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0. Summary. Linear procedures for classifying an observation as coming from
one of two multivariate normal distributions are studied in the case that the two
distributions differ both in mean vectors and covariance matrices. We find the
class of admissible linear procedures, which is the minimal complete class of
linear procedures. It is shown how to construct the linear procedure which
minimizes one probability of misclassification given the other and how to obtain
the minimax linear procedure; Bayes linear procedures are also discussed.

1. Introduction. The general problem of classification is to take an observation
and to classify it as coming from one of several populations ([1], Chapter 6).
The so-called diseriminant function is used for this purpose in the case of two
multivariate normal distributions with different mean vectors and common
covariance matrices. In this paper we consider the classification problem in the
case of two multivariate normal distributions with different covariance matrices.
We assume all parameters known.

The two distributions of the vector variable x of p components are denoted by
N(u1, Z1) and N(ps, Z2), where p; and g, are the mean vectors and Z; and 2,
are the covariance matrices of the first and second populations, respectively;
the density of the ¢th distribution (¢ = 1, 2) is

(1.1) (x| pi, Zi) = m €xp I:—% (x — w)'Zi(z — IJ«i)] .

The theoretically best procedures for classification (or, alternatively, for testing
the null hypothesis of one distribution against the alternative hypothesis of the
other distribution) are based on the likelihood ratio n(z | p2, Z2)/n(x | w1, Z1);
one classifies into the first population if this ratio (for a given observation x)
is less than a constant and into the second otherwise. If 2, = Z., the likelihood
ratio depends on a linear function of z (the discriminant function), but if 2, = 2,
the ratio depends on a quadratic function of z. In particular, in the univariate
case the logarithm of the likelihood ratio is

12) o 1‘+1<l—l>x2_<&_&>x+l<é_é)
. g¢72 2\dif i o o} 2\e? a3/’

where 2, = of and 3 = 3. If o3 > o1, the coefficient of z° is positive, and the
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set of x’s for which (1.2) is less than a constant is a finite interval. The proce-
dure is to classify an observation as from the first population if it falls in this
interval and as from the second if it falls outside (that is, if the observation is
sufficiently large or sufficiently small). In the bivariate case the regions are
defined by conic sections; for example, the region of classification into one popu-
lation might be the interior of an ellipse or the region between two hyperbolas.
In general the regions are defined by means of a quadratic function of the ob-
servations which is not necessarily a positive definite quadratic form. These
procedures depend very much on the assumption of normality and especially
on the shape of the normal distribution relatively far from its center. For in-
stance, in the univariate case cited above the region of classification into the
first population is a finite interval because the density of the first population
falls off in either direction more rapidly than the density of the second since its
standard deviation is smaller.

One may want to use a classification procedure in a situation where the two
populations are centered around different points and have different patterns of
scatter, and where one considers multivariate normal distributions to be reason-
ably good approximations for these two populations near their centers and be-
tween their two centers (though not far from the centers, where the densities
are small). In such a case one may want to divide the sample space into the two
regions of classification by some simple curve or surface. The simplest is a line
or hyperplane; the procedure may then be termed linear.

Now let us define linear procedures formally. Let b(0) be a vector (of p

components) and ¢ a.scalar. An observation z is classified as from the first popu-
lation if ¥’z < ¢ and as from the second if b’z > c.
- We are primarily interested in situations where the important difference
between the two populations is the difference between the centers; we assume
u1 ¥ uz . We also assume 2; % Z,, since the case 2, = Z; has been treated in
detail, and we assume that =, and X, are nonsingular.’ Under these conditions
we study the optimal linear procedures.

When sampling from the ¢th population b’z has a univariate normal dis-
tribution with mean &b’z = b’u; and variance

(1.3) 8i(b'x — bus)® = &b/ (z — ui)(x — w)'d = 'Zd.

The probability of misclassifying an observation when it comes from the first
population is ‘

bx — blun ¢ — b’m} (6 — b'#l)
’ o = — —_—_—
(14)  Pri{bz > ¢} = Prl{ Ebr C wEo T P\ wE )

3 If 3, is singular, the probability in the ith distribution is concentrated on some linear
subspace. If both =, and 3, are singular and the subspaces are the same, the distributions
can be defined on that common subspace with nonsingular covariance matrices and the
problems are mathematically the ones we consider. If the subspaces differ, classification
can be made with zero probabilities of error. (For example, if Z; is singular and 2 is not,
classify as from the first distribution if and only if the observation falls into the subspace
corresponding to Z; .)
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where

(1.5) o) = [ " (2n) e dt

is the standardized cumulative normal distribution, and the probability of mis-
classifying an observation when it comes from the second population is

b — buy _ ¢ — b’/.l.g}

=P <

“{@%w%—w%w%

¢ — bus by — c>

—3 @ — —3 —_— —— .

(o) =1 -2 (e
It is desired to make these probabilities small or, equivalently, to make the
arguments

Pr, (V' = ¢

——

(1.6)

= Wy — o
(1.7) ?/1 = (b'Zlb)% ) yZ = (b’zZ b)é

large. Some specific problems of desirable solutions are to find (1) the procedure
that minimizes the probability of one error of classification when the other is
specified, (2) the procedure that minimizes the maximum probability of error,
and (3) the procedure that minimizes the probability of error when a priori
probabilities of the two populations are specified. The solution to each problem
is to be found within the set of “admissible’ linear procedures. In Section 2 we
characterize the admissible solutions except for some solutions in an exceptional
case. In Section 3 we show how to use these solutions. In Section 4 we treat the
exceptional case.

Cavalli [2] and Penrose [5] have studied the problem of classification in the
univariate case of unequal variances, and Smith [6] has proposed the use of the
likelihood ratio in the multivariate case of unequal covariance matrices. After
this paper had been drafted, the authors learned that one of the problems treated
here had been considered by Kullback (pp. 348-350 of [4]). Some of the results of
this paper have recently been given by Clunies-Ross and Riffenburgh [3] in a
different form. The present paper contains a more complete treatment of these
problems and suggests explicit computational procedures.

2. Admissible procedures. Each procedure is evaluated in terms of the two
probabilities of misclassification. One procedure is better than another if each
probability of misclassification of the former is not greater than the correspond-
ing one of the latter and at least one is less. A procedure is admissible if there is
no other procedure which is better. Since the transformation by the normal
cumulative distribution ®(y) is (strictly) monotonic the definition of befter
linear procebures can just as well be made in terms of the arguments y; and y.
given by (1.7); one linear procedure is better than another if each of its argu-
ments is at least as large as the corresponding argument of the other and one or
both are larger. For many purposes it will be more convenient to work with the
y1 , y2-coordinates than the probabilities.
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For a given y, there is a set of corresponding vy, ,
Vs — (V')

(2.1 = J
( ) yl (blzl b)% )
where

(2.2) 0= 2 —

these are obtained from (1.7) by solving the second equation for ¢ and sub-
stituting in the first. The funetion y, is continuous in b except possibly at b = 0.
However, since ¥, is homogeneous in b of degree 0 we can restrict b to lie on an
ellipse, say b'Z:b constant, and on this ellipse (a bounded closed domain) z,
is continuous and hence has a maximum. Thus among the linear procedures
with a specified yo.-coordinate (equivalently with a specified probability of mis-
classification when sampling from the second population) there is (at least) one
procedure which maximizes the y;-coordinate (equivalently minimizes the other
probability of misclassification).
The maximum y;-coordinate is a decreasing funetion of 7. . To see this, con-
sider 45 > y., and let b* be a vector maximizing y¥ (for this y5). Then
b6 — ya(b'2:0)" | b¥6 — ya(b*Z,b*)
(b'Z.b)t = (b¥=,b*)}
b*'s — y;‘(b*’ng*)%
(b¥Z,b*)t

"The set of y» with corresponding maximum g, is thus a curve in the ¥, , y.-plane
running downwards and to the right. Since 8 £ 0, the curve passes above and
to the right of the origin. (Since the maximum of a family of linear functions is
convex, the maximum g, is a convex function of . and therefore a continuous
funetion.)

Now we want to argue that a point (1, y2), where y; is maximized with re-
spect to b for a given y, , corresponds to an admissible procedure. If not, there
would be another procedure with arguments y1, 43 such that 45 = ., v5 =
with at least one inequality being strict. If y5 = 7., y1 > 1 would be a con-
tradiction to the assumption that »; was a maximum; if y3 > ¥, , the maximum
coordinate corresponding to %> must be less than y; (by the monotonicity prop-
erty) which contradicts yi = ;. This proves the assertion.

The set of points (71, 32) for which 3 is maximum is complete in the sense
that for any point outside this set there is a better one in the set; given any
point (y¥, y¥) for which »¥ is not the maximum corresponding to u3, the point
(max 11, y3) is better. We observe that this is the smallest set that is complete
because each point in it is admissible (that is, cannot be improved on). Clearly,
we could have carried out these developments in terms of the maximum y,
for given y; , and we would be led to the same minimal complete set. Moreover,
this set contains all admissible points, since any point outside the set can be
improved on and hence is not admissible. This set is then the set of admissible
points.

max ¥ = max
(2.3)

> = max yf
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The above discussion proves that the set of admissible points is complete,
and it characterizes the set of admissible points as pairs (y:, y2) for which y;
is maximum given y. (or, equivalently, y, is maximum given y;). This result
does not follow from the usual theorems (for example, [1], Chapter 6) because
the linear procedures are not all possible procedures. As a matter of fact, the
set of all possible probabilities of misclassification with linear procedures is not
necessarily convex and the set of admissible points (in the space of probabilities)
is not necessarily a convex curve.

We now want to characterize analytically the admissible procedures. This
means finding the vector b that maximizes y; for each given y, . (The correspond-
ing ¢ is obtained by solving (1.7).) One can differentiate (2.1) with respect to
the coordinates of b and set the derivatives equal to 0. Under certain conditions
(as we show later) this leads to

(2.4) b = (42 + 8:2)7,
where ¢; and {, are scalars, and then
(25) ¢ = b'p,l + tlb’Elb = b'p,z — t2b’22b.

However, since this method still leaves one with verifying that a solution to
the derivative equations yields a maximum, we shall use another method to
relate (2.4) and admissible solutions.

TraeoreM 1. If a point ;1 > 0, 5o > 0 is admisstble, there exist &, > 0, & > 0
such that the procedure is defined by (2.4) and (2.5).

Proor. Let the admissible procedure be defined by the vector 8 and scalar v.
The line

s — B Bus — s

=0 S Gme T @y
with s as parameter has negative slope and the point (n;, %2) is on it (in the
positive quadrant). Hence there exist positive numbers ¢, ¢, and k such that
the line (2.6) is tangent to the ellipse

2 2
(2.7) ¥ _ g
t1 123

at the point (1, #2). The slope of the line tangent to the ellipse at a point (31,
ye) is — (y1/12) (/). Consider the line defined by an arbitrary vector b and
all scalars ¢. This line is tangent to an ellipse similar (or concentric) to (2.7)
at (y1, ye) if ¢ in (1.7) is chosen so — (y1/y2) (f2/t1) is equal to the slope of this
line. For given b, the value of ¢ and the resulting y; and y, are

LY Ebb s + L2

T ubEb + LbZb

o u(b'2ib)e __ t(0'Z,b)W's
YT LU b £ abmb’ P T L0Eb + b Sb

(2.8)
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This point (y1 , ¥2) is on the ellipse with constant

Vi oy (b's)*

(29) DU Y PR S A1 S
The maximum of the right hand side of (2.9) with respect to b occurs when
b is given by (2.4). However, the maximum must correspond to the admissible
procedure, for if there were a vector b so that (2.9) was larger than £, the point
(n:, 72) would be within the ellipse with constant (2.9) and would be nearer
the origin than the line tangent at (y:, y2); then some points on this line (cor-
responding to procedures with vector b and various scalars ¢) would be better.
To complete the proof of Theorem 1 we note that the expression for ¢ in (2.8)
becomes (2.5) when we substitute (2.4).

It might be pointed out that since Z; and Z; are positive definite and # and
f, are positive, 4,2, + £, is positive definite and therefore nonsingular. The
right hand side of (2.9) is homogeneous of degree 0 in b. Hence, any multiple
of (2.4) is an equivalent solution; in that case ¢ is given by the same multiple
of (2.5). (The procedures are the same.) When b is given by (2.4), it is normal-
ized so

(210) b’a = b’(t121 + t222)b = 6’(15121 + tzzz)_la.
Then (2.8) reduces to
(2.11) o= 4('Zh), g = (Db

Note that the right hand sides of (2.11) are homogeneous of degree 0 in # and
1, (for b given by (2.4)). We shall find it convenient to normalize by & + & = 1
when both are positive, by t; — & = 1 when t; > 0,6 < 0,and by e — s = 1
when #; < 0, ¢ > 0.

Now we want to show that y; given by (2.11) is a monotonic increasing func-
tion of #(0 < # < 1) and ¥ is a monotonic decreasing function. To this end
it is convenient to make the transformation that carries the covariance matrices
to canonical form. There is (see Appendix 1 in [1], for example) a nonsingular

matrix N such that

¥, = N'N,
N O - 0
(212) %= N'AN = N’ (3 >:\2 9 N,
0 0 - X
§ = Ny,
where A is a diagonal matrix with diagonal elements Ay Z A = -+ 2 A, > 0

(these elements being the roots of |Z; — AZz| = 0). Then (2.11) becomes
y = tly' (A + 6D 7ALA + D7

(213) fd 7?)\] t ? 'Y? 1
= [; (tns + tz)z] ’ =t [J;l (BN + t2)2:l ’
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The derivative of yi when & = 1 — # is

dyl < Yi )\J
(2.14) i 2t1]Z (CreEaAl 0=Hh=1—-6Z=1
This is positive for 0 < # = 1, which shows that y; (>0) increases with ¢ .
A similar argument shows that y. decreases with ¢ . Hence, the set y1, y» given
by (2.11) is a curve in the positive quadrant that decreases.

TuaEOREM 2. The procedure defined by b = (621 + £22) 15 and ¢ given by (2.5)
for any t and fx such that 62, + 6. 1s positive definite is admissible.

Proor. If ¢ and ¢ are both positive the corresponding y; and y. are positive.
If this procedure were not admissible, there would be an admissible procedure
that would be better because the set of admissible procedures is complete; both
coordinates of this procedure would also be positive. By Theorem 1 this proce-
dure would be defined by 8 = (712 + m:2:) 6 for some 7, > 0, 7 > 0,
1 + 7 = 1. However, by the monotonicity properties of y; and y, as functions
of ¢, , one of the coordinates corresponding to 7, would have to be less than one
of the coordinates corresponding to # . This shows that the procedure defined by
8 is not better than the procedure defined by b and thus contradicts the assump-
tion that the procedure originally assumed was not admissible. Hence, the
theorem is proved for # and ¢ positive.

If , =0, then yy = 0, b = 236 and y, = (6’2'2'16)%. However, for any b
if y; = 0, then y, = b8/ (b’Ezb)% and this is maximized for b = =7'8. Similarly
if & = 0, the solution assumed by the theorem is optimum.

Now consider the case {; > 0 and £ < 0 and ¢ — & = 1. Any hyperbola

2
(2.15) By,
t ta
for £ > 0, cuts the y-axis at + (t:k)*; we are interested in the right hand branch.
The procedure assumed in the theorem has y > 0 and y < 0 (by (2.11)).
Substitute from (1.7) into (2.15) to obtain

(¢ = bu)® | (Vus —)* _ i

(2.16) 6Lb'21b teb'Z5b

The maximum of this expression with respect to ¢ for given b is for ¢ at the value
specified by (2.8). (We note parenthetically that when # and ¢ are both posi-
tive the value of ¢ given by (2.8) gives a minimum of (2.16), not a maximum.)
Then y; and 3. are of the form (2.8), and (2.16) is (2.9). The maximum of
(2.16) is then given by b = (4Z; + £2Z2) '8 It now follows that the point is
admissible because otherwise there would be a better point which would lie
on a hyperbola with greater &, but that would be contrary to our construction.

The proof of Theorem 2 is completed by noting that the case of # < 0 and
& > 0 is similar to the last case treated.

Let us observe that the above proof shows that there is only one procedure
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generating each admissible point (y1, y.); given (y1, ¥2), any other b and ¢
generating it would be proportional to the solution of the theorem.

Unless 6 has a special relation to Z; and 2, oll admissible procedures are de-
fined by Theorem 2. However, the exceptional case is primarily of mathematical
interest, and its treatment is deferred to Section 4. We would expect that the
procedures given above would cover the cases of practical interest.

We note that if =, = k2, , every b is proportional to =7'6 and the procedures
only differ with respect to the scalar ¢. This is the classical case.

3. Use of admissible procedures. Given # and ¢, (so {121 + .2, is positive
definite) one would compute the optimum b by solving the linear equations

(31) (t121 + t222)b = 6,

where 8 is given by (2.2), and then compute ¢ by one of (2.5). Usually # and &
are not given, but a desired solution is specified in another way. We consider
three ways.

3.1 Minimization of one probability of misclassification for a specified probability
of the other. Suppose we are given i, (or, equivalently, the probability of mis-
classification when sampling from the second distribution) and we want to
maximize y; (or, equivalently, minimize the probability of misclassification
when sampling from the first distribution). Suppose y» > 0 (i.e., the given prob-
ability of misclassification is less than ). Then if the maximum y;, = 0 we want
tofind e = 1 — &1, 50 yo = L(b'Z:b)?, where b = [4,2; + £,22]'s. The solution
can be approximated by trial and error since y, is an increasing function of ¢, .
For t; =0, yo =0 and for &, = 1, y» = (b’Egb)% = (b'8)} = (8'27"5), where
b = 8. One could try other values of #; successively by solving (3.1) and in-
serting in b’Z.b until t2(b’22b)% agrees closely enough with the desired y. . (1 > 0
if the specified y» < (8'Z3%8)%.)

For t; > 0,4, < 0 and £, — & = 1, ¥ is a decreasing function of & (=1)
and at &, = 1, yo = (8'27")%. If the given y» is greater than (6'27%)*, then
11 < 0 and we search for a value of £ so that the given y» = £(b'Z:b) ' We re-
quire that ¢ be large enough so that 2, + £33, = (& — 1) Z; + 2, is positive
definite. In an exceptional case the value of #(b’ =,b)* is bounded and in such a
case one could not find the desired #; if y, was sufficiently large. (See Section 4.)

The other case is & < 0, &4 > 0, and & — & = 1. Here 2 < 0. In this case
7218 an increasing funection of ¢ . Again we can search for a value of (=4 — 1)
so that the given s is &(b'Z:b) %

3.2. The minimax procedure. The minimax procedure is the admissible proce-
dure for which 3; = 7, . Since for this procedure both probabilities of correct
classification are greater than %, y; = 3. > 0 and ¢ > 0, & > 0. We want to
find{(= 4 = 1 — &) so that

0=y — ot =£2h— (1 — )b
(3.2)
bz, — (1 — t)zzz]b.

I
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Since ¢} increases with ¢ and 32 decreases with ¢, there is one and only one solu-
tion to (3.2) and this can be approximated by trial and error by guessing a value
of t(0 < t < 1), solving (3.1) for b, and computing the quadratic form on the
right of (3.2). Then another ¢ can be tried.

An alternative approach is to set y; = % in (1.7) and solve for ¢. Then the
common value of y; = . is

b'é

®'216)F + (B'Z20)F°

(3.3)

and we want to find b to maximize this, where b is of the form
2+ (1 = 2]

with0 < ¢t < 1.

When Z; = 2,, twice the maximum of (3.3) is called the distance between
the populations. This suggests that when Z; may be unequal to Z,, twice the
maximum of (3.3) might be called the distance between the populations.

Welch and Wimpress [7] have programmed the minimax procedure and
applied it to the recognition of spoken sounds; one author of the present paper
is indebted to the above for stimulating discussions.

3.3. Case of a priori probabilities. Suppose we are given a priori probabilities,
¢: and ¢. , of the first and second populations, respectively. Then the probability
of a misclassification is

(34) ol — &(y)] + @[l — &(y)] = 1 — [g@(y1) + @B (y)].

We want to minimize this probability. This is the Bayes problem. We know that
the solution will be an admissible procedure. If we know it involves y; = 0
and y. = 0, we can substitute y; = £(b’Zp)* and 4. = (1 — ¢) ' =:b)} where
b= [t + (1 — ¢) 2], into (3.4) and set the derivative of (3.4) with respect
to ¢ equal to 0, obtaining

d d
(35) ad(u) ' + aely) T = 0,

where ¢(u) = (27) % . There does not seem to be any easy or direct
way of solving (3.5) for ¢. The left hand side of (3.5) is not necessarily
monotonic. In fact, there may be several roots to (3.5). If there are, the absolute
minimum will be found by putting the solution into (3.4). (We remind the
reader that the curve of admissible error probabilities is not necessarily convex.)

We can modify (3.5) by observing that in the 3, y.-plane the slope of the
tangent to the curve of admissible points is (dyz/dt) /(dy:/dt), and this is the
slope of the line associated with the vector b, namely, —(b'Zd)}/(b/Z:b)1
With this substitution, (3.5) becomes

qQ1

_ T
(3.6) m¢(y1) = md’(yz)-



CLASSIFICATION INTO NORMAL DISTRIBUTIONS 429

To find a eomputational solution of (3.6) perhaps it is advisable to sketch the
curve of admissible solutions and then try values of ¢ in (3.6).

It might be noted that if Z; = k=, and k¥ > 1 the solutions all depend on
the linear function with vector of coefficients =18, and the variance of the linear
function for the first distribution is greater than the variance for the second. A
procedure having a very small probability of misclassification when sampling
from the first population may have such a large probability of misclassification
when sampling from the second that the sum of the probabilities is greater than 1
(which shows that the set of admissible probabilities is not convex). Then if ¢
is very near 1 the procedure of always classifying as the first population may
have a smaller overall probability of error than any linear procedure with finite ¢.
This may be the case more generally when Z; — 2 is positive definite.

The sum of the two probabilities of misclassification being greater than 1
indicates a procedure which can be improved upon by a randomized procedure
that is independent of the observation. The sum of the probabilities is greater
than 1 if and only if for this procedure y; + y. < 0. If ¢4 + & > O, then y; -
3. > 0 and the procedure is better than pure randomization. It might also be
pointed out that the lack of convexity of the curve of the admissible probability
points can occur near the middle of the curve (where both probabilities are less
than 1) if Z; and 2, differ greatly (in the sense that A; is very different from \,).

4. The exceptional case. Now let us examine the conditions under which the
previously studied procedures include all admissible procedures. Since

(4.1) 621 + 62 = N'(4A + LI)N,

for this matrix to be positive definite #,A + £ must be positive definite; this
means 4A; + fp > 0; that is,

(B/t) > —Xp, >0 £<0,
(4.2)
(b/t) < =N, £ <0, &>0.

Equivalently & > (1 4+ A,) ™ for 4 > 0 and & = — 1 <0, and
h> =1+

fOI’tl <Oandt2 = t1+ 1>0.

To include all procedures with 7, > 0 and y; < 0, the expressions in (2.13)
must tend to © and — «, respectively, as #; approaches 1/(1 + Ap). This is
the case if at least one of the denominators goes to 0 with the numerator posi-
tive. Let the multiplicity of the root A, be k£ (that is, Apsp1 = -+ = Np).
Then all admissible procedures with % > 0 and y» < 0 are included in the
characterization of Section 2 if and only if at least one of yp—py1, *++, Vo is
different from 0.

Similarly, let the multiplicity of A; be &’ (that is, Ay = - -+ = N). Then the
preceding characterization includes all admissible procedures with y < 0 and
y2 > 0 if and only if at least one of v1, - - - , v, is different from 0.
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Now let us study the exceptional cases. Suppose Z; and =, are in canonical
form. Let Z, = I,

A O s b
an soan(t 0 e () e (),
0 Al 0 b®

where the partitioning is into p — % and % rows and columns. For given 3, < 0
we want to maximize
_ 08— gp(0'Eb) b8 — (0 + 5P'p?)}

0'zZ1b) BDADbD I £, b@ @)1
Note that y; depends on b® only through b®'d® = ¢, say. For given b, y,
is maximized by ’

(4.4) 1

217 (1) w12
_ @@ _ yald T (A — A1) Wy M
(4.5) z2=0"0" = AT —b7'b",
if the right hand side of (4.5) is nonnegative (and by z = 0 otherwise) and if
b™ 6 £ 0; this can be verified by substituting b8®'b® = z in (4.4) and setting
the derivative with respect to z equal to 0. When this value of 5®'b® is sub-
stituted into (4.4), we obtain
[ 502 yg}a
4. = vl
(4.6) (! {b(l"(Al 3, 100 + x,
(If bV'6Y = 0, the supremum of y; is the limit as z — = ; this is (y3/A,)%, which
is (4.6) for b6 = 0.) Now, y; is maximized when the first term under the
square root in (4.6) is maximized, namely for

(47) bW = (A — D) 6%,
and then b's® = 0. When we put this back in (4.5), we obtain

2
b(Z)’b(Z) — g& _ b(l)’b(l)

)\2
(48) ,
= %; — 8" (A — N I) 2.
p
The right hand side of (4.8) is nonnegative when
(4.9) ys = Ny (A — D)WY,

The right hand side of (4.9) is the upper bound of the values of y3 that can be
obtained by the procedures of Section 2 (for y» < 0).
When we put this solution into (4.4) we obtain

(4.10) yo= [P (A~ MDY 4+ W]

Thus as y, — — », we have y; — <. These complete the set of admissible solu-
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tions for y» < 0. It is of interest to note that the additional y;, ys-points lie
on the hyperbola

(4.11) Ui — (a/N) = 87 (A — A D)W

Note that b® is not uniquely determined. If & = 1, the sign of b® is not de-
termined; if ¥ > 1, the determinacy is that of an orthogonal transformation
in k dimensions. This indeterminacy is to be expected because when 5% = 0
there is no direction specified in these % dimensions. Note also that b is the
same for all exceptional cases (for . < 0) and is proportional to the limit of
b® in the nonexceptional case as & — 1/(1 + A,). As |ye| increases, the norm
of b® increases.

The exceptional case for y; < 0 can be treated similarly.

It might be pointed out that as one y-coordinate gets large (that is, as one
probability of misclassification becomes small) and the other coordinate small,
the procedure depends more and more on the maximum ratio of variances. In
canonical form the coefficient vector is (#;A + t,I) y; that is, the ¢th coordinate
is vi/(tAs + t2). In the nonexceptional case, when v, = 0, a8 & + 1 = 4 —
1/(1 + A,), tih, + t: — 0 and the pth coordinate of the vector approaches .
This is the direction of maximum variance of Z, compared to Z;. In the ex-
ceptional case, b® becomes indefinitely large compared to b®; this feature
again picks out a direction of maximum variance. This feature, of course, depends
on the assumption of normality; as one get farther away from the centers of the
distribution the ratio of the densities of the linear combinations depends more
on the covariance structure. In practical situations these solutions seem of little
interest because one does not want the procedure to depend crucially on the
covariance matrices.

It might be also noted that for every admissible procedure b’ £ 0; that is
b'uy # b'uz . This means that every admissible procedure makes some use of
the fact that u; = us .
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