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Abstract
A classification based cytotoxicity nano-structure-activity-realtionship (nano-SAR) is presented
based on a set of nine metal oxide nanoparticles to which transformed bronchial epithelial cells
(BEAS-2B) were exposed over a range of concentrations of 0.375–200 mg·L−1 and exposure times
up to 24 h. The nano-SAR is developed using cytotoxicity data from high throughput screening
(HTS) assay that was processed to identify and label toxic (in terms of the Propidium Iodide
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uptake of BEAS-2B cells) versus non-toxic events relative to unexposed control cell population.
Starting with a set of fourteen intuitive but fundamental physicochemical nano-SAR input
parameters, a number of models were identified which had classification accuracy above 95%.
The best performing model had a 100% classification accuracy in both internal and external
validation. This model is based on four descriptors including the atomization energy of the metal
oxide, period of the nanoparticle metal, nanoparticle primary size, in addition to nanoparticle
volume fraction (in solution). Notwithstanding the success of the present modeling approach with
a relatively small nanoparticle library, it is important to recognize that a significantly larger data
set would be needed in order to expand the applicability domain and increase the confidence and
reliability of data-driven nano-SARs.
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1. Introduction
Nano-sized materials are increasingly utilized as common elements in many modern
industrial products and processes primarily due to their small size and unique nano-scale
properties[1]. Engineered nanomaterials (eNMs) are estimated to be components of more
than 1000 commercial products[2], and thus there is an increased public concern about the
inherent adverse impacts of eNMs and the resulting exposure that may take place in the
workplace, among consumers, and in the environment[3]. Although recent studies have
identified that certain eNMs possess properties that may lead to biological hazard[4], the
understanding of the general principles governing the toxicity potential and the long-term
environmental health and safety impact of these products is in its infancy[5]. In this regard,
toxicity screening is critical for characterization of the potential hazard of eNMs, which is in
turn indispensable information for subsequent risk assessment and development of
environmental and health regulatory policies. However, generation of the required in vitro
and in vivo toxicity characterizations, which are necessary to cope with the expected growth
in number and diversity of eNMs, is a formidable task. Therefore, in addition to
experimental approaches for hazard assessment, there is a need for in silico methods in order
to develop structure-activity relationships(SARs) that correlate toxicity end points[6]. Such
structure-activity relationships, (i.e., nano-SARs) require sufficiently large experimental
databases of reasonable diversity (.e.g., with respect to the heterogeneity of nanoparticles
and biological receptors) and suitable nanoparticle descriptors[7].

The majority of published nano-SAR models[8–14] focus primarily on the predictions of
physicochemical properties of nanoparticles (e.g. solubility and Young’s modulus). In a
recent study[15], nano-SAR classifiers based on nanoparticle properties such as primary size,
aggregate size in different media, and zeta potential were developed to predict cell
membrane damage induced by TiO2 and ZnO. More recently, two quantitative
nanostructure-activity relationships (nano-SARs) were proposed for in vitro biological
effects of a range of different nanoparticles[16]. One was a kNN-based regression model[17],
for nanoparticle uptake by pancreatic cancer cells (PaCa-2), developed based on 109
nanoparticles of the same core (iron oxides/NH2 core based) but with different organic
chemical surface modifications[18]. This model made use of a set of commonly used
molecular descriptors for the organic coatings and thus did not explicitly consider the
intrinsic nanoparticles properties. The highest and average reported model performances
were quantified by a square correlation coefficient of 0.8 and 0.72, respectively. A second
model was a Support Vector Machine (SVM[19]) classifier for cytotoxicity, based on 51
iron-oxide and quantum dots based nanoparticles with different polymeric coatings[20],
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utilizing nanoparticle primary size, two magnetic properties and zeta potential as descriptors.
The model was developed for averaged toxicity responses relative to control (i.e.,
unexposed) cell population and which were then grouped into two halves being below or
above an arbitrary threshold. A model classification accuracy of 73% was reported, but
without a definitive identification of true toxic end points.

It is noted that in recent years there has been a significant increase in efforts to identify
physicochemical characteristics of nanoparticles that drive their toxic activity[21–23]. These
studies have demonstrated that the dependence of cytotoxicity on physicochemical
nanoparticle properties can vary significantly for different nanoparticle classes and cell
lines. A recent review[7] on the challenges of developing nano-QSARs concluded that, due
to the complexity of chemical and morphological structures of nanoparticles, it would be
most beneficial to develop nano-SARs for individual nanoparticle classes along with
appropriate validation of the applicability domain of such models and selection of suitable
NP descriptors. The generation of detailed descriptors of the structure and chemistry of
nanoparticles requires the use of advanced computational methods that include, but are not
limited to, quantum mechanics calculations[24, 25], molecular dynamics and Monte Carlo
simulations[26, 27]. However, these approaches are only feasible when the target
nanoparticles consist of a relatively small number of atoms given the significant increase in
computational complexity and overhead as the number of atoms increases. Recent studies
have argued that a preferred practical approach is to utilize a small set of fundamental
nanoparticle descriptors, especially given the yet limited nanoparticle characterization and
toxicity data databases[7] relative to the chemical world. Accordingly, based on a small set
of fundamental physicochemical descriptors, the current work presents an approach for the
development of a classification nano-SAR for cytotoxicity of a small set of metal oxide
nanoparticles as quantified by high throughput screening (HTS) of the Propidium Iodide (PI)
uptake (i.e., an indicator of plasma membrane damage) by BEAS-2B cells.

2. Results and Discussion
The present approach for the development of nano-SAR classifiers for cytotoxicity of metal
oxide nanoparticles is summarized in Figure 1. In vitro cytotoxicity data for nine metal
oxide nanoparticles were generated for BEAS-2B and subsequently processed to remove
outliers in the control population, and identify and label measurable cytotoxicity effects in
the nanoparticle exposed cell population. Using an initial set of fundamental nanoparticle
physicochemical descriptors and appropriate concentration measures (i.e., nano-SAR input
parameters), the most suitable subset of input parameters (i.e., belonging to the nano-SAR of
the highest accuracy) was identified via model training and validation (internal and external)
following the OECD guideline[28].

Cytotoxicity of the metal oxide nanoparticles (Al2O3, CeO2, Co3O4, TiO2 (80% anatase and
20% rutile), ZnO, CuO, SiO2 (amorphous), Fe3O4, and WO3) in the size range of 8–19 nm
was assessed by quantifying the loss of plasma membrane integrity (PI uptake assay[29]) for
a concentration range of 0.375–200 mg·L−1 and exposure times up to 24 h. The
experimental results, expressed in terms of the percentage of membrane-damaged cells, are
provided in Table S1. The associated dose-response curves are shown in Figure S1
(Supporting Information), along with error bars depicting the experimental variability. After
identification and removal of outliers (Figure 2), the Strictly Standardized Mean Difference
(SSMD[30–32]) was employed (Section 4) to quantify the difference in the percentage of
membrane-damaged cells (indicated by PI uptake) by the cell population exposed to
nanoparticles relative to the unexposed population (Figure 3). A nanoparticle, at a given
concentration, was labeled toxic (i.e., plasma membrane damage indicated by PI uptake) if
the average of the estimated SSMD (for the different exposure times) was greater than 2;

Liu et al. Page 3

Small. Author manuscript; available in PMC 2014 March 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



otherwise the nanoparticle was considered nontoxic. The resulting labels (i.e., the
cytotoxicity endpoints for building the nano-SAR model) along with the estimated SSMD
are provided in Table S2 (Supporting Information), respectively. It is noted that, with the
labeling approach selected in the present work, as described in Section 4.4 and Table S2
(Supporting Information), the risk of mislabeling nanoparticles as nontoxic (i.e., false
negatives) was kept below 5%, while at the same time ensuring that only nanoparticles that
exhibit strong cytotoxic effects are identified as toxic (i.e., reducing the level of false-
positives).

The estimated SSMD of the cytotoxicity data suggests that labeling of ZnO (50–200
mg·L−1), CuO (150–200 mg·L−1), and SiO2 (150–200 mg·L−1) nanoparticles as toxic
(Figure 3), while the remainder of the nanoparticles induced no notable impacts. The
toxicity labeling of ZnO, CuO and SiO2 nanoparticles are consistent with previous studies.
Studies with ZnO nanoparticles have demonstrated that the generation of Zn2+ ions due to
dissolution of zinc oxide, causes lysosomal injury, mitochondrial damage, and triggers
subsequent cellular events leading to cell death[29, 33]. The cytotoxicity of CuO
nanoparticles in cellular and animal based studies[34, 35] has been documented in various
studies. It has also been reported that amorphous SiO2 can lead to the generation of reactive
oxygen species (ROS) that may trigger pro-in ammatory responses both in vivo and in
vitro[36].

The nano-SAR was developed based on a small set of ten fundamental nanoparticle
descriptors (Table 1) which was selected consistent with the recommendations of a recent
comprehensive nano-SARs review[7]. The selected set included descriptors relating to
constitutional information (NM, NO, mMe, mMeO), encoding the periodic properties of the
metal atom (PMe, GMe), stability and reactivity of the metal oxide (EMeO), surface charge
(Zw, IEP), and primary size (d). In addition, four different concentration measures were
evaluated (Cm, Cs, θv, Cn, Table 2). Different nano-SARs were then constructed using a
logistic regression model[37, 38], which estimates the probability of a nanoparticle being
toxic (or non-toxic) (Section 4), based on the labeled data. Data for the Fe3O4, WO3 and
SiO2 nanoparticles (Table 2) were reserved for model validation with the remaining six were
used for model training.

Given the relatively small set of fourteen model input parameters, an exhaustive exploration
for the 214 (i.e., 16384) possible subsets of nano-SAR input parameters was carried out. Of
the various possible models, a total of 27 (Table S3, Supporting Information) were identified
with a classification accuracy (based on internal cross-validation) higher than 95% and zero
false negatives. These models were further assessed using the reserved external validation
set resulting in only one model, having four input parameters (PMe, EMeO, θv, d), that
performed with 100% classification accuracy (M1, Table 3). Examples of other models that
yielded ~96% or higher classification accuracy in the internal cross-validation are listed in
Table3. For example, model M2 included PMe, EMeO, d as nanoparticle descriptors in
addition to two different concentration measures (Cn and Cs) but not the primary size. The
selection of the above two concentrations introduces redundancy since Cs/Cn = (d/2)2. In
contrast, model M1 (i.e., the best performing model) also included the PMe, EMeO, d
descriptors, but with θv as the concentration measure (M1, Table 3). Models M3-M6, which
include either the isoelectric point (IEP) or the zeta potential (Zw), demonstrated lower
classification accuracy in internal validation and false negatives during external validation.
It is noted that these models did not include the primary particle size as a descriptor.
Interestingly, a global search for the optimal set of input parameters, omitting the primary
particle size, resulted in reasonably good performance (e.g., M7, Table 3) of 96% and 93%
accuracy for the internal and external validation, respectively, with no false negatives, where
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three of the four model input parameters (PMe, EMeO, θv) were the same as for best
performing model (M1).

The analytical expression for the best performing classification nano-SAR (M1, Table 3) is
given by:

(1)

where the probabilities of a nanoparticle being toxic or non-toxic are denoted by P(NP ∈ T)
and P(NP ∈ N), respectively, with the units of the variables (PMe, EMeO, d and θv in Eq. (1))
provided in Table 1 and Table 2. It is noted that although the SiO2 nanoparticle data at 150
and 200 mg·L−1 were outside the model applicability domain (Figure S2, Supporting
Information), these were correctly classified as toxic (Table 2). It is noted that for a given
nanoparticle the metal (PMe) and the atomization energy (EMeO) are fixed, hence the ratio
P(NP ∈ T)/P(NP ∈ N) in Eq. (1) only depends on the nanoparticle volume concentration (θv)
and primary size (d). Therefore, for each of the study nanoparticles, the nano-SAR classifier
(Eq. (1)) can be used to determine a decision boundary (i.e., P(NP ∈ T) = P(NP ∈ N)) that
divides the input parameter space (i.e., primary size and exposure volume fraction) into
toxic and non-toxic regions. Accordingly, the studied nanoparticles can be ranked in terms
of decreasing hazard as ZnO > CuO > {WO3 ≈ Co3O4> Fe3O4>} SiO2> {CeO2 > Al2O3>
TiO2}. The above nano-SAR analysis indicates (as per Eq. (1)) that there may be a range of
concentrations and particle sizes above which the nanoparticles within the parentheses may
trigger toxic response. The above exploration of cytotoxicity data suggests that experimental
verification may be warranted to explore if the nano-SAR approach can potentially guide the
development of cytotoxicity studies that encompass an expanded range of nanoparticle
properties.

It is interesting to note that recent work on cytotoxicity, induced by TiO2 nanoparticles of
30–125 nm size range, showed that membrane damage (for L2 lung epithelial cells cells)
increased with primary particle size[15, 39]. Another recent study[40] with mammalian cells
also showed increase uptake of protein-coated gold nanoparticles with increasing primary
nanoparticle size from 20 nm up to 50 nm and then decreased uptake with further increase in
particle size (up to ~200 nm). Consistent with the above studies, Eq. (1) also predicts that,
within the narrow domain of the dataset (8–19 nm), cytotoxicity would increase with
increasing primary nanoparticle size. While plausible mechanisms for the above behavior
are yet unclear, one must recognize that, for a suspension of a nanoparticle of a given size,
there is a distribution of nanoparticle sizes due to aggregation[41, 42]. As acknowledged in a
recent review on the correlation of physicochemical with toxicological properties of
nanoparticles[43], the interpretations of nanoparticle toxicity data have to carefully consider
the aggregation behavior of nanoparticles and associated particle size distribution. Clearly,
more data are needed over a wide range of primary nanoparticle sizes and types in order to
elucidate their fundamental interactions (over their entire size distribution) with various cell
lines.

Inspection of the range of magnitude of the variables in Eq. (1) (Table 1 and Table 2), after
normalization of the data for each variable over the range [0, 1] (i.e., (x−xmin)/(xmax−xmin)),
revealed that the term containing EMeO makes the greatest contribution to the model (i.e.,
RHS of Eq. (1)). As indicated by Eq. (1), the probability of a nanoparticle being classified as
toxic increases as the atomization energy of the metal oxide (EMeO) decreases. The above
behavior could be attributed to the decrease of metal-oxide nanoparticle stability (e.g.,
dissolution potential) and increased reactivity with decreasing energy of atomization. It has
been suggested that, the oxidative stress potential of metal oxide nanoparticles (i.e.,
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production of ROS) is related to their conduction and valence band energy levels[44]. The
band energy levels are related to nanoparticle’s bond strength and thus the atomization
energy (or total bond energy) of the metal oxide also provides information that is related to
ROS[44]. Increased likelihood of cytotoxicity is also expected (Eq. (1)) with increasing
magnitude of the parameters PMe, θv, and d. For metals that are at a higher period (PMe) the
increased atom size could result in reduced nuclear attraction for the electrons in the
outermost shell contributing to reduction of the ionization energy and thus increased
tendency for dissolution (i.e., formation of cations in solution). As the nanoparticle volume
fraction (θv) increases there may be increased cell-particle interactions which appears to be
consistent with the dependence of colloidal interactions on corresponding increased total
particle surface area in suspension[21, 22] as well as increased osmotic pressure[45].

3. Conclusions
Using high throughput toxicity screening (HTS) data for BEAS-2B cells exposed to nine
metal oxide nanoparticles, a logistic-regression based nano-SAR classifier was developed
and validated following accepted QSAR validation guidelines[28]. The HTS data were first
processed to identify and label toxic versus non-toxic events (at the specific nanoparticle
exposure concentrations) via statistical analysis for the standardized difference of the
biological responses of cells exposed to nanoparticles relative to unexposed control cell
population. A relatively small set of intuitive but fundamental physicochemical descriptors
was selected and through an exhaustive search the best performing set of models were
identified. The best performing model (100% classification accuracy) was based on three
nanoparticle descriptors that included period of the nanoparticle metal, atomization energy
of the metal oxide, and nanoparticle primary size, in addition to the nanoparticle volume
fraction. The model demonstrated remarkable prediction accuracy and low false negative
classification rates as confirmed in both the internal and external validation. Given the
established nano-SAR, it is possible to establish metal-oxide nanoparticle hazard ranking
(on the basis of the HTS data). However, in order to improve the reliability of and increase
confidence in the nano-SAR approach expanded experimental data sets are required.

4. Materials and Methods
4.1 Nano-SAR Development Workflow

The present approach for the development of nano-SAR classifiers followed the workflow
summarized in Figure 1 (section 2.1). First, cytotoxicity of the nine metal oxide
nanoparticles was assessed via screening of the plasma membrane leakage of the BEAS-2B
cells. Toxic events (plasma membrane damage) were identified from the HTS data of
nanoparticle exposed cells relative to unexposed control cells. Subsequently, an initial set of
fundamental model input parameters were selected (ten nanoparticle descriptors and four
different concentration measures). An exhaustive exploration of the model input parameter
space was then performed, with different parameter subsets, in order to identify the best
performing nano-SAR corresponding to the most suitable parameter subset.

4.2. Experimental Data Generation
The nine metal oxide nanoparticles were characterized in terms of their physicochemical
properties as well as their in vitro cytotoxicity. Three nanoparticles (Al2O3, SiO2, and
Fe3O4) were acquired from commercial sources (Meliorum nanotechnologies, Rochester,
NY, USA) and the remaining six (CeO2, Co3O4, TiO2, ZnO, CuO, and WO3) were
synthesized via flame spray pyrolysis (by Lutz et al., University of Bremen,
Germany)[29, 33]. The nanoparticles were spherical with primary sizes in the range of 8–18
nm and density in the range of 2.2–7.22 g·cm−3 [46]. The nanoparticles’ surface charge was
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determined via zeta potential measurements (ZetaPALS, Brookhaven Instruments
Corporation, Holtsville, NY) in water and as a function of pH and these measurements
served to determine the isoelectric point (IEP, the pH at which a nanoparticle suspension has
zero zeta potential) of the nanoparticles[47]. All measurements were conducted using 1.5 mL
of 50 mg·L−1 aqueous nanoparticle dispersion and for each measurement five replicate runs
of 10 cycles were collected. In addition, the IEP was also determined by measuring the zeta
potential of each nanoparticle over a wide pH range (Table 1).

The cytotoxicity induced in BEAS-2B cells exposed to nanoparticle concentrated in the
range of 0.375–200 mg·L−1 was assessed by measuring plasma membrane leakage via PI
uptake[29] with the results quantified in terms of the percentage of membrane-damaged cells.
Briefly, the cytotoxicity-screening assay was carried out using a set of six 384 well plates
(16 rows by 24 columns; Greiner bio-one, Frickenhausen, Germany) containing both cells in
a BEGM medium[29] exposed to nanoparticles (i.e., sample) in a range of concentrations and
unexposed cells (i.e., control). In order to improve the reliability of toxic response
identification[48], replicate samples and controls were used within each plate to estimate
experimental variability (Table S1, Supplementary Material). Exposure of the cell
population to six of the nanoparticles (Al2O3, CeO2, Co3O4, TiO2, ZnO, and CuO) was
carried out at concentrations of 1, 5, 10, 15, 20, 25, 50, 100, 150, and 200 mg·L−1 with
exposure times of 15 and 24 h. In addition, three different nanoparticles, Fe3O4, WO3, and
SiO2, were selected for model validation. The concentration range and exposure times for
SiO2 (labeled as toxic at two concentrations; Table 2) was the same as for the six
nanoparticles in the training set. In order to reasonably differentiate the validation from the
training data set, the exposure times for Fe3O4, and WO3 (labeled as non-toxic, Table 2)
were set at 6 h and 24 h and the concentration range was set as 0.375–200 mg·L−1 at two
fold increases.

4.3. Nano-SAR Descriptors
An initial set of ten nanoparticle descriptors was selected in order to describe the
characteristics of the nanoparticles at reasonably diverse levels (i.e., molecular, chemical
and physical information). The selection of simple constitutional descriptors included
number of metal and oxygen atoms in the metal oxide (NMe, NO), atomic mass of the metal
(mMe (g·mol−1)) and the metal oxide molecular weight of (mMeO (g·mol−1))[7]. Information
regarding stability and the reactivity of the metal oxide was provided via the atomization
energy[49, 50] (EMeO (kcal·eqv−1)), which is a structure-dependent electronic property that is
indicative of the bonding forces (i.e., energies) holding together the metal oxide elements in
a standard state. Finally, the group and period (GMe and PMe) in the periodic table served to
encode the periodic properties of the metal atom as these are often used to classify metals
according to their catalytic and electronic properties.

The nanoparticle primary size (d (nm)) was also used as a simple geometric descriptor as it
has been reported to be a key parameter impacting nanoparticle aggregation state and
toxicity[51]. The nanoparticles isoelectric point (IEP) and the zeta potential in water (Zw,
mV) at the pH of the HTS assay (~7.4) were also selected as indicators of surface charge and
aggregation tendency (e.g., as the operational pH approaches the IEP). Although the above
descriptors do not provide direct information on the expected aggregation behavior in
biological media, such descriptors do provide information for distinguishing among
nanoparticles for classification purposes when for the same environmental conditions a
single biological medium is utilized. It is also interesting to note that the edges of the energy
bands of a metal oxide (related to its capacity to induce redox processes inside the cell) shift
to higher or lower energy levels with respect to the difference between IEP and solution’s
pH[44]. It is noted that, relevant information regarding the particle aggregate size or size
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distribution[7, 51] in the biological media was not utilized since such measurement are of low
reliability in biological suspensions.

Finally, four different concentrations were also evaluated for model input, whereby the
nanoparticle loading was expressed as concentrations on the basis of mass (Cm, mg·L−1),
surface area (Cs, m2·L−1), number (Cn, #·L−1)) and volume fraction (θv). Given the
significant differences on metal oxide nanoparticle density (2.2–7.2 g·cm−3), for the same
mass loading the number, surface area and volume fractions will differ. The above
concentration measures are related through the metal oxide nanoparticle density, ρ (g·cm−3),
and primary size (d) (i.e., θv=Cm/ρ, Cs=2θv/d and Cn=8θv/d3) and hence for the purpose of
establishing nano-SARs they provide different weighting of the importance of the
nanoparticle primary size and density.

4.4. Data Processing
Cell-based toxicity screening often shows high variability that needs to be carefully
handled[48, 52]. Therefore, the quality of the control data were first assessed, via the box plot
method[53] for each HTS plate and the identified outliers (average of ~5% per plate) were
removed for the subsequent analysis. Subsequently, the Strictly Standardized Mean
Difference (SSMD[30, 31]) was used to identify and label measurable cytotoxicity effects in
the nanoparticle exposed relative to the unexposed cell population. The SSMD (β) defined
as:

(2)

measures the magnitude of the (standardized) difference between the cell response for the

sample and control (in which the mean and variance are denoted by μsample, , and

μcontrol, , respectively). In the present analysis a practical rule was developed (Table
S2, Supporting Information) in order to control False-Negative labeling via use of the
Maximum Likelihood Estimation (MLE,β̂) of the SSMD.

4.5. Model Development, Validation and Interpretation
The model development approach followed a scheme that integrates the selection of relevant
input parameters (feature selection), from an initial pool of input parameters, with model
training and validation in order to identify the most suitable subset of input parameters that
produces the optimal nano-SAR classifier (Figure 4). Both internal and external model
validations were carried out in order to avoid over-fitting and assess model performance.
Different nano-SAR classification models were developed and tested based on a logistic
regression[54–56] expressed by:

(3)

where P(NP ∈ T) and P(NP ∈ N) are the probabilities that a nanoparticle will be classified as
toxic (T) or non-toxic (N), respectively, and NPi is the i-th model input parameter (i.e.,
nanoparticle descriptor or concentration measure). If P(NP ∈ T) > P(NP ∈ N) (i.e., In(P(NP
∈ T)/P(NP ∈ N)) > 0), the nanoparticle will be classified as toxic, otherwise, it is considered
non-toxic. The model development made use of an integrated approach (i.e., a wrapper
approach[57]) in which the complete space of nano-SAR input parameters (i.e., 214 different
subsets) was explored to identify the best performing subset. Performance of the different
logistic regression models (obtained with the different parameter subsets) was assessed with
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a combined criterion encompassing classification accuracy (i.e., percent of correct classified
samples) and number of false negatives (i.e., number of toxic nanoparticles identified as
nontoxic). In order to assess the performance of each input parameter subset, the
cytotoxicity data set was divided in two parts to quantify the internal and external validation
performances. The internal validation data set (i.e., the training set) included Al2O3, CeO2,
Co3O4, TiO2, ZnO, and CuO was used for model screening (i.e., detection of candidate
models with reasonable accuracy). The average performance of each model was determined
using a Leave-One-Out strategy[58] where each of the six nanoparticles was used in turn to
test a model developed from the remaining five nanoparticles. The models of prediction
accuracy higher than 95% and no false negatives were then evaluated via external validation
data set (containingSiO2, Fe3O4, and WO3) to identify the best overall performing nano-
SAR.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Workflow for nano-SAR development, validation and interpretation
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Figure 2.
Distribution of the control values (normalized over the range of [0, 1]) in the HTS plates.
The upper and lower bound of a box identify the first quartile (Q1) and the third quartile
(Q3) of the data, the line inside a box represent the median of the data; ends of the whiskers
are the smallest observation and the largest observation within the inter-quartile range
(defined by [Q1-1.5(Q3-Q1), Q3+1.5(Q3-Q1)]), and outliers (i.e., the data outside the inter-
quartile range) are marked by “+”. MeO-T15 and MeO-T24identify the plates that contained
Al2O3, CeO2, Co3O4, TiO2, ZnO, CuO, and SiO2 after 15 h and 24 h of exposure,
respectively. Fe3O4-T6 and Fe3O4-T24 identify the plates containing Fe3O4 after exposure
of 6 h. and 24 h, respectively. WO3-T6 and WO3-T24 identify the plates containing WO3
after 6 h and 24 h, respectively.
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Figure 3.
The Maximum Likelihood Estimates (MLE) of SSMD for nanoparticles of different
concentrations (mg ·L−1) and exposure times (labeled as T6, T15, and T24 for 6h, 15h, and
24, respectively) (The red dash line corresponds to the threshold of MLE of SSMD=2)
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Figure 4.
The integrated scheme for nano-SAR model development
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