Classification of abelian complex structures on 6-dimensional Lie algebras

María Laura Barberis

Universidad Nacional de Córdoba, Argentina CIEM - CONICET

Workshop on Dirac operators and special geometries
Castle Rauischholzhausen
27 September 2009

Joint work with A. Andrada and I. Dotti
Preprint: arXiv:0908.3213

- Basic definitions.
- A motivating example.
- Relation to HKT geometry.
- Generalities on abelian complex structures.
- Affine Lie algebras and their standard complex structure.
- The 4-dimensional case.
- Outline of the classification in dimension 6.
- Basic definitions.
- A motivating example.
- Relation to HKT geometry.
- Generalities on abelian complex structures.
- Affine Lie algebras and their standard complex structure.
- The 4-dimensional case.
- Outline of the classification in dimension 6.

Basic definitions

- A complex structure on a real Lie algebra \mathfrak{g} is $J \in$ End (\mathfrak{g}) satisfying:

$$
\begin{equation*}
J^{2}=-I, \quad J[x, y]-[J x, y]-[x, J y]-J[J x, J y]=0, \tag{1}
\end{equation*}
$$

for any $x, y \in \mathfrak{g}$.

A complex structure J on \mathfrak{g} is called abelian when it satisfies:

Basic definitions

- A complex structure on a real Lie algebra \mathfrak{g} is $J \in \operatorname{End}(\mathfrak{g})$ satisfying:

$$
\begin{equation*}
J^{2}=-I, \quad J[x, y]-[J x, y]-[x, J y]-J[J x, J y]=0, \tag{1}
\end{equation*}
$$

for any $x, y \in \mathfrak{g}$.

- Complex Lie algebras are those for which J is bi-invariant:

$$
\begin{equation*}
J[x, y]=[x, J y], \quad \forall x, y \in \mathfrak{g} \tag{2}
\end{equation*}
$$

Basic definitions

- A complex structure on a real Lie algebra \mathfrak{g} is $J \in \operatorname{End}(\mathfrak{g})$ satisfying:

$$
\begin{equation*}
J^{2}=-I, \quad J[x, y]-[J x, y]-[x, J y]-J[J x, J y]=0 \tag{1}
\end{equation*}
$$

for any $x, y \in \mathfrak{g}$.

- Complex Lie algebras are those for which J is bi-invariant:

$$
\begin{equation*}
J[x, y]=[x, J y], \quad \forall x, y \in \mathfrak{g} \tag{2}
\end{equation*}
$$

- A complex structure J on \mathfrak{g} is called abelian when it satisfies:

$$
\begin{equation*}
[J x, J y]=[x, y], \quad \forall x, y \in \mathfrak{g} \tag{3}
\end{equation*}
$$

Basic definitions

- Two complex structures J_{1} and J_{2} on \mathfrak{g} are said to be equivalent if there exists $\alpha \in \operatorname{Aut}(\mathfrak{g})$ satisfying:

$$
J_{2} \alpha=\alpha J_{1} .
$$

will say that J is proper when

Basic definitions

- Two complex structures J_{1} and J_{2} on \mathfrak{g} are said to be equivalent if there exists $\alpha \in \operatorname{Aut}(\mathfrak{g})$ satisfying:

$$
J_{2} \alpha=\alpha J_{1} .
$$

- Two pairs $\left(\mathfrak{g}_{1}, J_{1}\right)$ and $\left(\mathfrak{g}_{2}, J_{2}\right)$ are holomorphically isomorphic if there exists a Lie algebra isomorphism $\alpha: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$ such that:

$$
J_{2} \alpha=\alpha J_{1} .
$$

will say that J is proper when

$$
\mathfrak{g}^{\prime} \nsubseteq \mathfrak{g} .
$$

Basic definitions

- Two complex structures J_{1} and J_{2} on \mathfrak{g} are said to be equivalent if there exists $\alpha \in \operatorname{Aut}(\mathfrak{g})$ satisfying:

$$
J_{2} \alpha=\alpha J_{1} .
$$

- Two pairs $\left(\mathfrak{g}_{1}, J_{1}\right)$ and $\left(\mathfrak{g}_{2}, J_{2}\right)$ are holomorphically isomorphic if there exists a Lie algebra isomorphism $\alpha: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$ such that:

$$
J_{2} \alpha=\alpha J_{1} .
$$

- Given a complex structure J on \mathfrak{g}, set $\mathfrak{g}_{j}^{\prime}:=\mathfrak{g}^{\prime}+J \mathfrak{g}^{\prime}$. We will say that J is proper when

$$
\mathfrak{g}_{j}^{\prime} \nsubseteq \mathfrak{g}
$$

Basic definitions

- Two complex structures J_{1} and J_{2} on \mathfrak{g} are said to be equivalent if there exists $\alpha \in \operatorname{Aut}(\mathfrak{g})$ satisfying:

$$
J_{2} \alpha=\alpha J_{1} .
$$

- Two pairs $\left(\mathfrak{g}_{1}, J_{1}\right)$ and $\left(\mathfrak{g}_{2}, J_{2}\right)$ are holomorphically isomorphic if there exists a Lie algebra isomorphism $\alpha: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$ such that:

$$
J_{2} \alpha=\alpha J_{1} .
$$

- Given a complex structure J on \mathfrak{g}, set $\mathfrak{g}_{j}^{\prime}:=\mathfrak{g}^{\prime}+J \mathfrak{g}^{\prime}$. We will say that J is proper when

$$
\mathfrak{g}_{j}^{\prime} \nsubseteq \mathfrak{g}
$$

- S. Salamon (2001): If \mathfrak{g} is nilpotent, every complex structure on \mathfrak{g} is proper.

A motivating example: $\mathfrak{a f f}(\mathbb{C})$

$$
\mathfrak{a f f}(\mathbb{C})=\left\{\left(\begin{array}{cccc}
a & -b & c & -d \\
b & a & d & c \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right): a, b, c, d \in \mathbb{R}\right\}
$$

$\mathfrak{a f f}(\mathbb{C})$ has a basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ with Lie brackets:

A motivating example: $\mathfrak{a f f}(\mathbb{C})$

$$
\mathfrak{a f f}(\mathbb{C})=\left\{\left(\begin{array}{cccc}
a & -b & c & -d \\
b & a & d & c \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right): a, b, c, d \in \mathbb{R}\right\}
$$

$\mathfrak{a f f}(\mathbb{C})$ has a basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ with Lie brackets:
$\left[e_{1}, e_{3}\right]=e_{3}, \quad\left[e_{1}, e_{4}\right]=e_{4}, \quad\left[e_{2}, e_{3}\right]=e_{4}, \quad\left[e_{2}, e_{4}\right]=-e_{3}$

A motivating example: $\mathfrak{a f f}(\mathbb{C})$

$$
\mathfrak{a f f}(\mathbb{C})=\left\{\left(\begin{array}{cccc}
a & -b & c & -d \\
b & a & d & c \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right): a, b, c, d \in \mathbb{R}\right\}
$$

$\mathfrak{a f f}(\mathbb{C})$ has a basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ with Lie brackets:

$$
\left[e_{1}, e_{3}\right]=e_{3}, \quad\left[e_{1}, e_{4}\right]=e_{4}, \quad\left[e_{2}, e_{3}\right]=e_{4}, \quad\left[e_{2}, e_{4}\right]=-e_{3}
$$

- There are two abelian complex structures on $\mathfrak{a f f}(\mathbb{C})$ up to equivalence:

$$
\left.J_{1}=\left(\begin{array}{cccc}
0 & 1 & & \\
-1 & 0 & & \\
& & 0 & -1 \\
& & 1 & 0
\end{array}\right) \quad J_{2}=\left(\begin{array}{ccc}
& & -1
\end{array}\right) 0 \begin{array}{cc}
& 0
\end{array}-1\right)
$$

A motivating example: $\mathfrak{a f f}(\mathbb{C})$

- J_{1} is proper.
- J_{1} anticommutes with J_{2}
- For $x=\left(x_{1}, x_{2}, x_{3}\right) \in S^{2}$,
is an abelian complex structure on $\mathfrak{a f f}(\mathbb{C})$.

A motivating example: $\mathfrak{a f f}(\mathbb{C})$

- J_{1} is proper.
- J_{1} anticommutes with J_{2}.
is an abelian complex structure on $\mathfrak{a f f}(\mathbb{C})$

A motivating example: $\mathfrak{a f f}(\mathbb{C})$

- J_{1} is proper.
- J_{1} anticommutes with J_{2}.
- For $x=\left(x_{1}, x_{2}, x_{3}\right) \in S^{2}$,

$$
J_{x}:=x_{1} J_{1}+x_{2} J_{2}+x_{3} J_{1} J_{2}
$$

is an abelian complex structure on $\mathfrak{a f f}(\mathbb{C})$.

A motivating example: $\mathfrak{a f f}(\mathbb{C})$

- J_{1} is proper.
- J_{1} anticommutes with J_{2}.
- For $x=\left(x_{1}, x_{2}, x_{3}\right) \in S^{2}$,

$$
J_{x}:=x_{1} J_{1}+x_{2} J_{2}+x_{3} J_{1} J_{2}
$$

is an abelian complex structure on $\mathfrak{a f f}(\mathbb{C})$.

- $J_{x} \sim J_{1}$ for $x=(\pm 1,0,0)$.

A motivating example: $\mathfrak{a f f}(\mathbb{C})$

- J_{1} is proper.
- J_{1} anticommutes with J_{2}.
- For $x=\left(x_{1}, x_{2}, x_{3}\right) \in S^{2}$,

$$
J_{x}:=x_{1} J_{1}+x_{2} J_{2}+x_{3} J_{1} J_{2}
$$

is an abelian complex structure on $\mathfrak{a f f}(\mathbb{C})$.

- $J_{x} \sim J_{1}$ for $x=(\pm 1,0,0)$.
- $J_{x} \sim J_{2}$ for $x \neq(\pm 1,0,0)$.

Relation to HKT geometry

- A hyperhermitian structure on a smooth manifold M is $\left(\left\{J_{\alpha}\right\}_{\alpha=1,2,3}, g\right)$, where
(1) $\left\{J_{\alpha}\right\}_{\alpha=1,2,3}$ are complex structures such that

$$
J_{1} J_{2}=-J_{2} J_{1}=J_{3},
$$

(2) g is a Riemannian metric which is Hermitian with respect to called hyper-Kähler with torsion (HKT) if there exists a connection ∇ on M satisfving

Relation to HKT geometry

- A hyperhermitian structure on a smooth manifold M is $\left(\left\{J_{\alpha}\right\}_{\alpha=1,2,3}, g\right)$, where
(1) $\left\{J_{\alpha}\right\}_{\alpha=1,2,3}$ are complex structures such that $J_{1} J_{2}=-J_{2} J_{1}=J_{3}$,
(2) g is a Riemannian metric which is Hermitian with respect to $J_{\alpha}, \alpha=1,2,3$.
called hyper-Kähler with torsion (HKT) if there exists a connection ∇ on M satisfying

Relation to HKT geometry

- A hyperhermitian structure on a smooth manifold M is $\left(\left\{J_{\alpha}\right\}_{\alpha=1,2,3}, g\right)$, where
(1) $\left\{J_{\alpha}\right\}_{\alpha=1,2,3}$ are complex structures such that

$$
J_{1} J_{2}=-J_{2} J_{1}=J_{3},
$$

(2) g is a Riemannian metric which is Hermitian with respect to $J_{\alpha}, \alpha=1,2,3$.

- Given a hyperhermitian structure $\left(\left\{J_{\alpha}\right\}_{\alpha=1,2,3}, g\right)$ on M, g is called hyper-Kähler with torsion (HKT) if there exists a connection ∇ on M satisfying

Relation to HKT geometry

- A hyperhermitian structure on a smooth manifold M is $\left(\left\{J_{\alpha}\right\}_{\alpha=1,2,3}, g\right)$, where
(1) $\left\{J_{\alpha}\right\}_{\alpha=1,2,3}$ are complex structures such that

$$
J_{1} J_{2}=-J_{2} J_{1}=J_{3},
$$

(2) g is a Riemannian metric which is Hermitian with respect to $J_{\alpha}, \alpha=1,2,3$.

- Given a hyperhermitian structure $\left(\left\{J_{\alpha}\right\}_{\alpha=1,2,3}, g\right)$ on M, g is called hyper-Kähler with torsion (HKT) if there exists a connection ∇ on M satisfying
(1) $\nabla g=0, \quad \nabla J_{\alpha}=0, \alpha=1,2,3$,

Relation to HKT geometry

- A hyperhermitian structure on a smooth manifold M is $\left(\left\{J_{\alpha}\right\}_{\alpha=1,2,3}, g\right)$, where
(1) $\left\{J_{\alpha}\right\}_{\alpha=1,2,3}$ are complex structures such that

$$
J_{1} J_{2}=-J_{2} J_{1}=J_{3},
$$

(2) g is a Riemannian metric which is Hermitian with respect to $J_{\alpha}, \alpha=1,2,3$.

- Given a hyperhermitian structure $\left(\left\{J_{\alpha}\right\}_{\alpha=1,2,3}, g\right)$ on M, g is called hyper-Kähler with torsion (HKT) if there exists a connection ∇ on M satisfying
(1) $\nabla g=0, \quad \nabla J_{\alpha}=0, \alpha=1,2,3$,
(2) the torsion tensor $c(X, Y, Z)=g(X, T(Y, Z))$ is skew-symmetric.

Relation to HKT geometry

This class of metrics has been introduced by P.S. Howe G.Papadopoulos (1996).

Relation to HKT geometry

This class of metrics has been introduced by P.S. Howe G.Papadopoulos (1996).

- A left invariant hyperhermitian metric on a Lie group G is HKT if and only if

$$
\begin{aligned}
& g\left(\left[J_{1} x, J_{1} y\right], z\right)+g\left(\left[J_{1} y, J_{1} z\right], x\right)+g\left(\left[J_{1} z, J_{1} x\right], y\right) \\
& =g\left(\left[J_{2} x, J_{2} y\right], z\right)+g\left(\left[J_{2} y, J_{2} z\right], x\right)+g\left(\left[J_{2} z, J_{2} x\right], y\right) \\
& =g\left(\left[J_{3} x, J_{3} y\right], z\right)+g\left(\left[J_{3} y, J_{3} z\right], x\right)+g\left(\left[J_{3} z, J_{3} x\right], y\right) .
\end{aligned}
$$

for all $x, y, z \in \mathfrak{g}$, the Lie algebra of G.

Relation to HKT geometry

This class of metrics has been introduced by P.S. Howe G.Papadopoulos (1996).

- A left invariant hyperhermitian metric on a Lie group G is HKT if and only if

$$
\begin{aligned}
& g\left(\left[J_{1} x, J_{1} y\right], z\right)+g\left(\left[J_{1} y, J_{1} z\right], x\right)+g\left(\left[J_{1} z, J_{1} x\right], y\right) \\
& =g\left(\left[J_{2} x, J_{2} y\right], z\right)+g\left(\left[J_{2} y, J_{2} z\right], x\right)+g\left(\left[J_{2} z, J_{2} x\right], y\right) \\
& =g\left(\left[J_{3} x, J_{3} y\right], z\right)+g\left(\left[J_{3} y, J_{3} z\right], x\right)+g\left(\left[J_{3} z, J_{3} x\right], y\right) .
\end{aligned}
$$

for all $x, y, z \in \mathfrak{g}$, the Lie algebra of G.

- Given an abelian hypercomplex structure, any hyperhermitian metric is HKT.

Relation to HKT geometry

Theorem (Dotti - Fino, 2002)

If G is a 2-step nilpotent Lie group with a left invariant HKT structure $\left(\left\{J_{\alpha}\right\}_{\alpha=1,2,3}, g\right)$, then the hypercomplex structure is abelian.

Question. Does the above result hold for any nilpotent Lie

Relation to HKT geometry

> Theorem (Dotti - Fino, 2002)
> If G is a 2-step nilpotent Lie group with a left invariant HKT structure $\left(\left\{J_{\alpha}\right\}_{\alpha=1,2,3}, g\right)$, then the hypercomplex structure is abelian.

- Question. Does the above result hold for any nilpotent Lie group?

Relation to HKT geometry

Theorem (Dotti - Fino, 2002)

If G is a 2-step nilpotent Lie group with a left invariant HKT structure $\left(\left\{J_{\alpha}\right\}_{\alpha=1,2,3}, g\right)$, then the hypercomplex structure is abelian.

- Question. Does the above result hold for any nilpotent Lie group?

Theorem (B - I. Dotti - M. Verbitsky, 2007)

Let $\left(N,\left\{J_{\alpha}\right\}_{\alpha=1,2,3}, g\right)$ be an HKT nilmanifold such that $\left\{J_{\alpha}\right\}$ is left invariant. Then the hypercomplex structure $\left\{J_{\alpha}\right\}$ is abelian.

Abelian complex structures

An abelian complex structure J satisfies:

- $(1,0)$-vectors in $\mathfrak{g}^{\mathbb{C}}$ commute;

Abelian complex structures

An abelian complex structure J satisfies:

- $(1,0)$-vectors in $\mathfrak{g}^{\mathbb{C}}$ commute;
- The center \mathfrak{z} of \mathfrak{g} is J-stable;
\qquad

Abelian complex structures

An abelian complex structure J satisfies:

- $(1,0)$-vectors in $\mathfrak{g}^{\mathbb{C}}$ commute;
- The center \mathfrak{z} of \mathfrak{g} is J-stable;
- For any $x \in \mathfrak{g}, \operatorname{ad}_{J x}=-\operatorname{ad}_{x} J$.

Examples.
(1) Let $\mathfrak{h}_{2 n+1}=\operatorname{span}\left\{e_{1}, \ldots, e_{2 n}, z_{0}\right\}$ be the Heisenberg algebra: and $\left\{z_{1}, \ldots, z_{2 k+1}\right\}$ a basis of $\mathbb{R}^{2 k+1}$. An abelian complex structure on $\mathfrak{h}_{2 n+1} \times \mathbb{R}^{2 k+1}$ is given by

has a unique abelian complex structure up to equiv.

Abelian complex structures

An abelian complex structure J satisfies:

- $(1,0)$-vectors in $\mathfrak{g}^{\mathbb{C}}$ commute;
- The center \mathfrak{z} of \mathfrak{g} is J-stable;
- For any $x \in \mathfrak{g}, \operatorname{ad}_{J x}=-\operatorname{ad}_{x} J$.

Examples.
(1) Let $\mathfrak{h}_{2 n+1}=\operatorname{span}\left\{e_{1}, \ldots, e_{2 n}, z_{0}\right\}$ be the Heisenberg algebra:

$$
\left[e_{2 i-1}, e_{2 i}\right]=z_{0}, \quad 1 \leq i \leq n,
$$

and $\left\{z_{1}, \ldots, z_{2 k+1}\right\}$ a basis of $\mathbb{R}^{2 k+1}$. An abelian complex structure on $\mathfrak{h}_{2 n+1} \times \mathbb{R}^{2 k+1}$ is given by:

$$
J e_{2 i-1}= \pm e_{2 i}, \quad J z_{2 j}=z_{2 j+1}, \quad 1 \leq i \leq n, \quad 0 \leq j \leq k .
$$

Abelian complex structures

An abelian complex structure J satisfies:

- $(1,0)$-vectors in $\mathfrak{g}^{\mathbb{C}}$ commute;
- The center \mathfrak{z} of \mathfrak{g} is J-stable;
- For any $x \in \mathfrak{g}, \operatorname{ad}_{J x}=-\operatorname{ad}_{x} J$.

Examples.
(1) Let $\mathfrak{h}_{2 n+1}=\operatorname{span}\left\{e_{1}, \ldots, e_{2 n}, z_{0}\right\}$ be the Heisenberg algebra:

$$
\left[e_{2 i-1}, e_{2 i}\right]=z_{0}, \quad 1 \leq i \leq n,
$$

and $\left\{z_{1}, \ldots, z_{2 k+1}\right\}$ a basis of $\mathbb{R}^{2 k+1}$. An abelian complex structure on $\mathfrak{h}_{2 n+1} \times \mathbb{R}^{2 k+1}$ is given by:

$$
J e_{2 i-1}= \pm e_{2 i}, \quad J z_{2 j}=z_{2 j+1}, \quad 1 \leq i \leq n, \quad 0 \leq j \leq k .
$$

(2) Let $\mathfrak{a f f}(\mathbb{R})=\operatorname{span}\left\{e_{1}, e_{2}\right\}$ with Lie bracket: $\left[e_{1}, e_{2}\right]=e_{2}$. It has a unique abelian complex structure up to equiv.:

$$
J e_{1}=e_{2}
$$

A general result

Proposition

If \mathfrak{g} is an even dimensional real Lie algebra with 1-dimensional commutator \mathfrak{g}^{\prime}, then:
(1) \mathfrak{g} is isomorphic to either $\mathfrak{h}_{2 n+1} \times \mathbb{R}^{2 k+1}$ or $\mathfrak{a f f}(\mathbb{R}) \times \mathbb{R}^{2 k}$;
(3) All these Lie algebras carry abelian complex structures and every complex structure on \mathfrak{g} is abelian;

- There are $\left[\begin{array}{c}{[n 7} \\ 2]\end{array} 1\right.$ equivalence ciasses of complex structures

A general result

Proposition

If \mathfrak{g} is an even dimensional real Lie algebra with 1-dimensional commutator \mathfrak{g}^{\prime}, then:
(1) \mathfrak{g} is isomorphic to either $\mathfrak{h}_{2 n+1} \times \mathbb{R}^{2 k+1}$ or $\mathfrak{a f f}(\mathbb{R}) \times \mathbb{R}^{2 k}$;
(2) All these Lie algebras carry abelian complex structures and every complex structure on \mathfrak{g} is abelian;

- There are $\left[\frac{n}{2}\right]+1$ equivalence classes of complex structures
- There is a unique complex structure on $\operatorname{aff}(\mathbb{R}) \times \mathbb{R}^{2 k}$ up to
equivalence.

A general result

Proposition

If \mathfrak{g} is an even dimensional real Lie algebra with 1-dimensional commutator \mathfrak{g}^{\prime}, then:
(1) \mathfrak{g} is isomorphic to either $\mathfrak{h}_{2 n+1} \times \mathbb{R}^{2 k+1}$ or $\mathfrak{a f f}(\mathbb{R}) \times \mathbb{R}^{2 k}$;
(2) All these Lie algebras carry abelian complex structures and every complex structure on \mathfrak{g} is abelian;
(3) There are $\left[\frac{n}{2}\right]+1$ equivalence classes of complex structures on $\mathfrak{h}_{2 n+1} \times \mathbb{R}^{2 k+1}$;

A general result

Proposition

If \mathfrak{g} is an even dimensional real Lie algebra with 1-dimensional commutator \mathfrak{g}^{\prime}, then:
(1) \mathfrak{g} is isomorphic to either $\mathfrak{h}_{2 n+1} \times \mathbb{R}^{2 k+1}$ or $\mathfrak{a f f}(\mathbb{R}) \times \mathbb{R}^{2 k}$;
(2) All these Lie algebras carry abelian complex structures and every complex structure on \mathfrak{g} is abelian;
(3) There are $\left[\frac{n}{2}\right]+1$ equivalence classes of complex structures on $\mathfrak{h}_{2 n+1} \times \mathbb{R}^{2 k+1}$;
(9) There is a unique complex structure on $\mathfrak{a f f}(\mathbb{R}) \times \mathbb{R}^{2 k}$ up to equivalence.

Obstructions

- Petravchuk (1988): If \mathfrak{g} is a real Lie algebra admitting an abelian complex structure, then \mathfrak{g} is 2 -step solvable.

B - Dotti (2004): If \mathfrak{g} is solvable, codim $\mathfrak{g}^{\prime}=1$ and $\operatorname{dim} \mathfrak{g}>2$, then \mathfrak{g} does not admit abelian complex structures. - If \mathfrak{g} is k-step nilpotent with an abelian complex structure J In particular, if $\operatorname{dim} \mathfrak{g}=2 m, \mathfrak{g}$ is at most m-step nilpotent.

Obstructions

- Petravchuk (1988): If \mathfrak{g} is a real Lie algebra admitting an abelian complex structure, then \mathfrak{g} is 2 -step solvable.
- B - Dotti (2004): If \mathfrak{g} is solvable, codim $\mathfrak{g}^{\prime}=1$ and $\operatorname{dim} \mathfrak{g}>2$, then \mathfrak{g} does not admit abelian complex structures.

In particular, if $\operatorname{dim} \mathfrak{g}=2 m, \mathfrak{g}$ is at most m-step nilpotent.

B - Dotti (2004): For arbitrary m, there exist m-step nilpotent Lie algebras of dim. $2 m$ carrying abelian complex structures.

Obstructions

- Petravchuk (1988): If \mathfrak{g} is a real Lie algebra admitting an abelian complex structure, then \mathfrak{g} is 2 -step solvable.
- B - Dotti (2004): If \mathfrak{g} is solvable, codim $\mathfrak{g}^{\prime}=1$ and $\operatorname{dim} \mathfrak{g}>2$, then \mathfrak{g} does not admit abelian complex structures.
- If \mathfrak{g} is k-step nilpotent with an abelian complex structure J, set $\mathfrak{g}_{J}^{i}:=\mathfrak{g}^{i}+J \mathfrak{g}^{i}$. Then

$$
\mathfrak{g}_{J}^{i} \nsubseteq \mathfrak{g}_{J}^{i-1} \quad \text { for all } i \leq k .
$$

In particular, if $\operatorname{dim} \mathfrak{g}=2 m, \mathfrak{g}$ is at most m-step nilpotent.

B - Dotti (2004) Lie algebras of dim 2 m carrying abelian complex structures.

Obstructions

- Petravchuk (1988): If \mathfrak{g} is a real Lie algebra admitting an abelian complex structure, then \mathfrak{g} is 2 -step solvable.
- B - Dotti (2004): If \mathfrak{g} is solvable, codim $\mathfrak{g}^{\prime}=1$ and $\operatorname{dim} \mathfrak{g}>2$, then \mathfrak{g} does not admit abelian complex structures.
- If \mathfrak{g} is k-step nilpotent with an abelian complex structure J, set $\mathfrak{g}_{J}^{i}:=\mathfrak{g}^{i}+J \mathfrak{g}^{i}$. Then

$$
\mathfrak{g}_{J}^{i} \nsubseteq \mathfrak{g}_{J}^{i-1} \quad \text { for all } i \leq k .
$$

In particular, if $\operatorname{dim} \mathfrak{g}=2 m, \mathfrak{g}$ is at most m-step nilpotent.

- B - Dotti (2004): For arbitrary m, there exist m-step nilpotent Lie algebras of dim. $2 m$ carrying abelian complex structures.

Affine Lie algebras

- Let (A, \cdot) be a finite dimensional associative, commutative algebra. Set $\mathfrak{a f f}(A):=A \oplus A$ with Lie bracket:

$$
\left[\left(a, a^{\prime}\right),\left(b, b^{\prime}\right)\right]=\left(0, a \cdot b^{\prime}-b \cdot a^{\prime}\right), \quad a, b, a^{\prime}, b^{\prime} \in A
$$

J defines an abelian complex structure on aff (A), which we
will call standard

Affine Lie algebras

- Let (A, \cdot) be a finite dimensional associative, commutative algebra. Set $\mathfrak{a f f}(A):=A \oplus A$ with Lie bracket:

$$
\left[\left(a, a^{\prime}\right),\left(b, b^{\prime}\right)\right]=\left(0, a \cdot b^{\prime}-b \cdot a^{\prime}\right), \quad a, b, a^{\prime}, b^{\prime} \in A
$$

In particular, when $A=\mathbb{R}$ or $A=\mathbb{C}$, we obtain the Lie algebra of the group of affine motions of either \mathbb{R} or \mathbb{C}.

$$
J \text { defines an abelian complex structure on } a f f(A), \text { which we }
$$

will call standard.

Affine Lie algebras

- Let (A, \cdot) be a finite dimensional associative, commutative algebra. Set $\mathfrak{a f f}(A):=A \oplus A$ with Lie bracket:

$$
\left[\left(a, a^{\prime}\right),\left(b, b^{\prime}\right)\right]=\left(0, a \cdot b^{\prime}-b \cdot a^{\prime}\right), \quad a, b, a^{\prime}, b^{\prime} \in A
$$

In particular, when $A=\mathbb{R}$ or $A=\mathbb{C}$, we obtain the Lie algebra of the group of affine motions of either \mathbb{R} or \mathbb{C}.

- Let J be the endomorphism of $\mathfrak{a f f}(A)$ defined by

$$
J\left(a, a^{\prime}\right)=\left(a^{\prime},-a\right), \quad a, a^{\prime} \in A
$$

J defines an abelian complex structure on $\mathfrak{a f f}(A)$, which we will call standard.

Theorem (J.E. Snow, 1990)
Let \mathfrak{g} be a 4-dimensional Lie algebra admitting an abelian complex structure. Then \mathfrak{g} is isomorphic to $\mathfrak{a f f}\left(A_{i}\right)$ for some $1 \leq i \leq 6$, where A_{i} are given by:

Theorem (J.E. Snow, 1990)

Let \mathfrak{g} be a 4-dimensional Lie algebra admitting an abelian complex structure. Then \mathfrak{g} is isomorphic to $\mathfrak{a f f}\left(A_{i}\right)$ for some $1 \leq i \leq 6$, where A_{i} are given by:

$$
\left.\left.\left.\begin{array}{ll}
A_{1}=\left\{\left(\begin{array}{lll}
0 & a & \\
0 & 0 & \\
& & 0
\end{array}\right), b\right. \\
& \\
0 & 0
\end{array}\right)\right\},\left(\begin{array}{lll}
0 & a & b \\
0 & 0 & a \\
0 & 0 & 0
\end{array}\right)\right\}, ~ A_{2}=\left\{\begin{array}{ll}
a & 0
\end{array}\right)
$$

for $a, b \in \mathbb{R}$.

The 6-dimensional case

Proposition

If $\operatorname{dim} \mathfrak{s}=6$ and J is an abelian complex structure on \mathfrak{s} such that s_{J}^{\prime} is nilpotent, then $\mathfrak{s}_{J}^{\prime}$ is abelian.

To carry out the classification, we consider separately the following

 cases:(1) \mathfrak{s} is nilpotent

- 5 is not inipoient and J is proper\mathfrak{s} is not nilpotent and J is not proper.
- We start by classifying the 6-dim. nilpotent Lie algebras carrying abelian complex structures.
- This can also be obtained as a consequence of results of Salamon (2001) and Cordero - Fernández - Ugarte (2002)

The 6-dimensional case

Proposition

If $\operatorname{dim} \mathfrak{s}=6$ and J is an abelian complex structure on \mathfrak{s} such that s_{J}^{\prime} is nilpotent, then $\mathfrak{s}_{J}^{\prime}$ is abelian.

To carry out the classification, we consider separately the following cases:
(1) \mathfrak{s} is nilpotent,
(2) \mathfrak{s} is not nilpotent and J is proper,
(3) \mathfrak{s} is not nilpotent and J is not proper.

The 6-dimensional case

Proposition

If $\operatorname{dim} \mathfrak{s}=6$ and J is an abelian complex structure on \mathfrak{s} such that $\mathfrak{s}_{J}^{\prime}$ is nilpotent, then $\mathfrak{s}_{J}^{\prime}$ is abelian.

To carry out the classification, we consider separately the following cases:
(1) \mathfrak{s} is nilpotent,
(2) \mathfrak{s} is not nilpotent and J is proper,
(3) \mathfrak{s} is not nilpotent and J is not proper.

- We start by classifying the 6-dim. nilpotent Lie algebras carrying abelian complex structures.
- This can also be obtained as a consequence of results of Salamon (2001) and Cordero - Fernández - Ugarte (2002).

The nilpotent case

Theorem

Let \mathfrak{n} be a non-abelian 6-dimensional nilpotent Lie algebra with an abelian complex structure J. Then \mathfrak{n} is isomorphic to one (and only one) of the following Lie algebras:

$$
\begin{array}{ll}
\mathfrak{n}_{1}:=\mathfrak{h}_{3} \times \mathbb{R}^{3}, \\
\mathfrak{n}_{2}:=\mathfrak{h}_{5} \times \mathbb{R}, \\
\mathfrak{n}_{3}:=\mathfrak{h}_{3} \times \mathfrak{h}_{3}, \\
\mathfrak{n}_{4}:=\mathfrak{h}_{3}(\mathbb{C}), \\
\mathfrak{n}_{5}:\left[e_{1}, e_{2}\right]=e_{5}, & {\left[e_{1}, e_{4}\right]=\left[e_{2}, e_{3}\right]=e_{6},} \\
\mathfrak{n}_{6}:\left[e_{1}, e_{2}\right]=e_{5}, & {\left[e_{1}, e_{4}\right]=\left[e_{2}, e_{5}\right]=e_{6},} \\
\mathfrak{n}_{7}:\left[e_{1}, e_{2}\right]=e_{4}, & {\left[e_{1}, e_{3}\right]=-\left[e_{2}, e_{4}\right]=e_{5},} \\
& {\left[e_{1}, e_{4}\right]=\left[e_{2}, e_{3}\right]=e_{6} .}
\end{array}
$$

Idea of proof

\mathfrak{n} is k-step nilpotent with $k=2$ or 3.

- If $k=2$, then:

$$
\mathfrak{n} \cong \begin{cases}\mathfrak{n}_{1} \text { or } \mathfrak{n}_{2}, & \text { if } \operatorname{dim} \mathfrak{n}^{\prime}=1 \\ \mathfrak{n}_{3}, \mathfrak{n}_{4} \text { or } \mathfrak{n}_{5}, & \text { if } \operatorname{dim} \mathfrak{n}^{\prime}=2\end{cases}
$$

Idea of proof

\mathfrak{n} is k-step nilpotent with $k=2$ or 3.

- If $k=2$, then:

$$
\mathfrak{n} \cong \begin{cases}\mathfrak{n}_{1} \text { or } \mathfrak{n}_{2}, & \text { if } \operatorname{dim} \mathfrak{n}^{\prime}=1 \\ \mathfrak{n}_{3}, \mathfrak{n}_{4} \text { or } \mathfrak{n}_{5}, & \text { if } \operatorname{dim} \mathfrak{n}^{\prime}=2\end{cases}
$$

- If $k=3$, we obtain:

$$
\mathfrak{n} \cong \begin{cases}\mathfrak{n}_{6}, & \text { if } \operatorname{dim} \mathfrak{n}^{2}=1 \\ \mathfrak{n}_{7}, & \text { if } \operatorname{dim} \mathfrak{n}^{2}=2\end{cases}
$$

Equivalence classes of abelian complex structures

$\mathcal{C}_{a}(\mathfrak{n}):=\{$ abelian complex structures on $\mathfrak{n}\}$
$\mathcal{C}_{a}(\mathfrak{n}) /$ Aut $(\mathfrak{n})=$ moduli space of abelian complex structures on \mathfrak{n}.

structure up to equivalence.

- The moduli space of abelian complex structures on \mathfrak{n}_{3} is homeomorphic to \mathbb{R}.
- The moduli space of abelian complex structures on \mathfrak{n}_{4} is homeomorphic to $(0,1] \times \mathbb{Z}_{2}$
- The moduli space of abelian complex structures on n_{7} is homeomorphic to $[-1,0) \cup(0,1]$

Equivalence classes of abelian complex structures

$\mathcal{C}_{a}(\mathfrak{n}):=\{$ abelian complex structures on $\mathfrak{n}\}$
$\mathcal{C}_{a}(\mathfrak{n}) /$ Aut $(\mathfrak{n})=$ moduli space of abelian complex structures on \mathfrak{n}.

Theorem (A-B-D, 2009)

- The Lie algebras $\mathfrak{n}_{1}, \mathfrak{n}_{5}$ and \mathfrak{n}_{6} have a unique abelian complex structure up to equivalence.
- The Lie algebra \mathfrak{n}_{2} has two abelian complex structures up to equivalence.

Equivalence classes of abelian complex structures

$\mathcal{C}_{a}(\mathfrak{n}):=\{$ abelian complex structures on $\mathfrak{n}\}$
$\mathcal{C}_{a}(\mathfrak{n}) /$ Aut $(\mathfrak{n})=$ moduli space of abelian complex structures on \mathfrak{n}.

Theorem (A-B-D, 2009)

- The Lie algebras $\mathfrak{n}_{1}, \mathfrak{n}_{5}$ and \mathfrak{n}_{6} have a unique abelian complex structure up to equivalence.
- The Lie algebra \mathfrak{n}_{2} has two abelian complex structures up to equivalence.
- The moduli space of abelian complex structures on \mathfrak{n}_{3} is homeomorphic to \mathbb{R}.
- The moduli space of abelian complex structures on \mathfrak{n}_{4} is homeomorphic to $(0,1] \times \mathbb{Z}_{2}$.
- The moduli space of abelian complex structures on \mathfrak{n}_{7} is homeomorphic to $[-1,0) \cup(0,1]$.

The Lie algebra $\mathfrak{n}_{3}=\mathfrak{h}_{3} \times \mathfrak{h}_{3}$

$$
\left[e_{1}, e_{2}\right]=e_{5}, \quad\left[e_{3}, e_{4}\right]=e_{6}
$$

$$
\mathcal{C}_{a}\left(\mathfrak{n}_{3}\right)=\left\{\left(\begin{array}{cccccc}
0 & -1 & & & & \\
1 & 0 & & & & \\
& & 0 & -1 & & \\
& & 1 & 0 & & \\
& & & & s & \left(-s^{2}-1\right) / t \\
& & & & t & -s
\end{array}\right): t \neq 0\right\}
$$

$$
\mathcal{C}_{a}\left(\mathfrak{n}_{3}\right) / \operatorname{Aut}\left(\mathfrak{n}_{3}\right)=\left\{\left(\begin{array}{cccccc}
0 & -1 & & & & \\
1 & 0 & & & & \\
& & 0 & -1 & & \\
& & 1 & 0 & & \\
& & & & s & \left(-s^{2}-1\right) \\
& & & & 1 & -s
\end{array}\right): s \in \mathbb{R}\right\}
$$

The Lie algebra \mathfrak{n}_{7}

$$
\left[e_{1}, e_{2}\right]=e_{4}, \quad\left[e_{1}, e_{3}\right]=-\left[e_{2}, e_{4}\right]=e_{5}, \quad\left[e_{1}, e_{4}\right]=\left[e_{2}, e_{3}\right]=e_{6}
$$

$$
\mathcal{C}_{a}\left(\mathfrak{n}_{7}\right)=\left\{\left(\begin{array}{cccccc}
0 & -1 & & & & \\
1 & 0 & & & & \\
& & 0 & 1 & & \\
& & -1 & 0 & & \\
& & & & s & \left(-s^{2}-1\right) / t \\
& & & & t & -s
\end{array}\right): t \neq 0\right\}
$$

$$
\mathcal{C}_{a}\left(\mathfrak{n}_{7}\right) / \operatorname{Aut}\left(\mathfrak{n}_{7}\right)=\left\{\left(\begin{array}{cccccc}
0 & -1 & & & & \\
1 & 0 & & & & \\
& & 0 & 1 & & \\
& & -1 & 0 & & \\
& & & & 0 & -1 / t \\
& & & & t & 0
\end{array}\right): 0<|t| \leq 1\right\}
$$

Orbits in $\mathcal{C}_{a}\left(\mathfrak{n}_{7}\right)$

For $t_{0} \neq 0, \pm 1$:

$$
O_{\left(0, t_{0}\right)}=\left\{(u, v): u^{2}+\left(v-\frac{c}{2}\right)^{2}=\left(\frac{c}{2}\right)^{2}-1\right\}=F^{-1}(c),
$$

where $F(u, v)=v+\frac{1+u^{2}}{v}$ and $c=t_{0}+\frac{1}{t_{0}}$.

$$
O_{(0,-1)}=\{(0,-1)\}, \quad O_{(0,1)}=\{(0,1)\}
$$

The Lie algebra $\mathfrak{n}_{4}=\mathfrak{h}_{3}(\mathbb{C})$

$$
\left[e_{1}, e_{3}\right]=-\left[e_{2}, e_{4}\right]=e_{5}, \quad\left[e_{1}, e_{4}\right]=\left[e_{2}, e_{3}\right]=e_{6}
$$

$$
\mathcal{C}_{a}\left(n_{4}\right)=\left\{\left(\begin{array}{ccc}
J_{k} & & \left(-s^{2}-1\right) / t \\
& t & -s
\end{array}\right): k=1 \text { or } 2, t \neq 0\right\}
$$

where

$$
J_{1}=\left(\begin{array}{cccc}
& & -1 & 0 \\
& & 0 & -1 \\
1 & 0 & & \\
0 & 1 & &
\end{array}\right), \quad J_{2}=\left(\begin{array}{cccc}
0 & -1 & & \\
1 & 0 & & \\
& & 0 & 1 \\
& & -1 & 0
\end{array}\right)
$$

The Lie algebra \mathfrak{n}_{4}

$$
\mathcal{C}_{a}\left(\mathfrak{n}_{4}\right) / \operatorname{Aut}\left(\mathfrak{n}_{4}\right)=\left\{\left(\begin{array}{llc}
J_{k} & & \\
& 0 & -1 / t \\
& t & 0
\end{array}\right): k=1 \text { or } 2, t \in(0,1]\right\} \cong(0,1]
$$

Non-nilpotent \mathfrak{s}, proper J

- If $\operatorname{dim}_{\mathfrak{s}^{\prime}}=2$, or
- $\operatorname{dim} \mathfrak{s}^{\prime}=4$ and \mathfrak{s}^{\prime} is non-abelian, then (\mathfrak{s}, J) is decomposable If $s_{j}^{\prime}=\mathbb{R}^{4}$, we obtain: (1) A non-standard complex structure on $a f f(\mathbb{C}) \times \mathbb{R}^{2}$. (2) Two Lie algebras $\mathfrak{s}_{1}, \mathfrak{s}_{2}: \mathfrak{s}_{1}$ has two non-equivalent structures and 52 has a unique structure.

(3) A 2-parameter family of non-isomorphic Lie algebras. Each

one admits a unique structure up to equivalence.

Non-nilpotent \mathfrak{s}, proper J

- If $\operatorname{dim}_{\mathfrak{s}^{\prime}}=2$, or
- $\operatorname{dim} \mathfrak{s}_{J}^{\prime}=4$ and $\mathfrak{s}_{J}^{\prime}$ is non-abelian,

$$
\text { then }(\mathfrak{s}, J) \text { is decomposable }
$$

- If $\mathfrak{s}^{\prime}=\mathbb{R}^{4}$, we obtain:
(1) A non-standard complex structure on $\mathfrak{a f f}(\mathbb{C}) \times \mathbb{R}^{2}$.
(2) Two Lie algebras $\mathfrak{s}_{1}, \mathfrak{s}_{2}: \mathfrak{s}_{1}$ has two non-equivalent structures and \mathfrak{s}_{2} has a unique structure.
(3) A 2-parameter family of non-isomorphic Lie algebras. Each one admits a unique structure up to equivalence.

Non-nilpotent \mathfrak{s}, non-proper J

Theorem (A-B-D, 2009)

Let \mathfrak{s} be a 6-dimensional Lie algebra with a non-proper abelian complex structure J. Then $\operatorname{dim} \mathfrak{s}^{\prime}=3$ and (\mathfrak{s}, J) is holomorphically isomorphic to $\mathfrak{a f f}(A)$ with its standard complex structure, where A is a 3-dimensional commutative associative algebra such that $A^{2}=A$.

Non-nilpotent \mathfrak{s}, non-proper J

Theorem (A-B-D, 2009)

Let \mathfrak{s} be a 6-dimensional Lie algebra with a non-proper abelian complex structure J. Then $\operatorname{dim} \mathfrak{s}^{\prime}=3$ and (\mathfrak{s}, J) is holomorphically isomorphic to $\mathfrak{a f f}(A)$ with its standard complex structure, where A is a 3-dimensional commutative associative algebra such that $A^{2}=A . A=A_{i}$ for some $1 \leq i \leq 5$, where

$$
\begin{gathered}
A_{1}=\left\{\left(\begin{array}{lll}
a & & \\
& b & \\
& & c
\end{array}\right)\right\}, \quad A_{2}=\left\{\left(\begin{array}{lll}
a & & \\
& b & -c \\
& c & b
\end{array}\right)\right\} \\
A_{3}=\left\{\left(\begin{array}{lll}
a & & \\
& b & c \\
& & b
\end{array}\right)\right\}, A_{4}=\left\{\left(\begin{array}{lll}
a & b & c \\
& a & b \\
& & a
\end{array}\right)\right\} \\
A_{5}=\left\{\left(\begin{array}{lll}
a & 0 & c \\
& a & b \\
& & a
\end{array}\right)\right\} .
\end{gathered}
$$

