse, although 

due to the accuracy of the neural net, performance did not degrade. It is conceivable 

that bad decisions by the neural net could result in falsely classifying an image as 
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having a high probability of being classified correctly after applying an eye perturba-

tion; however, this was clearly not the case.  

With respect to the behavior of the neural network during processing, several im-

portant observations can be made. Results only for SCALE are shown in figure 6. 

First, the fraction of perturbed images that actually resulted in a degraded classifica-

tion is extremely low, on the order of about 0.1%. Informal observations of the data 

indicated that even so, the amount of degradation was usually on the order of 1 or 2 

ranks (e.g. changing a rank 1 image to a rank 2 or 3). Second, recall that once a probe 

is initially identified as having a high probability of being incorrectly classified, the 

image is offset multiple times and the output of the neural net for each re-processing 

is used to determine what to do with it. If the neural net determines the new result has 

a low probability of being correctly classified, that result is not considered. As seen in 

the top of figure 6, the fraction of perturbed images for which this is true is rather 

high. However, this is to be expected since the likelihood of a given perturbation to 

actually make things worse is rather high. In fact, the neural net is actually doing 

quite well, rejecting a large number and accepting only reasonably good possibilities. 

Of those accepted, i.e. when failure is predicted successfully (see the bottom of figure 

6), approximately 50% result in an improvement in rank. 

4.3   Biometric Perturbations of Real Images 

Finally, a set of experiments shown in figure 7 clearly shows the benefit of the ap-

proach for real images. Four different times of day throughout the month of May 

were used for this analysis. SCALE perturbations were used to significantly improve 

face recognition results for the FACEIT algorithm. Note that in this set of experi-

ments, errors in eye localization come from two sources: the eye localization error 

due to degradation of the input image as a result of atmospheric effects, and the eye 

localization error due to possible weaknesses in the FACEIT eye localization algo-

rithm. Together, eye localization error is clearly an unknown quantity, but is ex-

ploited quite effectively here, to improve overall classification. 

 

5   Conclusions 

Eye localization has been shown to have a significant impact on face recognition 

algorithms.  This paper uses that fact to show how machine learning and failure pre-

diction can be integrated into a perturbation-based approach for overall system im-

provement. Our approach was tested on synthetic data using two different face-

recognition systems; it showed both good failure prediction performance and, when 

failure was predicted, corrected for it about 50% of the time. It also managed to do so 

rather efficiently, requiring only a fraction of the total number of offset combinations, 

and would be expected to do even better in a production environment.  

Using outdoor face data and a commercial face recognition system, the approach 

was able to predict failures and then predict which perturbations to keep, to achieve a  

 



 

Figure 6. Breakdown of improved, de-

graded, unchanged and unconsidered (not 

detected as failures) images.  

 
Figure 7. Performance of FACEIT before 

and after biometric perturbation. 95% con-

fidence intervals are shown. 

 

 

 

 

 

statistically significant 3% to 8% overall improvement beyond the already impressive 

85% overall recognition rate of the base commercial face recognition system.   

While this paper has focused on face recognition, since the use of “similarity 

measures” is ubiquitous, this approach should apply across a broad range of pattern 

recognition problems. In fact, any instance where a weak link exists in a pattern rec-

ognition problem, and that also has a limited local perturbation space, is a viable can-

didate for such an approach. 
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