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Abstract: In the machine learning and data science pipelines, feature extraction is considered the
most crucial component according to researchers, where generating a discriminative feature matrix is
the utmost challenging task to achieve high classification accuracy. Generally, the classical feature
extraction techniques are sensitive to the noisy component of the signal and need more time for
training. To deal with these issues, a comparatively new feature extraction technique, referred to as
a wavelet scattering transform (WST) is utilized, and incorporated with ML classifiers to design a
framework for bearing fault classification in this paper. The WST is a knowledge-based technique,
and the structure is similar to the convolution neural network. This technique provides low-variance
features of real-valued signals, which are usually necessary for classification tasks. These signals
are resistant to signal deformation and preserve information at high frequencies. The current signal
data from a publicly available dataset for three different bearing conditions are considered. By
combining the scattering path coefficients, the decomposition coefficients from the 0th and 1st layers
are considered as features. The experimental results demonstrate that WST-based features, when used
with ensemble ML algorithms, could achieve more than 99% classification accuracy. The performance
of ANN models with these features is similar. This work exhibits that utilizing WST coefficients for the
motor current signal as features can improve the bearing fault classification accuracy when compared
to other feature extraction approaches such as empirical wavelet transform (EWT), information fusion
(IF), and wavelet packet decomposition (WPD). Thus, our proposed approach can be considered as
an effective classification method for the fault diagnosis of rotating machinery.

Keywords: artificial neural network; bearing fault diagnosis; condition monitoring; extreme gradient
boosting; induction motor; motor current signal; random forest; wavelet scattering transform

1. Introduction

Induction motors (IMs) are widely used rotating machinery in the manufacturing
and power industries, due to their certain advantages such as low cost, easy controlling
mechanism, robust design, high efficiency, and reliability. However, the likelihood of faults
cannot be overlooked, as the motors experience significant electrical and mechanical loads
because of their prolonged working periods [1]. An intrinsic flaw in the machine or adverse
surrounding conditions could be the reason for failure. If the initial erratic behavior is
not identified, it can lead to motor failure, which will result in downtime and increased
operation loss. Rotating machine condition monitoring has thus become increasingly
interesting to researchers due to the inherent vulnerability to damage and failure of these
machines. In order to improve the accuracy and capabilities of fault diagnosis systems,
researchers are currently analyzing weak fault signals to extract fault features and classify
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them to enable real-time monitoring and diagnosis [2]. It is important to diagnose and
monitor faults accurately and in a timely manner to prevent significant damage, extend the
life of machines, increase accessibility, and lessen maintenance costs [3].

Depending on the components, IM faults can be classified as bearing faults, faults
connected to the rotor, faults connected to the stator, etc. Among them, approximately 44%
of these faults occur in bearings [4,5]. In the case of bearing faults, the damage can occur
in any of the four main components: the inner race, the outer race, the balls, and the cage.
However, 90% of faults occur in the inner and outer races [6].

In attempts to avoid dangerous accidents due to electric motor failure, breakdown
maintenance methods were initially replaced by time-based preventive maintenance tech-
niques. These were performed in accordance with working time periods, regardless of
whether the machine needed a maintenance checkup or not. This approach is not only ex-
pensive but causes an interruption in the continuous working flow. Therefore, non-invasive
condition-based maintenance techniques are currently considered to be more effective
because they can reduce the amount of unnecessary scheduled preventive maintenance
operations and lower the operation cost [7]. Numerous studies have been conducted
on bearing fault diagnosis to develop new advanced approaches by utilizing innovative
technologies and industrial equipment. Model-based [8] and data-driven [9] approaches
are two basic techniques utilized in fault diagnosis. Model-based methods require precise
modelling of the dynamics of a system with a comparatively small dataset, which is crucial
to design approaches for highly nonlinear and ambiguous circumstances. On the other
hand, data-driven approaches have become popular as data acquisition processes have be-
come easier due to improvements in advanced sensor technology. A data-driven approach
requires less engineering and design effort, and it is possible to extract useful information
about a system’s current condition using modern feature engineering techniques [10].

Various types of sensor data are available for bearing fault diagnosis, such as vibration
signals, acoustic emission signals, current signals, stray flux, thermal images, etc. [11].
Vibration signal-based analysis is a popular approach because of its high sensitivity to
bearing faults, which can transmit any sudden change of intrinsic information immediately.
The main limitation of using this type of signal is the high cost and high maintenance
requirements of vibration sensors [12]. Fault analysis using acoustic emissions can be
effective for early fault detection with a low-energy signal, but it requires a high amount
of data to provide a good result, which increases the computational complexity of the
overall method [13]. Motor current signals have been used to effectively diagnose electrical
faults (broken rotor bar faults, stator winding faults) and bearing faults. The acquisition
of the current signal does not require any external sensors, which reduces the overall
installation and data collection costs of the system. Furthermore, current transducers can
be used to measure the stator current from a single input source if frequency inverters and
current transformers are not available. In addition to being highly reliable and noninvasive,
motor current signal analysis (MCSA) is also considered one of the most effective condition
monitoring methods in bearing fault diagnosis [14–16]. MCSA has been applied to both to
analyze bearing faults and the fault severity in IMs with fault frequency analysis [1,17].

Generally, the original signal acquired from sensors is not enough to spot the existence
of a fault and classify fault conditions, due to the presence of surrounding noise. To
avoid ambiguity, extracting effective features from the sensor data by applying signal
processing techniques is essential. There are diverse techniques for feature extraction. In
fault diagnosis, time-domain features such as the rms, peak-to-peak, root mean square, etc.,
are calculated using statistical formulas on the sensor signal; frequency-domain feature
extraction involves fast Fourier transform, envelope analysis, and high-order spectral
analysis of the time-series signal [18]; and time-frequency domain features are derived using
the wavelet transform, short-time Fourier analysis, Hilbert–Huang transform, etc. [6,19].
Based on the processing gain and the ability to separate the fault characteristic frequency
from the noise, frequency-domain analysis can provide a better understanding of fault
frequencies than time-domain analysis. However, in many cases, methods based on the
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frequency domain do not perform well with nonstationary signals, whereas time-frequency-
based methods can be an effective approach to deal with both stationary and nonstationary
types of signals [20].

The main drawback of the Fourier transform-based feature extraction process is
that it becomes unstable at high frequencies. In such cases, the wavelet transform is
considered an effective signal processing technique for fault classification of the rotation
machinery [21–23]. To create time shift, the discrete wavelet transform (DWT) and the
second-generation wavelet transform (SGWT) perform splitting or downshifting operations,
which result in erroneous output due to the aliasing effect, which hampers reflection on
the original state of the system [24]. Another variant of the wavelet transform, named
dual-tree complex wavelet transform (DT-CWT), reduces the aliasing effect due to its time
shift invariance and parity sampling properties. Although the wavelet transform is stable
for signal deformation, this approach is not translation invariant when subsampling is
involved. For these reasons, the Fourier, as well as wavelet transforms, cannot be considered
as the ideal feature extractors.

Recently, a knowledge-based feature extraction technique has been developed by
Bruna and Malat named wavelet scattering transform (WST), which utilizes complex
wavelets to balance the discrimination ability and stability of the time-frequency domain
signal [25]. This method filters the signal by assembling a cascade of wavelet decomposition
coefficients, complex moduli, and low pass filtering operations. The WST approach enables
the modulus and averaging operation of the wavelet coefficients to acquire stable features.
After that, the cascaded wavelet transform is employed to recover the high-frequency infor-
mation loss due to the previous wavelet coefficients’ averaging modulus operation. The
resultant scattering coefficients possess local stability and translation invariance, and they
have shown good performance in different application areas, such as image processing [26],
sound classification [27], and heart sound classification [28]. The WST-based feature extrac-
tion process provides two advantages compared to other approaches in the fault diagnosis
field. Firstly, the complex wavelet decompositions at multiple scales can provide rich
descriptors of complicated structures for fault diagnosis through the co-occurrence of
coefficients. Secondly, by using local weighted averaging, it is possible to reduce feature
variability and preserve the local consistency of the class labels. It can also reduce the
impact of noise originating from acquisition signals. Due to these reasons, researchers
have become interested in this method and started implementing the WST in bearing and
gearbox fault signal analysis. In [29], with the extracted scattering coefficients, a bearing
fault was classified by SVM with 99% accuracy by utilizing vibration signals. Gearbox
fault was analyzed in [30] with an acoustic emission signal by utilizing the WST with
linear discriminant analysis (LDA); this approach had an affordable computational cost.
Additionally, in [31], single and compound fault conditions were diagnosed by combining
a denoising approach with WST coefficients to analyze rolling element bearings faults.

With the help of an effective feature extraction process, the original signal from sensors
is transferred into a compact significant representation, which can be used as the input
of machine learning classifiers for further training and optimizing decision functions.
Common ML classifiers for fault diagnosis include support vector machine (SVM) [32],
gradient boosting decision tree, k-nearest neighbors (KNN) [33], random forest (RF) [34,35],
and neural network approaches [36,37]. Furthermore, deep learning (DL) methods have
been implemented in multiple research areas, including bearing fault analysis, and provide
very good performance [38,39]. Recently, unsupervised cross-domain diagnosis based on a
joint transfer network [40] and modified auxiliary classifier GAN (MACGAN) [41] were
implemented to generate multi-mode fault samples where the fault samples are limited.

To explore the ability to extract significant features of the WST, this paper aims to
propose an accurate motor bearing fault classification framework based on the WST, two en-
semble machine learning classifiers, and the artificial neural network (ANN). In scattering
transform, the signal information can be scattered from one layer to another hierarchically,
preventing information loss and maintaining signal stability. As the WST method oper-
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ationally resembles deep CNN, it also divides the input data into multi-layer elements
that contain both linear and nonlinear functions and have the advantages of deep CNN
models [42]. The overall experiment was carried out with publicly available current signal
data, and the resultant output was compared with some existing methods to validate
the results.

Therefore, the main contributions of this study are as follows:

1. Investigate the applicability of the WST technique for extracting fault features to
classify bearing states with ensemble ML algorithms and ANN.

2. The classification performance exhibits that the resulting coefficients can directly be
used as features, thus no additional feature calculation step from the coefficients
is required.

3. Resolve the feature extraction complexity of current signal-based bearing classification
approaches due to their poor SNR and indirect measurement.

The rest of the paper is organized as follows. Section 2 presents the theoretical
background related to this study. The experimental setup and a detailed description of
the data are provided in Section 3. A detailed description of the proposed method and
evaluation parameters are presented in Section 4. The experimental results using the
proposed methodology and a comparison with existing papers on the same dataset are
discussed in Section 5. Our conclusions are given in Section 6.

2. Theoretical Background
2.1. Bearing Fault Frequencies

Rolling element bearings (REBs) are thought to be the most important component
of IMs because of their ability to lower friction and create a smooth rotating motion for
a rotor to operate. The bearings serve as a holding component to ensure proper rotation
from the shaft. They also allow for an electromechanical interaction between the stator
and the rotor. The fundamental components of bearings are two different types of races,
referred to as the inner and outer race, a set of rolling balls, and a cage in which each ball is
enclosed by an identical distance. Numerous factors, such as excessive loading, improper
installation, rotor misalignments, insufficient lubrication, and material fatigue, can cause
bearing defects [43]. In general, the most frequent faults are those of a single element,
such as faults in the outer race, inner race, or roller. However, multiple faults can also be
produced simultaneously in different elements. In this work, the normal bearing condition
and two faulty conditions (shown in Figure 1) are considered to investigate the bearing
fault analysis with the motor current signal.
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In general, every bearing component rotates at a fundamental frequency. Any time a
fault arises during operation and the roller crosses the defect location during a rotation, a
shock impulse at a specific defect frequency is produced because of the rise in vibration
energy. Defect frequencies are the resultant frequencies of the defect signal based on the
bearing element, and they can be calculated using the geometric parameters and rotational
speed of the IM from the equations given in (1)–(3).

Frequency of inner race fault: FI =
Nb
2
× fm ×

(
1 +

(
Db
Dc
× cosβ

))
(1)

Frequency of outer race fault: FO =
Nb
2
× fm ×

(
1−

(
Db
Dc
× cosβ

))
(2)

Frequency of outer race fault: FR =
Dc

Db
× fm ×

(
1−

(
Db
Dc
× cosβ

)2
)

(3)

Here, Nb is the number of rolling components (balls), Db is the diameter of the ball, Dc
is the diameter of the cage, β is the load angle from the radial plane, and fm is the frequency
of rotation.

Damage to the bearing causes the stator and rotor to move radially, which introduces
characteristic fault frequencies into the current signals and causes oscillations. The stator
and rotor are displaced radially by bearing problems, which affect the load torque and
spinning eccentricity. As a result of changes in machine inductances, motor current signals
experience amplitude, frequency, and phase modulation. With the phase angle φ and the
angular velocity, the resultant current signal output due to a bearing fault can be written as
shown by Equation (4),

i(t) = ∑∞
k=1 ikcos(ωkt + φ) (4)

and ωk is equivalent to
2ßfbearing

p .
Here, fbearing is the harmonic frequency, which can be written as | fs ±m fv|, and p

denotes the operating machine’s pole pair number. Furthermore, m and fs denote the
harmonic index and supply frequency, respectively. However, fv can be expressed as either
finner or fouter.

The frequency auto search algorithm described in [44] can be used to calculate the
estimated fault signature frequencies. Detecting bearing faults can be tricky because the
harmonics generated by bearing failures might be close to or overlap with noise frequencies,
making it difficult to tell them apart [45]. Therefore, it is challenging to find the bearing
faults in an IM if the specifications of bearings are unknown or if the inverter frequency
has fluctuated.

2.2. Wavelet Scattering Transform (WST)

A wavelet transform is a widely applied time-frequency analysis method that has
the advantage of being stable and multi-scale in the presence of local deformation. It can
effectively extract the local features from signals, but it is subject to change over time and
can easily exclude significant signal features. A better time-frequency analysis technique
built on the wavelet transform is the wavelet scattering transform (WST), which was
proposed by Mallat [46]. The procedure is simply an iterative combination of a deep
convolution network, consisting of low-pass filter averaging, a complex wavelet transform,
and modulus operation [36]. With additional advantages of translation invariance, local
deformation stability, and rich feature information representation, it also addresses the
drawback of changing over time. For any given time-domain signal, x, the operation of
WST can be described as follows:

1. At first, x is convolved with the dilated mother wavelet ψ, which has the center
frequency of λ, to calculate the WST. This operation can be expressed as x ∗ ψλ. Here,
the average of the convolved signal, which oscillates at a scale of 2j, is zero.
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2. After that, a nonlinear operator, such as a modulus, is applied to the convolved signal
to eliminate these oscillations (i.e., |x ∗ ψλ|). This procedure is used to make up for the
information lost due to down sampling by doubling the frequency of the given signal.

3. Finally, a low-pass filter ϕ is applied to the resultant absolute convolved signal, which
is equivalent to |x ∗ ψλ| ∗ ϕ

Therefore, for any scale (1 ≤ j ≤ J), the first-order scattering coefficients are calculated
as the average absolute amplitudes of wavelet coefficients over a half-overlapping time
window having the size 2j. This can be written as (5):

S1x(t, λ1) =
∣∣x ∗ ψλ1

∣∣ ∗ ϕ (5)

The invariance ability will undoubtedly decrease when the high-frequency compo-
nents are restored as a result of the aforementioned approach. By repeating the discussed
steps on

∣∣x ∗ ψλ1

∣∣, the scattering coefficients for the second order can be calculated as (6):

S2x(t, λ1, λ2) =
∣∣∣∣x ∗ ψλ1

∣∣∗ψλ2

∣∣∗ϕ (6)

The wavelet scattering coefficients for higher orders, where m ≥ 2, can be computed
by iterating the mentioned process. This can be expressed as (7):

Smx(t, λ1, λ2, . . . , λm) =
∣∣∣∣∣∣x ∗ ψλ1

∣∣∗ψλ2

∣∣. . . ψλm

∣∣∗ϕ (7)

The resultant scattering coefficients can be found by accumulating all of the coeffi-
cient sets of the scattering transform generated from the 0th to mth order, as shown in
Equation (8) [25].

Sx = {S0x, S1x, . . . , Smx} (8)

The basic steps of computing the wavelet scattering coefficients up to level 2 are
illustrated in Figure 2. Here, the final feature matrix will be found by accumulating all the
features from levels S0x,S1x,and S2x.
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Figure 2. The schematic diagram of the feature extraction procedure with the second-order WST.

Here, S0x represents the zero-order scattering coefficients, which evaluate the local
translation invariance of the given input signal. The high-frequency components of the
convolved signal are lost during each stage’s averaging operation, but they can be recovered
in the following stage’s convolution operation with the wavelet. The WST method possesses
the stability of time warp deformation, conversion in energy, and contraction, which makes
the overall system robust in a noisy environment and appropriate for many classification
tasks [30].
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As a result of implementing the low-pass filter, ϕ, the network is invariant to transla-
tions up to a certain invariance scale. The resultant features from Sx inherit properties of
wavelet transforms, which make them stable against local deformations. This also allows
the scattering decomposition to detect subtle changes in bearing signals’ amplitudes under
different conditions and makes the classification task easier. Therefore, the wavelet scatter-
ing network can be used as an effective way to create robust representations of different
bearing conditions that minimize the differences under the same condition and maintain
enough discriminability to distinguish among different bearing conditions.

Despite the similarity in structure between wavelet scattering networks and CNNs,
there exist two main differences: the filters are predetermined rather than learned, and
the features are not just the outputs of the final convolution layer but are all the layers
combined. Based on previous research, nearly 99% of the scattering coefficient energy is
contained within the first two layers of the scattering coefficient, with the energy decreasing
rapidly as the layer level increases [25,47]. The WST applied in this work also considers
scattering coefficients for two orders, which are represented as S1x and S2x. Through the
cascaded wavelet decomposition, the WST can extract detailed feature information, and the
local averaging technique can lessen the impact of noise. For these reasons, the WST can
be considered a useful technique for extracting features in order to identify fault features
in signals.

2.3. Feature Extraction Mechanism

In scattering transform, wavelet decomposition, modular operation, and low-pass
filtering are employed to create invariant, stable, and informative signal representations.
This process involves iterating over the input signal and calculating the wavelet modulus
operator. The WST consists of different variables, such as the basis function of the selected
mother wavelet (ψλ), the Q factor, and the layer number of the scattering transform (m).
Researchers found that, as long as the wavelet is complex, the outcome of the scattering
transform is independent of the wavelet selection [46]. In the case of choosing the mother
wavelet, Morlet (Gabor) wavelets were applied in this study. This wavelet can be expressed
by Equation (9).

ψσ(t) = cσπ−0.25e−0.5t2
(

eiσt − κσ

)
(9)

Here, κσ and cσ represent the admissibility criterion and normalization constant,
respectively.

The quality factor (Q factor) defines how many filters are presented per octave. The
selection of an effective Q factor requires expertise related to the spectral content of the
considered signal. The Q value must be in the range of 1 to 32. The number of scattering
coefficients and, thus, the dimensionality of the feature space are both increased as Q is
increased. The dimensionality increases exponentially as the Q value increases when m > 1.
It is desirable to keep Q as small as possible because an increase in its value does not
improve the feature space’s ability to discriminate. A lower Q value also lowers the setup’s
computational expense [48].

The number of layers in the scattering transform plays a crucial role in terms of
performance and computational complexity. The selection of the number of layers is
influenced by the fact that each layer must contain an adequate amount of energy for
the succeeding levels to be useful. In different applications, scattering coefficients in the
second layer are adequate, as the coefficients from the third layer do not help to improve
the classification output [49]. Additionally, it is important to remember that the first layer
creates an invariant by averaging the wavelet characteristics in a local area. After that,
wavelets are used to collect the high-frequency information in the second layer to make up
for the information loss caused by the low-pass filtering.

In the process of extracting features by implementing the built-in wavelet scattering
network, the resultant feature output has three dimensions. This output can be expressed
as M × N × P, where M is the scattering path, N is the wavelet scale, and P represents
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the signal number. As we will classify the features with ensemble classifiers, we need to
convert this three-dimensional feature vector into two dimensions. Therefore, we multiply
the values of N and P and reduce them to one dimension as X = N × P. Thus, the final
two-dimensional feature vector will be X ×M.

2.4. Classification with Ensemble Classifiers

Deciding which machine learning algorithm provides good classification performance
is essential. Most recently published review articles contend that ensemble algorithms
are superior to single prediction algorithms [50]. In many cases, any single algorithm
cannot provide perfect prediction and good accuracy for any given classification problem,
as each model has its own limitation in its working mechanism. By combining these types
of models, which also refer to weak learners, it can be possible to boost overall accuracy.
The ensemble learning technique uses several individual learners and a combination of
strategies in order to achieve better results than each learner alone. The main objective of
combining or ensembling models is to maximize the output from each model by reducing
the model error and maintaining the model generalization. This technique helps to prevent
the overfitting problem, and to reduce the bias and variance of the final model, thus the
overall accuracy is increased [51]. Different ensemble techniques, such as bagging, boosting,
stacking, and blending, are generally used to improve the aggregating model.

To classify IM faults with the wavelet scattering coefficient, two ensemble learning
algorithms, i.e., random forest (RF) and Extreme Gradient Boosting (XGBoost), are used in
this study, among them the RF implemented based on bagging mechanism and XGBoost
executed based on boosting mechanism.

2.4.1. Random Forest (RF)

The random forest (RF) algorithm, introduced by L. Breiman [52], consists of a number
of classification trees, each of which casts a single vote for the most common class to be
given to the input data. The graphical representation of the RF algorithm is presented in
Figure 3a. The class that receives the most votes is then chosen as the winner. RF is used
for feature selection (FS), in addition to classification and regression tasks. The trees are
created by combining datasets with bootstrap subsampling and various feature subsets
for node-by-node splitting. Each tree has a distinct nature that, once mature, has little
bias. Additionally, low correlation is attained by choosing random feature subsets for each
tree. Finally, the RF algorithm yields low bias and low variance for the model after the
assembling of all the trees. For individual trees in RF, bootstrap aggregating from bagging
is intended to boost stability and accuracy [34]. In a classification problem, the class that
receives the majority of votes from the trees is chosen for decision-making. Regression
models, on the other hand, consider the mean of all predicted values from all decision trees.
One of the key issues with a decision tree algorithm is overfitting, which the RF algorithm
can also resolve. To decide the final output, RF employs a bagging technique in which a
different random subset of features is used each time to train a single decision tree. As a
result, RF is less likely to lead to overfitting.

Additionally, by employing a GridSearch technique, the parameter adjustment aids
RF in overcoming the overfitting issue; this technique is also applied in this work. Several
characteristics govern the diversity of the tree in the RF. A greater feature count guarantees
the most highly correlated trees at the expense of high computing power, while a lower
feature count produces a lack of correlation [23]. The number of trees, number of features in
each split, maximum depth, and number of sample leaf nodes are parameters that must be
considered to implement the RF algorithm. In general, both the classification and regression
tasks require a large number of trees in order to reach a steady state. The RF model involves
a splitting procedure that divides a single node into two or more nodes, with the model’s
ultimate output determined by a majority voting method.
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2.4.2. Extreme Gradient Boosting (XGBoost)

An improved implementation of the gradient boosting decision tree (GBDT) method
is known as Extreme Gradient Boosting (XGB). The GBDT uses only the first derivative,
whereas XGBoosting often applies the first and second derivatives during optimization.
Boosting is a method by which the ensemble aids in the fusion of several weak learners
to create a single strong learner. This approach uses a sequential learning process where
the current regression tree is further changed using the model to update the residuals to
better suit the residuals (errors) from the previous tree. This is a constant learning process
that progresses gradually to produce good results. Thus, newer regression trees trend to a
maximum connection to the negative gradient of the loss function, which not only increases
the algorithm’s adaptability but also converges on the loss function. For any given input,
xi, the predicted output ŷi for the GBDT can be written as shown in Equation (10) [53]:

ŷi = φ(xi) = ∑K
k=1 tk(xi), tk ∈ T. (10)

Here, K represents the function number in the given function space T.
These functions are introduced in XGB as a parameter, allowing the trainer to find

functions tk that fit the data extremely well while training and identifying the regions
accordingly. Therefore, XGB adds the regularization factor Ω(tk) to reflect the complexity
of the tree, and it uses Equation (11) to define the objective function of the optimization in
the training model.

L(φ) = ∑
i

l(ŷi, yi) + ∑
k

Ω(tk) (11)

Here, φ represents the model parameter. The loss function, which measures the degree
of similarity between the training set and the model, can either be a logistic loss or square
loss. The basic architecture of XGB is presented in Figure 3b. Another unavoidable aspect
of XGB is the shared-memory multiprocessing API known as OpenMP, which facilitates the
effective use of all CPU cores in parallel and the declaration of independent variables at the
beginning of the training process, thereby reducing training complexity and computation
time. Overfitting is typically more successfully resisted by the XGB model’s basic design.

2.5. Classification with Artificial Neural Network

The artificial neural network (ANN) is an information processing model constructed
by stacking layers of perceptions or artificial neurons that have been inspired by our
biological neural system. The ANN model can be used to learn complex patterns from
data to solve classification and prediction problems. If ANNs are provided with relevant
data, they can learn and model very complex and non-linear relationships in the data.
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Additionally, once they learn patterns, they can generalize their behavior, e.g., they can
predict the future output for unseen data instances [54].

Figure 4 represents the architecture of a neural network with a single hidden layer.
The first layer is the input layer, through which data are provided to the network. Each
neural network has only one input layer. The data propagate through the hidden layers to
the final layer, which is called the output layer.
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The operation of the ANN model can be described by the step-by-step procedure
as follows:

• Step 1: Initialize weights and bias and perform forward propagation

Every single unit in the hidden layer, called a perceptron, has weights and biases, and
the perceptron performs a defined mathematical operation. For each input instance, the
input is multiplied by the corresponding weight of the perceptron and the bias is added
with it. Initially, the weight and bias values are randomly selected. If the input data are
represented as X and the corresponding weight of the network is represented as W, then
this operation can be mathematically represented by the Equation (12),

Zl = W lX + bl (12)

Here, l represents the corresponding layer in the network. The next operation per-
formed by the perceptron is passing the above result to a non-linear activation function in
order to produce the output yl, as shown by the Equation (13).

yl = σ
(

Zl
)

(13)

Here, σ represents the activation function. This propagation of input data to the
hidden layer and finally onto the output layer is called forward propagation.

• Step 2: Estimating error values

Then, the output of the network is compared with the actual output for the input
observation to calculate the error, based on which weights of the neural network are
updated. Updating the weights for minimizing the error or loss between the actual output
and model-predicted output is referred to as training the network.

• Step 3: Performing backpropagation

Backpropagation is all about finding the impact of weights and biases in the resulting
loss or error. The loss is generally calculated on a batch of input instances based on an



Sensors 2022, 22, 8958 11 of 21

appropriate cost function. The change in the cost function with respect to the weights
and biases is determined by calculating the gradients of the cost function for all weights
and biases.

• Step 4: Update Parameters

Once the gradient is computed, an optimization step is used to select the appropriate
values for the weights and biases to minimize the prediction error. Gradient descent is
generally used as the optimization algorithm.

The process mentioned from step 1 to step 4 is repeated until the loss is minimized to
a satisfactory value; in other words, the network predicts an output that is very close to the
actual output. A three-layer ANN model was implemented in this work, and the model
parameters are listed in Table 1.

Table 1. Layer-wise parameters of the designed ANN model.

Layer Type Shape of the Output Numbers of Parameters

dense_1 (None, 256) 128,000

dense_2 (None, 128) 32,896

dense_3 (None, 32) 8256

dense_4 (None, 3) 195

Total params: 169,347 Trainable params: 169,347 Non-trainable params: 0

3. Experimental Testbed and Data Description

The current signals of bearings from an IM used in this work were collected by the
Research Center of Mechanical Engineering at the Paderborn University Kat Data Center,
Germany [55]. The designed testbed consists of an induction motor, a measurement shaft,
a test bearing module, a flywheel, and a load motor (Figure 5), and the testbed collects
vibration, current, torque, temperature, and speed data synchronously with five different
sensors [56]. A conventional industrial inverter was used to control the 425-W synchronous
motor, which had a 16 kHz switching frequency. Two different phases of the current signal
were recorded by the current transducer (LEM CKSR 15-NP model). Finally, the signal was
filtered with a low-pass filter of 25 kHz and sampled at a rate of 64 kHz to transform it into
a digital signal.
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A total of 32 different test bearings were used in the data acquisition phase, including
six normal bearings, 12 faulty bearings with artificially created damage, and 14 defective
bearings with accelerated lifetime testing. The normal bearings were tested with various
run-in times ranging from 1 h to more than 50 h. By following the VD1 3832 (2013)
standard, the geometric sizes of the bearing defects were assigned in this testbed to create
artificial damage. For the accelerated lifetime test, the inner race and outer race defects
were introduced using plastic deformation damage, pitting damage, and fatigue damage
techniques. The data collection process becomes more reliable when faults are injected into
bearings while maintaining the requirements set out in ISO/IEC 15,243(2010) in terms of
selecting fault measurements, such as the bearing geometry, fault location, and damage
size. Additionally, a variety of defects with a wide range of severity levels were tested
repeatedly under varied operating conditions by changing the rotational speed, load torque,
and radial forces to make the overall data collecting procedure robust and reliable. The
operating conditions used in the experimental process are listed in Table 2.

Table 2. Working conditions of the KAT-bearing testbed.

Serial No Rotating Speed (S) [rpm] Radial Force (F) [N] Load Torque (M) [Nm]

1 1500 1000 0.7

2 1500 1000 0.1

3 900 1000 0.7

4 1500 400 0.7

In this study, data from 17 bearings under three different conditions were considered
among the 32 different bearing signals. The damage was single-point damage without
any repetition or combination with other faults, and it was created artificially in the
faulty bearings. Each of the bearings mentioned in Table 3 has 20 measurements, and
each measurement contains a recording of 4 s. To conduct our analysis, we considered
1360 samples, each of which contains 1 s of data. As the sampling rate is 64 kHz, the final
dimension of the dataset is thus 1360 × 64,000. The 1360 samples include observations of
three conditions: normal, fault in the outer race, and fault in the inner race of the bearings.
To perform the supervised classification task, we created three groups based on the bearing
conditions; here, we labelled the normal condition as 0, the inner race fault as 1, and the
outer race fault as 2.

Table 3. Bearing conditions, bearing codes, and class labels for fault analysis.

Bearing Conditions Bearing Code Class Label

Normal Bearing K001, K002, K003, K004, K005, K006 0

Outer Ring KA04, KA15, KA16, KA22, KA30 1

Inner Ring KI04, KI14, KI16, KI17, KI18, KI21 2

Figure 6 shows representations of the current signals in the time domain for the
three different scenarios, where the signals show minor variations when observed in a
zoomed-in view.
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4. Proposed Method

A framework for bearing fault classification with the motor current signal is illustrated
in Figure 7. The bearing data for three different conditions, including normal conditions
and two faulty conditions, are considered to form the KAT dataset mentioned in Section 2.
The overall method is split into multiple phases, including data collection, pre-processing
of the current signal data, feature extraction with the WST, training the two ensemble ML
classifiers and ANN, and evaluating the model performance.
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Figure 7. The fault classification method based on the WST and ensemble ML classifiers.

The collected current signal contains 4 s of data for each bearing condition and
has a sampling frequency of 64 kHz. We consider samples with 1 s of data, providing
64,000 points for the three mentioned bearing conditions. The final input data matrix is
1360 × 64,000, where the matrix size for normal and outer fault conditions is 480 × 64,000
each and the dimension of the outer fault data is 400 × 64,000.

The input current signal data are divided into training sets and testing sets with a ratio
of 80:20. We implement the overall process in MATLAB 2020. After finalizing the training
and test data matrix, we need to build the wavelet scattering network according to the
signal properties. A two-layer scattering network (m = 2) is utilized with a Q factor of [8 1].
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The 0th-channel represents the original signal, and the final scattering coefficients are
generated through the following channels. The input bearing signal for the inner fault
bearing condition and the corresponding 0th-order and 1st-order scattering coefficients are
provided in Figure 8.
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For wavelet decomposition, the Morlet wavelet is used, and the invariance scale value
is fixed to 0.5 s. The basic wavelet and the designed two-layer wavelet scattering network
with Q1 = 8 and Q2 = 1 are presented in Figure 9. This architecture preserved the most
signal information for classification, as compared to other settings, for the invariance scale
and wavelet octave resolution.
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After applying the feature engineering techniques described in Section 2.3, the feature
vector is generated from the training and testing data individually. This extraction process
generates a set of features having a dimension of 499 × 8 for each row. Thus, the feature
size depends on the length of the input signal, and the feature matrix dimension becomes
8704 × 499 and 2176 × 499 for the training and testing data, respectively. Finally, the
ensemble models and ANN are trained with the training feature set, and the models’
performances with the test features extracted by the WST are evaluated.

Fault Classification Performance Evaluation Parameters

According to the workflow provided in Figure 7, the bearing data are split into
training and test sets. After extracting wavelet scattering coefficients from both sets of
data, the classifier models are trained with the training coefficients. Finally, the test set is
evaluated and the model evaluation parameters, such as the precision, recall rate, F1_score,
and accuracy, are calculated. All these parameters can be obtained from the entries of
the confusion matrix, which reflects how well the algorithm classified each record and
where misclassification occurred. The training dataset’s actual labels are represented in the
matrix’s rows, and the predictions are shown in the matrix’s columns. These evaluation
parameters can be calculated using Equations (14)–(17).

Precision =
TP

TP + FP
(14)

F1_score =
2× Precision× Recall

Precision + Recall
(15)

Recall =
TP

TP + FN
(16)

Accuracy =
TP + TN

TP + FP + TN + FN
(17)

5. Results and Discussion

The WST feature matrix is used with two ensemble classifiers (RF and XGB) and a
multi-layer ANN model to assess the fault classification performance. To achieve the best
performance from the mentioned algorithms, the optimal hyperparameters were decided by
an intensive hyperparameter search with a wide range of parameter values. To determine
the best set of hyperparameters, each independent set is applied to the model with k-fold
cross-validation, and then the hyperparameter with the best fit is determined by using
GridSearchCV (a scikit-learn class). For each classifier, grid search was conducted using
10-fold cross-validation to ensure the reliability of the resultant output, and the R2 metric
was used to optimize model performance. The ranges of parameters considered, along
with the optimum values, are listed in Table 4. All the associated programs are executed
in a desktop computer equipped with an Intel(R) Core (TM) i7-9700 CPU @3.6 GHz, and
16 GB RAM.

Table 4. Parameter selection through grid search.

RF XGB ANN

Model
Parameters

Considered
Range

Optimum
Value

Model
Parameters

Considered
Range

Optimum
Value

Model
Parameters

Considered
Range

Optimum
Value

Minimum
sample leaf (1, 2, 3) 3 Maximum

depth 1 to 20 15 Number of
epochs

(20, 50, 100,
200, 250] 200

Minimum
sample split (2, 4, 8, 16) 8 Gamma 0.1 to 1 1 Batch size (32, 64, 128,

256) 32

Number of
estimator

(20, 30, 50, 100,
150, 200, 250) 150 Number of

estimator 50 to 1000 500 Learning rate (0.001, 0.01,
0.1, 0.2, 0.3) 0.2

Maximum
features (3, 5, 7, 9) 3 Learning

rate 0.1 to 1 0.1 Momentum (0.0, 0.2, 0.4,
0.6, 0.8, 0.9) 0.9
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After finishing the training process with the training data using the optimum value
of each model, the model performance was finally tested with the test feature set. Along
with the three mentioned models, we also trained and tested other familiar ML classifiers,
including a support vector machine (SVM) and k-nearest neighbors (KNN), to compare
the model performance. The evaluation parameters of these mentioned models and the
confusion matrix of the three best-performing models (RF, XGB, and ANN) are presented
in Table 5 and Figure 10, respectively.

Table 5. The resultant evaluation parameters.

Precision Recall F1_score Accuracy (%)

SVM 0.92 0.90 0.92 92.88

KNN 0.89 0.86 0.88 89.89

RF 0.99 0.99 1.00 99.26

XGB 0.99 1.00 0.99 99.54

ANN 0.99 0.99 0.99 99.13
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Figure 10. Confusion matrix of (a) RF, (b) XGB classifier, and (c) ANN.

As can be seen from the confusion matrices, all three classifiers classify faults very
accurately, with a negligible number of false positives and false negatives. The accuracy
and loss curve for the ANN (up to 200 epochs) are provided in Figure 11. The accuracy
curve indicates that the ANN model achieves a training accuracy of almost 100% and a
testing accuracy of around 99%. After finishing 50 epochs, the model starts providing stable
accuracy values until the final epoch of the training process.

For all the classifiers considered in this work, we have shown box plots of the accuracy
distribution resulting from 100 experiments (Figure 12) to observe the stability and repeata-
bility of our proposed model. For the SVM classifier, the achieved accuracy is around 92%,
but the boxplot is wider than the other techniques and contains a long whisker laying
toward the outlier of nearly 84%, which makes this method less stable. The KNN classifier
can classify the bearing states with almost 90% accuracy and has a less wide boxplot than
that of the SVM model. The accuracy scores of the corresponding boxplots for RF, XGB,
and ANN were more than 99% and did not deviate that much from the mean and median
values during the overall experiments. Based on the results presented in the boxplot, the
extracted features with the WST can be classified with ensemble ML classifiers or ANN
with high classification accuracy and stability.
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Comparison with Other Works

We conducted a comparative analysis with existing research works where the same
current signal of the bearing conditions was considered. In [55], a three-level wavelet packet
transform is applied for extracting significant features; 86.03% classification accuracy was
achieved with the SVM-particle swarm optimization method. An information fusion-based
fault classification approach was carried out by Hoang and Kang [57]. They replaced the
combined time series data with greyscale images and classified the resultant images with
three different supervised algorithms. The classification accuracy achieved by multilayer
perceptron, KNN, and SVM approaches was 98%, 97.7%, and 98.3%, respectively. Further-
more, Hsueh et al. [58] applied the empirical wavelet transform technique to generate a
greyscale image, achieving 97.3% accuracy by classifying it with the CNN model. Though
the bearing current signal data of different conditions are very difficult to differentiate,
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researchers proved the image conversion technique can be an alternative way to generate
distinguishable patterns and classify them easily with different ML algorithms. With our
designed classification approach that combines WST and XGB models, we achieved 99.54%
accuracy. The comparison outcomes are displayed in Figure 13.
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By considering the outcomes of the discussed methods, it can be said that our proposed
fault classification method based on WST features provides more than 99% accuracy
with only feature extraction and classification steps. This technique not only reduces the
complexity of the overall model, but it also does not require any feature selection steps to
improve the model performance.

6. Conclusions

This paper presented a fault diagnosis approach for analyzing bearing faults using
wavelet scattering transform-based features and ML classifiers. Modern industrial appli-
cations still place a great deal of importance on automatic fault detection and diagnosis
via electrical signature analysis. For this reason, we utilized motor current signals from a
publicly available bearing dataset to evaluate the proposed method. A two-layer WST was
applied to the original signal to extract features in terms of the scattering coefficients and
further train two ensemble classifiers (RF and XGB) and a multi-layer ANN. All three of
these models perform very well with the WST features and achieve more than 99% accuracy
along with low computational complexity. We included different operating conditions data
for three different bearing conditions to validate the outcomes of our proposed model. Al-
though we utilized an existing technique, the wavelet scattering transform, for generating
features, this work shows that if WST-based features are used with ensemble classifier and
ANN it could improve fault classification performance compared to EWT, IF, and WPD-
based features for the same dataset. In this study, we considered only the classification
of the bearing states; fault severity analysis was not considered. In our future research,
we will consider fault severity analysis and incorporate more faulty conditions data from
multiple sensors to provide a complete solution in the field of bearing fault diagnosis.
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