Classification of abelian complex structures on 6-dimensional Lie algebras

María Laura Barberis

Universidad Nacional de Córdoba, Argentina CIEM - CONICET

Workshop on Dirac operators and special geometries Castle Rauischholzhausen 27 September 2009

Joint work with A. Andrada and I. Dotti

Preprint: arXiv:0908.3213

- Basic definitions.
- A motivating example.
- Relation to HKT geometry.
- Generalities on abelian complex structures.
- Affine Lie algebras and their standard complex structure.
- The 4-dimensional case.
- Outline of the classification in dimension 6.

- Basic definitions.
- A motivating example.
- Relation to HKT geometry.
- Generalities on abelian complex structures.
- Affine Lie algebras and their standard complex structure.
- The 4-dimensional case.
- Outline of the classification in dimension 6.

 A complex structure on a real Lie algebra g is J ∈ End (g) satisfying:

$$J^2 = -I,$$
 $J[x, y] - [Jx, y] - [x, Jy] - J[Jx, Jy] = 0,$ (1)

for any $x, y \in \mathfrak{g}$.

• Complex Lie algebras are those for which *J* is bi-invariant:

$$J[x,y] = [x, Jy], \quad \forall x, y \in \mathfrak{g}.$$
 (2)

• A complex structure J on g is called *abelian* when it satisfies:

$$[Jx, Jy] = [x, y], \quad \forall x, y \in \mathfrak{g}.$$
 (3)

< □ > < @ > < 글 > < 글 > < 글 > 글 ♡ Q ↔ 3/1 A complex structure on a real Lie algebra g is J ∈ End (g) satisfying:

$$J^{2} = -I, \qquad J[x, y] - [Jx, y] - [x, Jy] - J[Jx, Jy] = 0, \quad (1)$$

for any $x, y \in \mathfrak{g}$.

• Complex Lie algebras are those for which J is bi-invariant:

$$J[x,y] = [x, Jy], \quad \forall x, y \in \mathfrak{g}.$$
 (2)

A complex structure J on g is called abelian when it satisfies:

$$[Jx, Jy] = [x, y], \quad \forall x, y \in \mathfrak{g}.$$
 (3)

< □ > < @ > < 글 > < 글 > < 글 > 글 ♡ Q ↔ 3/1 A complex structure on a real Lie algebra g is J ∈ End (g) satisfying:

$$J^{2} = -I, \qquad J[x, y] - [Jx, y] - [x, Jy] - J[Jx, Jy] = 0, \quad (1)$$

for any $x, y \in \mathfrak{g}$.

• Complex Lie algebras are those for which J is bi-invariant:

$$J[x,y] = [x, Jy], \quad \forall x, y \in \mathfrak{g}.$$

• A complex structure J on g is called *abelian* when it satisfies:

$$[Jx, Jy] = [x, y], \quad \forall x, y \in \mathfrak{g}.$$
(3)

<ロト <回 > < 注 > < 注 > < 注 > 注 の Q () 3/1

 Two complex structures J₁ and J₂ on g are said to be equivalent if there exists α ∈ Aut (g) satisfying:

$$J_2 \alpha = \alpha J_1.$$

 Two pairs (g₁, J₁) and (g₂, J₂) are holomorphically isomorphic if there exists a Lie algebra isomorphism α : g₁ → g₂ such that:

$$J_2 \alpha = \alpha J_1.$$

Given a complex structure J on g, set g' := g' + Jg'. We will say that J is proper when

$$\mathfrak{g}'_J \subsetneq \mathfrak{g}.$$

 S. Salamon (2001): If g is nilpotent, every complex structure on g is proper.

 Two complex structures J₁ and J₂ on g are said to be equivalent if there exists α ∈ Aut (g) satisfying:

$$J_2 \alpha = \alpha J_1.$$

 Two pairs (g₁, J₁) and (g₂, J₂) are holomorphically isomorphic if there exists a Lie algebra isomorphism α : g₁ → g₂ such that:

$$J_2 \alpha = \alpha J_1.$$

Given a complex structure J on g, set g'_J := g' + Jg'. We will say that J is proper when

$$\mathfrak{g}'_J \varsubsetneq \mathfrak{g}.$$

• S. Salamon (2001): If g is nilpotent, every complex structure on g is proper.

 Two complex structures J₁ and J₂ on g are said to be equivalent if there exists α ∈ Aut (g) satisfying:

$$J_2 \alpha = \alpha J_1.$$

 Two pairs (g₁, J₁) and (g₂, J₂) are holomorphically isomorphic if there exists a Lie algebra isomorphism α : g₁ → g₂ such that:

$$J_2 \alpha = \alpha J_1.$$

• Given a complex structure J on \mathfrak{g} , set $[\mathfrak{g}'_J := \mathfrak{g}' + J\mathfrak{g}']$. We will say that J is *proper* when

$$\mathfrak{g}'_J \subsetneq \mathfrak{g}.$$

• S. Salamon (2001): If g is nilpotent, every complex structure on g is proper.

 Two complex structures J₁ and J₂ on g are said to be equivalent if there exists α ∈ Aut (g) satisfying:

$$J_2 \alpha = \alpha J_1.$$

 Two pairs (g₁, J₁) and (g₂, J₂) are holomorphically isomorphic if there exists a Lie algebra isomorphism α : g₁ → g₂ such that:

$$J_2 \alpha = \alpha J_1.$$

• Given a complex structure J on \mathfrak{g} , set $[\mathfrak{g}'_J := \mathfrak{g}' + J\mathfrak{g}']$. We will say that J is *proper* when

$$\mathfrak{g}'_J \subsetneq \mathfrak{g}.$$

• S. Salamon (2001): If g is nilpotent, every complex structure on g is proper.

$$\mathfrak{aff}(\mathbb{C}) = \left\{ egin{pmatrix} a & -b & c & -d \ b & a & d & c \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{pmatrix} : a, b, c, d \in \mathbb{R}
ight\}$$

 $\mathfrak{aff}(\mathbb{C})$ has a basis $\{e_1, e_2, e_3, e_4\}$ with Lie brackets: $[e_1, e_3] = e_3, \quad [e_1, e_4] = e_4, \quad [e_2, e_3] = e_4, \quad [e_2, e_4] = -e_3$

 There are two abelian complex structures on aff(C) up to equivalence:

$$J_{1} = \begin{pmatrix} 0 & 1 & & \\ -1 & 0 & & \\ & & 0 & -1 \\ & & 1 & 0 \end{pmatrix} \qquad J_{2} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \\ 1 & 0 \\ 0 & 1 \\ & & 0 \end{pmatrix}$$

$$\mathfrak{aff}(\mathbb{C}) = \left\{ egin{pmatrix} a & -b & c & -d \ b & a & d & c \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{pmatrix} : a, b, c, d \in \mathbb{R}
ight\}$$

 $\mathfrak{aff}(\mathbb{C})$ has a basis $\{e_1, e_2, e_3, e_4\}$ with Lie brackets: $[e_1, e_3] = e_3, \quad [e_1, e_4] = e_4, \quad [e_2, e_3] = e_4, \quad [e_2, e_4] = -e_3$

 There are two abelian complex structures on aff(C) up to equivalence:

$$\mathfrak{aff}(\mathbb{C}) = \left\{ egin{pmatrix} a & -b & c & -d \ b & a & d & c \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \end{pmatrix} : a, b, c, d \in \mathbb{R}
ight\}$$

 $\mathfrak{aff}(\mathbb{C})$ has a basis $\{e_1, e_2, e_3, e_4\}$ with Lie brackets:

$$[e_1, e_3] = e_3, \quad [e_1, e_4] = e_4, \quad [e_2, e_3] = e_4, \quad [e_2, e_4] = -e_3$$

 There are two abelian complex structures on aff(C) up to equivalence:

- J_1 is proper.
- J_1 anticommutes with J_2 .

• For $x = (x_1, x_2, x_3) \in S^2$,

$$J_x := x_1 J_1 + x_2 J_2 + x_3 J_1 J_2$$

is an abelian complex structure on $\mathfrak{aff}(\mathbb{C})$.

•
$$J_x \sim J_1$$
 for $x = (\pm 1, 0, 0)$.

- J_1 is proper.
- J_1 anticommutes with J_2 .
- For $x = (x_1, x_2, x_3) \in S^2$,

$$J_x := x_1 J_1 + x_2 J_2 + x_3 J_1 J_2$$

is an abelian complex structure on $\mathfrak{aff}(\mathbb{C})$.

•
$$J_x \sim J_1$$
 for $x = (\pm 1, 0, 0)$.

- J_1 is proper.
- J_1 anticommutes with J_2 .

• For
$$x = (x_1, x_2, x_3) \in S^2$$
,

$$J_x := x_1 J_1 + x_2 J_2 + x_3 J_1 J_2$$

is an abelian complex structure on $\mathfrak{aff}(\mathbb{C})$.

•
$$J_x \sim J_1$$
 for $x = (\pm 1, 0, 0).$

- J_1 is proper.
- J_1 anticommutes with J_2 .

• For
$$x = (x_1, x_2, x_3) \in S^2$$
,

$$J_x := x_1 J_1 + x_2 J_2 + x_3 J_1 J_2$$

is an abelian complex structure on $\mathfrak{aff}(\mathbb{C})$.

•
$$J_x \sim J_1$$
 for $x = (\pm 1, 0, 0).$

- J_1 is proper.
- J_1 anticommutes with J_2 .

• For
$$x = (x_1, x_2, x_3) \in S^2$$
,

$$J_x := x_1 J_1 + x_2 J_2 + x_3 J_1 J_2$$

is an abelian complex structure on $\mathfrak{aff}(\mathbb{C})$.

•
$$J_x \sim J_1$$
 for $x = (\pm 1, 0, 0).$

•
$$J_x \sim J_2$$
 for $x \neq (\pm 1, 0, 0)$.

- A hyperhermitian structure on a smooth manifold M is $({J_\alpha}_{\alpha=1,2,3}, g)$, where
 - $\{J_{\alpha}\}_{\alpha=1,2,3}$ are complex structures such that

$$J_1J_2 = -J_2J_1 = J_3,$$

- g is a Riemannian metric which is Hermitian with respect to J_α, α = 1, 2, 3.
- Given a hyperhermitian structure ({J_α}_{α=1,2,3}, g) on M, g is called hyper-Kähler with torsion (HKT) if there exists a connection ∇ on M satisfying

the torsion tensor c(X, Y, Z) = g(X, T(Y, Z)) is skew-symmetric.

- A hyperhermitian structure on a smooth manifold M is $({J_\alpha}_{\alpha=1,2,3}, g)$, where
 - $\{J_{\alpha}\}_{\alpha=1,2,3}$ are complex structures such that

$$J_1J_2 = -J_2J_1 = J_3,$$

- 2 g is a Riemannian metric which is Hermitian with respect to $J_{\alpha}, \ \alpha = 1, 2, 3.$
- Given a hyperhermitian structure ({J_α}_{α=1,2,3}, g) on M, g is called hyper-Kähler with torsion (HKT) if there exists a connection ∇ on M satisfying

the torsion tensor c(X, Y, Z) = g(X, T(Y, Z)) is skew-symmetric.

- A hyperhermitian structure on a smooth manifold M is $({J_\alpha}_{\alpha=1,2,3}, g)$, where
 - $\{J_{\alpha}\}_{\alpha=1,2,3}$ are complex structures such that

$$J_1 J_2 = -J_2 J_1 = J_3,$$

- 2 g is a Riemannian metric which is Hermitian with respect to $J_{\alpha}, \ \alpha = 1, 2, 3.$
- Given a hyperhermitian structure ({J_α}_{α=1,2,3}, g) on M, g is called hyper-Kähler with torsion (HKT) if there exists a connection ∇ on M satisfying

 - 2 the torsion tensor c(X, Y, Z) = g(X, T(Y, Z)) is skew-symmetric.

- A hyperhermitian structure on a smooth manifold M is $({J_\alpha}_{\alpha=1,2,3}, g)$, where
 - $\{J_{\alpha}\}_{\alpha=1,2,3}$ are complex structures such that

$$J_1 J_2 = -J_2 J_1 = J_3,$$

- 2 g is a Riemannian metric which is Hermitian with respect to J_{α} , $\alpha = 1, 2, 3$.
- Given a hyperhermitian structure ({J_α}_{α=1,2,3}, g) on M, g is called hyper-Kähler with torsion (HKT) if there exists a connection ∇ on M satisfying

1
$$\nabla g = 0, \quad \nabla J_{\alpha} = 0, \alpha = 1, 2, 3,$$

2 the torsion tensor c(X, Y, Z) = g(X, T(Y, Z)) is skew-symmetric.

- A hyperhermitian structure on a smooth manifold M is $({J_\alpha}_{\alpha=1,2,3}, g)$, where
 - $\{J_{\alpha}\}_{\alpha=1,2,3}$ are complex structures such that

$$J_1 J_2 = -J_2 J_1 = J_3,$$

- 2 g is a Riemannian metric which is Hermitian with respect to J_{α} , $\alpha = 1, 2, 3$.
- Given a hyperhermitian structure ({J_α}_{α=1,2,3}, g) on M, g is called hyper-Kähler with torsion (HKT) if there exists a connection ∇ on M satisfying

1
$$\nabla g = 0, \quad \nabla J_{\alpha} = 0, \alpha = 1, 2, 3,$$

the torsion tensor c(X, Y, Z) = g(X, T(Y, Z)) is skew-symmetric.

This class of metrics has been introduced by P.S. Howe - G.Papadopoulos (1996).

• A left invariant hyperhermitian metric on a Lie group *G* is HKT if and only if

 $g([J_1x, J_1y], z) + g([J_1y, J_1z], x) + g([J_1z, J_1x], y)$ = $g([J_2x, J_2y], z) + g([J_2y, J_2z], x) + g([J_2z, J_2x], y)$ = $g([J_3x, J_3y], z) + g([J_3y, J_3z], x) + g([J_3z, J_3x], y).$

for all $x, y, z \in \mathfrak{g}$, the Lie algebra of G.

Given an abelian hypercomplex structure, any hyperhermitian metric is HKT.

This class of metrics has been introduced by P.S. Howe - G.Papadopoulos (1996).

• A left invariant hyperhermitian metric on a Lie group G is HKT if and only if

$$g([J_1x, J_1y], z) + g([J_1y, J_1z], x) + g([J_1z, J_1x], y)$$

= $g([J_2x, J_2y], z) + g([J_2y, J_2z], x) + g([J_2z, J_2x], y)$
= $g([J_3x, J_3y], z) + g([J_3y, J_3z], x) + g([J_3z, J_3x], y).$

for all $x, y, z \in \mathfrak{g}$, the Lie algebra of G.

Given an abelian hypercomplex structure, any hyperhermitian metric is HKT.

This class of metrics has been introduced by P.S. Howe - G.Papadopoulos (1996).

• A left invariant hyperhermitian metric on a Lie group G is HKT if and only if

$$g([J_1x, J_1y], z) + g([J_1y, J_1z], x) + g([J_1z, J_1x], y)$$

= $g([J_2x, J_2y], z) + g([J_2y, J_2z], x) + g([J_2z, J_2x], y)$
= $g([J_3x, J_3y], z) + g([J_3y, J_3z], x) + g([J_3z, J_3x], y).$

for all $x, y, z \in \mathfrak{g}$, the Lie algebra of G.

• Given an abelian hypercomplex structure, any hyperhermitian metric is HKT.

Theorem (Dotti - Fino, 2002)

If G is a 2-step nilpotent Lie group with a left invariant HKT structure $({J_{\alpha}}_{\alpha=1,2,3}, g)$, then the hypercomplex structure is abelian.

• **Question**. Does the above result hold for any nilpotent Lie group?

Theorem (B - I. Dotti - M. Verbitsky, 2007)

Let $(N, \{J_{\alpha}\}_{\alpha=1,2,3}, g)$ be an HKT nilmanifold such that $\{J_{\alpha}\}$ is left invariant. Then the hypercomplex structure $\{J_{\alpha}\}$ is abelian.

Theorem (Dotti - Fino, 2002)

If G is a 2-step nilpotent Lie group with a left invariant HKT structure ($\{J_{\alpha}\}_{\alpha=1,2,3}, g$), then the hypercomplex structure is abelian.

• **Question**. Does the above result hold for any nilpotent Lie group?

Theorem (B - I. Dotti - M. Verbitsky, 2007)

Let $(N, \{J_{\alpha}\}_{\alpha=1,2,3}, g)$ be an HKT nilmanifold such that $\{J_{\alpha}\}$ is left invariant. Then the hypercomplex structure $\{J_{\alpha}\}$ is abelian.

Theorem (Dotti - Fino, 2002)

If G is a 2-step nilpotent Lie group with a left invariant HKT structure ($\{J_{\alpha}\}_{\alpha=1,2,3}, g$), then the hypercomplex structure is abelian.

• **Question**. Does the above result hold for any nilpotent Lie group?

Theorem (B - I. Dotti - M. Verbitsky, 2007)

Let $(N, \{J_{\alpha}\}_{\alpha=1,2,3}, g)$ be an HKT nilmanifold such that $\{J_{\alpha}\}$ is left invariant. Then the hypercomplex structure $\{J_{\alpha}\}$ is abelian.

An abelian complex structure J satisfies:

- (1,0)-vectors in $\mathfrak{g}^{\mathbb{C}}$ commute;
- The center \mathfrak{z} of \mathfrak{g} is *J*-stable;
- For any $x \in \mathfrak{g}$, $\operatorname{ad}_{J_X} = -\operatorname{ad}_X J$.

Examples.

• Let $\mathfrak{h}_{2n+1} = \operatorname{span}\{e_1, \ldots, e_{2n}, z_0\}$ be the Heisenberg algebra:

$$[e_{2i-1},e_{2i}]=z_0,\quad 1\leq i\leq n,$$

and $\{z_1, \ldots, z_{2k+1}\}$ a basis of \mathbb{R}^{2k+1} . An abelian complex structure on $\mathfrak{h}_{2n+1} \times \mathbb{R}^{2k+1}$ is given by:

 $Je_{2i-1} = \pm e_{2i}, \qquad Jz_{2j} = z_{2j+1}, \quad 1 \le i \le n, \ 0 \le j \le k.$

Let aff(R) = span{e₁, e₂} with Lie bracket: [e₁, e₂] = e₂. It has a unique abelian complex structure up to equiv.:

An abelian complex structure J satisfies:

- (1,0)-vectors in $\mathfrak{g}^{\mathbb{C}}$ commute;
- The center \mathfrak{z} of \mathfrak{g} is *J*-stable;
- For any $x \in \mathfrak{g}$, $\operatorname{ad}_{Jx} = -\operatorname{ad}_{x} J$.

Examples.

• Let $\mathfrak{h}_{2n+1} = \operatorname{span}\{e_1, \ldots, e_{2n}, z_0\}$ be the Heisenberg algebra:

$$[e_{2i-1},e_{2i}]=z_0,\quad 1\leq i\leq n,$$

and $\{z_1, \ldots, z_{2k+1}\}$ a basis of \mathbb{R}^{2k+1} . An abelian complex structure on $\mathfrak{h}_{2n+1} \times \mathbb{R}^{2k+1}$ is given by:

 $Je_{2i-1} = \pm e_{2i}, \qquad Jz_{2j} = z_{2j+1}, \quad 1 \le i \le n, \ 0 \le j \le k.$

Let aff(R) = span{e₁, e₂} with Lie bracket: [e₁, e₂] = e₂. It has a unique abelian complex structure up to equiv.:

$$Je_1 = e_2, \quad (\Box) (\Box) (\Box) (\Xi) (\Xi) (\Xi) = 0000$$

An abelian complex structure J satisfies:

- (1,0)-vectors in $\mathfrak{g}^{\mathbb{C}}$ commute;
- The center \mathfrak{z} of \mathfrak{g} is *J*-stable;

• For any
$$x \in \mathfrak{g}$$
, $\operatorname{ad}_{J_X} = -\operatorname{ad}_X J$.

Examples.

Let
$$\mathfrak{h}_{2n+1} = \operatorname{span}\{e_1, \dots, e_{2n}, z_0\}$$
 be the Heisenberg algebra:
$$[e_{2i-1}, e_{2i}] = z_0, \quad 1 \le i \le n,$$

and $\{z_1, \ldots, z_{2k+1}\}$ a basis of \mathbb{R}^{2k+1} . An abelian complex structure on $\mathfrak{h}_{2n+1} \times \mathbb{R}^{2k+1}$ is given by:

 $Je_{2i-1} = \pm e_{2i}, \qquad Jz_{2j} = z_{2j+1}, \quad 1 \leq i \leq n, \ 0 \leq j \leq k.$

Let aff(R) = span{e₁, e₂} with Lie bracket: [e₁, e₂] = e₂. It has a unique abelian complex structure up to equiv.:

$$Je_1 = e_2, \quad \langle \Box \rangle \langle \overline{a} \rangle \langle \overline{z} \rangle \langle \overline{z} \rangle \langle \overline{z} \rangle \langle \overline{z} \rangle$$

An abelian complex structure J satisfies:

- (1,0)-vectors in $\mathfrak{g}^{\mathbb{C}}$ commute;
- The center \mathfrak{z} of \mathfrak{g} is *J*-stable;

• For any
$$x \in \mathfrak{g}$$
, $\operatorname{ad}_{J_X} = -\operatorname{ad}_X J$.

Examples.

has a unique abelian complex structure up to equiv.:

An abelian complex structure J satisfies:

- (1,0)-vectors in $\mathfrak{g}^{\mathbb{C}}$ commute;
- The center \mathfrak{z} of \mathfrak{g} is *J*-stable;

• For any
$$x \in \mathfrak{g}$$
, $\operatorname{ad}_{J_X} = -\operatorname{ad}_X J$.

Examples.

has a unique abelian complex structure up to equiv.:

$$Je_1 = e_2$$
.

Proposition

If \mathfrak{g} is an even dimensional real Lie algebra with 1-dimensional commutator \mathfrak{g}' , then:

9 g is isomorphic to either $\mathfrak{h}_{2n+1} \times \mathbb{R}^{2k+1}$ or $\mathfrak{aff}(\mathbb{R}) \times \mathbb{R}^{2k}$;

 All these Lie algebras carry abelian complex structures and every complex structure on g is abelian;

There are [ⁿ/₂] + 1 equivalence classes of complex structures on h_{2n+1} × ℝ^{2k+1};

• There is a unique complex structure on $aff(\mathbb{R}) \times \mathbb{R}^{2k}$ up to equivalence.

Proposition

If \mathfrak{g} is an even dimensional real Lie algebra with 1-dimensional commutator \mathfrak{g}' , then:

- **9** g is isomorphic to either $\mathfrak{h}_{2n+1} \times \mathbb{R}^{2k+1}$ or $\mathfrak{aff}(\mathbb{R}) \times \mathbb{R}^{2k}$;
- All these Lie algebras carry abelian complex structures and every complex structure on g is abelian;
- There are [ⁿ/₂] + 1 equivalence classes of complex structures on h_{2n+1} × ℝ^{2k+1};
- There is a unique complex structure on $\alpha ff(\mathbb{R}) \times \mathbb{R}^{2k}$ up to equivalence.

Proposition

If \mathfrak{g} is an even dimensional real Lie algebra with 1-dimensional commutator \mathfrak{g}' , then:

- **9** g is isomorphic to either $\mathfrak{h}_{2n+1} \times \mathbb{R}^{2k+1}$ or $\mathfrak{aff}(\mathbb{R}) \times \mathbb{R}^{2k}$;
- All these Lie algebras carry abelian complex structures and every complex structure on g is abelian;
- There are [ⁿ/₂] + 1 equivalence classes of complex structures on h_{2n+1} × ℝ^{2k+1};
- There is a unique complex structure on $\alpha_{ff}(\mathbb{R}) \times \mathbb{R}^{2k}$ up to equivalence.

Proposition

If \mathfrak{g} is an even dimensional real Lie algebra with 1-dimensional commutator \mathfrak{g}' , then:

- **9** g is isomorphic to either $\mathfrak{h}_{2n+1} \times \mathbb{R}^{2k+1}$ or $\mathfrak{aff}(\mathbb{R}) \times \mathbb{R}^{2k}$;
- All these Lie algebras carry abelian complex structures and every complex structure on g is abelian;
- There are [ⁿ/₂] + 1 equivalence classes of complex structures on h_{2n+1} × ℝ^{2k+1};
- There is a unique complex structure on $\mathfrak{aff}(\mathbb{R}) \times \mathbb{R}^{2k}$ up to equivalence.

- Petravchuk (1988): If g is a real Lie algebra admitting an abelian complex structure, then g is 2-step solvable.
- B Dotti (2004): If g is solvable, codim g' = 1 and dim g > 2, then g does not admit abelian complex structures.
- If g is k-step nilpotent with an abelian complex structure J, set $\left[g_{J}^{i}:=g^{i}+Jg^{i}\right]$. Then

$$\mathfrak{g}_J^i \subsetneq \mathfrak{g}_J^{i-1}$$
 for all $i \leq k$.

In particular, if dim g = 2m, g is at most *m*-step nilpotent.

- Petravchuk (1988): If g is a real Lie algebra admitting an abelian complex structure, then g is 2-step solvable.
- B Dotti (2004): If \mathfrak{g} is solvable, codim $\mathfrak{g}' = 1$ and dim $\mathfrak{g} > 2$, then \mathfrak{g} does not admit abelian complex structures.
- If \mathfrak{g} is *k*-step nilpotent with an abelian complex structure *J*, set $\left[\mathfrak{g}_{J}^{i} := \mathfrak{g}^{i} + J\mathfrak{g}^{i}\right]$. Then

$$\mathfrak{g}_J^i \subsetneq \mathfrak{g}_J^{i-1}$$
 for all $i \leq k$.

In particular, if dim g = 2m, g is at most *m*-step nilpotent.

- Petravchuk (1988): If g is a real Lie algebra admitting an abelian complex structure, then g is 2-step solvable.
- B Dotti (2004): If g is solvable, codim g' = 1 and dim g > 2, then g does not admit abelian complex structures.
- If \mathfrak{g} is *k*-step nilpotent with an abelian complex structure *J*, set $\left[\mathfrak{g}_{J}^{i} := \mathfrak{g}^{i} + J\mathfrak{g}^{i}\right]$. Then

$$\mathfrak{g}_J^i \subsetneq \mathfrak{g}_J^{i-1}$$
 for all $i \leq k$.

In particular, if dim g = 2m, g is at most *m*-step nilpotent.

- Petravchuk (1988): If g is a real Lie algebra admitting an abelian complex structure, then g is 2-step solvable.
- B Dotti (2004): If \mathfrak{g} is solvable, codim $\mathfrak{g}' = 1$ and dim $\mathfrak{g} > 2$, then \mathfrak{g} does not admit abelian complex structures.
- If \mathfrak{g} is *k*-step nilpotent with an abelian complex structure *J*, set $\left[\mathfrak{g}_{J}^{i} := \mathfrak{g}^{i} + J\mathfrak{g}^{i}\right]$. Then

$$\mathfrak{g}_J^i \subsetneq \mathfrak{g}_J^{i-1}$$
 for all $i \leq k$.

In particular, if dim g = 2m, g is at most *m*-step nilpotent.

Affine Lie algebras

Let (A, ·) be a finite dimensional associative, commutative algebra. Set aff(A) := A ⊕ A with Lie bracket:

 $[(a,a'),(b,b')]=(0,a\cdot b'-b\cdot a'), \qquad a,b,a',b'\in A,$

In particular, when $A = \mathbb{R}$ or $A = \mathbb{C}$, we obtain the Lie algebra of the group of affine motions of either \mathbb{R} or \mathbb{C} .

Let J be the endomorphism of aff(A) defined by

$$J(a,a')=(a',-a), \qquad a,a'\in A.$$

J defines an abelian complex structure on αff(A), which we will call standard.

Affine Lie algebras

Let (A, ·) be a finite dimensional associative, commutative algebra. Set aff(A) := A ⊕ A with Lie bracket:

$$[(a,a'),(b,b')]=(0,a\cdot b'-b\cdot a'), \qquad a,b,a',b'\in A,$$

In particular, when $A = \mathbb{R}$ or $A = \mathbb{C}$, we obtain the Lie algebra of the group of affine motions of either \mathbb{R} or \mathbb{C} .

Let J be the endomorphism of aff(A) defined by

$$J(a,a')=(a',-a), \qquad a,a'\in A.$$

J defines an abelian complex structure on αff(A), which we will call standard.

Affine Lie algebras

Let (A, ·) be a finite dimensional associative, commutative algebra. Set aff(A) := A ⊕ A with Lie bracket:

$$[(a, a'), (b, b')] = (0, a \cdot b' - b \cdot a'),$$
 $a, b, a', b' \in A,$

In particular, when $A = \mathbb{R}$ or $A = \mathbb{C}$, we obtain the Lie algebra of the group of affine motions of either \mathbb{R} or \mathbb{C} .

• Let J be the endomorphism of $\mathfrak{aff}(A)$ defined by

$$J(a,a')=(a',-a), \qquad a,a'\in A.$$

J defines an abelian complex structure on $\alpha ff(A)$, which we will call standard.

Theorem (J.E. Snow, 1990)

Let \mathfrak{g} be a 4-dimensional Lie algebra admitting an abelian complex structure. Then \mathfrak{g} is isomorphic to $\mathfrak{aff}(A_i)$ for some $1 \le i \le 6$, where A_i are given by:

$$A_{1} = \left\{ \begin{pmatrix} 0 & a & & \\ 0 & 0 & & \\ & & 0 & b \\ & & 0 & 0 \end{pmatrix} \right\}, \qquad A_{2} = \left\{ \begin{pmatrix} 0 & a & b \\ 0 & 0 & a \\ 0 & 0 & 0 \end{pmatrix} \right\},$$
$$A_{3} = \left\{ \begin{pmatrix} a & 0 & 0 \\ 0 & 0 & b \\ 0 & 0 & 0 \end{pmatrix} \right\}, \qquad A_{4} = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \right\},$$
$$A_{5} = \left\{ \begin{pmatrix} a & 0 \\ b & a \end{pmatrix} \right\}, \qquad A_{6} = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \right\},$$
for $a, b \in \mathbb{R}$.

14/1

Theorem (J.E. Snow, 1990)

Let \mathfrak{g} be a 4-dimensional Lie algebra admitting an abelian complex structure. Then \mathfrak{g} is isomorphic to $\mathfrak{aff}(A_i)$ for some $1 \le i \le 6$, where A_i are given by:

$$A_{1} = \left\{ \begin{pmatrix} 0 & a & & \\ 0 & 0 & & \\ & & 0 & b \\ & & 0 & 0 \end{pmatrix} \right\}, \qquad A_{2} = \left\{ \begin{pmatrix} 0 & a & b \\ 0 & 0 & a \\ 0 & 0 & 0 \end{pmatrix} \right\},$$

$$A_{3} = \left\{ \begin{pmatrix} a & 0 & 0 \\ 0 & 0 & b \\ 0 & 0 & 0 \end{pmatrix} \right\}, \qquad A_{4} = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \right\},$$

$$A_{5} = \left\{ \begin{pmatrix} a & 0 \\ b & a \end{pmatrix} \right\}, \qquad A_{6} = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \right\},$$

for $a, b \in \mathbb{R}$.

The 6-dimensional case

Proposition

If dim $\mathfrak{s} = 6$ and J is an abelian complex structure on \mathfrak{s} such that \mathfrak{s}'_J is nilpotent, then \mathfrak{s}'_J is abelian.

To carry out the classification, we consider separately the following cases:

- s is nilpotent,
- Is not nilpotent and J is proper,
- Is not nilpotent and J is not proper.
- We start by classifying the 6-dim. nilpotent Lie algebras carrying abelian complex structures.
- This can also be obtained as a consequence of results of Salamon (2001) and Cordero Fernández Ugarte (2002).

The 6-dimensional case

Proposition

If dim $\mathfrak{s} = 6$ and J is an abelian complex structure on \mathfrak{s} such that \mathfrak{s}'_J is nilpotent, then \mathfrak{s}'_J is abelian.

To carry out the classification, we consider separately the following cases:

- s is nilpotent,
- 2 \mathfrak{s} is not nilpotent and J is proper,
- **(3)** \mathfrak{s} is not nilpotent and J is not proper.
 - We start by classifying the 6-dim. nilpotent Lie algebras carrying abelian complex structures.
 - This can also be obtained as a consequence of results of Salamon (2001) and Cordero Fernández Ugarte (2002).

The 6-dimensional case

Proposition

If dim $\mathfrak{s} = 6$ and J is an abelian complex structure on \mathfrak{s} such that \mathfrak{s}'_J is nilpotent, then \mathfrak{s}'_J is abelian.

To carry out the classification, we consider separately the following cases:

- s is nilpotent,
- **2** \mathfrak{s} is not nilpotent and J is proper,
- **(3)** \mathfrak{s} is not nilpotent and J is not proper.
 - We start by classifying the 6-dim. nilpotent Lie algebras carrying abelian complex structures.
 - This can also be obtained as a consequence of results of Salamon (2001) and Cordero - Fernández - Ugarte (2002).

Theorem

Let n be a non-abelian 6-dimensional nilpotent Lie algebra with an abelian complex structure J. Then n is isomorphic to one (and only one) of the following Lie algebras:

$$\begin{split} \mathfrak{n}_{1} &:= \mathfrak{h}_{3} \times \mathbb{R}^{3}, \\ \mathfrak{n}_{2} &:= \mathfrak{h}_{5} \times \mathbb{R}, \\ \mathfrak{n}_{3} &:= \mathfrak{h}_{3} \times \mathfrak{h}_{3}, \\ \mathfrak{n}_{4} &:= \mathfrak{h}_{3}(\mathbb{C}), \\ \mathfrak{n}_{5} &: [e_{1}, e_{2}] = e_{5}, \quad [e_{1}, e_{4}] = [e_{2}, e_{3}] = e_{6}, \\ \mathfrak{n}_{6} &: [e_{1}, e_{2}] = e_{5}, \quad [e_{1}, e_{4}] = [e_{2}, e_{5}] = e_{6}, \\ \mathfrak{n}_{7} &: [e_{1}, e_{2}] = e_{4}, \quad [e_{1}, e_{3}] = -[e_{2}, e_{4}] = e_{5}, \\ & [e_{1}, e_{4}] = [e_{2}, e_{3}] = e_{6}. \end{split}$$

\mathfrak{n} is k-step nilpotent with k = 2 or 3.

$$\mathfrak{n} \cong \begin{cases} \mathfrak{n}_1 \text{ or } \mathfrak{n}_2, & \text{ if } \dim \mathfrak{n}' = 1\\ \mathfrak{n}_3, \mathfrak{n}_4 \text{ or } \mathfrak{n}_5, & \text{ if } \dim \mathfrak{n}' = 2 \end{cases}$$

• If k = 3, we obtain:

$$\mathfrak{n} \cong \begin{cases} \mathfrak{n}_6, & \text{if } \dim \mathfrak{n}^2 = 1\\ \mathfrak{n}_7, & \text{if } \dim \mathfrak{n}^2 = 2 \end{cases}$$

<ロ> < (回) < (回) < (目) < (目) < (目) / (日) < (日) < (日) < (日) < (日) < (17/1) </td>

\mathfrak{n} is k-step nilpotent with k = 2 or 3.

• If
$$k = 2$$
, then:

$$\mathfrak{n} \cong \begin{cases} \mathfrak{n}_1 \text{ or } \mathfrak{n}_2, & \text{ if } \dim \mathfrak{n}' = 1 \\ \mathfrak{n}_3, \mathfrak{n}_4 \text{ or } \mathfrak{n}_5, & \text{ if } \dim \mathfrak{n}' = 2 \end{cases}$$

• If k = 3, we obtain:

$$\mathfrak{n} \cong \begin{cases} \mathfrak{n}_6, & \text{ if } \dim \mathfrak{n}^2 = 1 \\ \mathfrak{n}_7, & \text{ if } \dim \mathfrak{n}^2 = 2 \end{cases}$$

Equivalence classes of abelian complex structures

 $C_a(n) := \{ \text{ abelian complex structures on } n \}$

 $\mathcal{C}_{a}(\mathfrak{n})/\operatorname{Aut}(\mathfrak{n}) = \text{moduli space of abelian complex structures on }\mathfrak{n}.$

Theorem (A-B-D, 2009)

- The Lie algebras n₁, n₅ and n₆ have a unique abelian complex structure up to equivalence.
- The Lie algebra n₂ has two abelian complex structures up to equivalence.
- The moduli space of abelian complex structures on n₃ is homeomorphic to \mathbb{R} .
- The moduli space of abelian complex structures on n₄ is homeomorphic to (0, 1] × Z₂.
- The moduli space of abelian complex structures on n₇ is homeomorphic to [−1,0) ∪ (0,1].

Equivalence classes of abelian complex structures

 $C_a(n) := \{ \text{ abelian complex structures on } n \}$

 $C_a(\mathfrak{n})/\operatorname{Aut}(\mathfrak{n}) = \operatorname{moduli} \operatorname{space} \operatorname{of} \operatorname{abelian} \operatorname{complex} \operatorname{structures} \operatorname{on} \mathfrak{n}.$

Theorem (A-B-D, 2009)

- The Lie algebras n₁, n₅ and n₆ have a unique abelian complex structure up to equivalence.
- The Lie algebra n₂ has two abelian complex structures up to equivalence.
- The moduli space of abelian complex structures on n₃ is homeomorphic to ℝ.
- The moduli space of abelian complex structures on n₄ is homeomorphic to (0, 1] × Z₂.
- The moduli space of abelian complex structures on n₇ is homeomorphic to [−1,0) ∪ (0,1].

Equivalence classes of abelian complex structures

 $C_a(n) := \{ \text{ abelian complex structures on } n \}$

 $C_a(\mathfrak{n})/\operatorname{Aut}(\mathfrak{n}) = \operatorname{moduli} \operatorname{space} \operatorname{of} \operatorname{abelian} \operatorname{complex} \operatorname{structures} \operatorname{on} \mathfrak{n}.$

Theorem (A-B-D, 2009)

- The Lie algebras n₁, n₅ and n₆ have a unique abelian complex structure up to equivalence.
- The Lie algebra n₂ has two abelian complex structures up to equivalence.
- The moduli space of abelian complex structures on n₃ is homeomorphic to ℝ.
- The moduli space of abelian complex structures on n₄ is homeomorphic to (0, 1] × Z₂.
- The moduli space of abelian complex structures on n₇ is homeomorphic to [−1,0) ∪ (0,1].

18/1

The Lie algebra $\mathfrak{n}_3 = \mathfrak{h}_3 \times \mathfrak{h}_3$

$$[e_1, e_2] = e_5,$$
 $[e_3, e_4] = e_6$

19/1

The Lie algebra n_7

$$[e_1, e_2] = e_4, \quad [e_1, e_3] = -[e_2, e_4] = e_5, \quad [e_1, e_4] = [e_2, e_3] = e_6$$

$$\mathcal{C}_{a}(\mathfrak{n}_{7}) = \left\{ \begin{pmatrix} 0 & -1 & & & \\ 1 & 0 & & & \\ & 0 & 1 & & \\ & -1 & 0 & & \\ & & s & (-s^{2}-1)/t \\ & & t & -s \end{pmatrix} : t \neq 0 \right\}$$
$$\mathcal{C}_{a}(\mathfrak{n}_{7})/\operatorname{Aut}(\mathfrak{n}_{7}) = \left\{ \begin{pmatrix} 0 & -1 & & & \\ 1 & 0 & & & \\ & & 0 & 1 & \\ & & -1 & 0 & \\ & & -1 & 0 & \\ \end{pmatrix} : 0 < |t| \le 1$$

 $\begin{array}{c} 0 \\ t \\ t \end{array} = \left. \begin{array}{c} -1/t \\ 0 \\ \end{array} \right)$

20 / 1

≣≻ ×≣>

For $t_0 \neq 0, \pm 1$:

$$O_{(0,t_0)} = \left\{ (u,v) : u^2 + \left(v - \frac{c}{2}\right)^2 = \left(\frac{c}{2}\right)^2 - 1 \right\} = F^{-1}(c),$$

where $F(u,v) = v + \frac{1+u^2}{v}$ and $c = t_0 + \frac{1}{t_0}.$
 $O_{(0,-1)} = \{(0,-1)\}, \qquad O_{(0,1)} = \{(0,1)\}.$

The Lie algebra $\mathfrak{n}_4 = \mathfrak{h}_3(\mathbb{C})$

$$[e_1, e_3] = -[e_2, e_4] = e_5, \qquad [e_1, e_4] = [e_2, e_3] = e_6$$

$$\mathcal{C}_{a}(\mathfrak{n}_{4}) = \left\{ \begin{pmatrix} J_{k} & \\ & s & (-s^{2}-1)/t \\ & t & -s \end{pmatrix} : k = 1 \text{ or } 2, t \neq 0 \right\}$$

where

$$J_1 = \begin{pmatrix} & -1 & 0 \\ & 0 & -1 \\ 1 & 0 & & \\ 0 & 1 & & \end{pmatrix}, \quad J_2 = \begin{pmatrix} 0 & -1 & & \\ 1 & 0 & & \\ & & 0 & 1 \\ & & -1 & 0 \end{pmatrix}$$

$$\mathcal{C}_{a}(\mathfrak{n}_{4})/\operatorname{Aut}(\mathfrak{n}_{4}) = \left\{ \begin{pmatrix} J_{k} & & \\ & 0 & -1/t \\ & t & 0 \end{pmatrix} : k = 1 \text{ or } 2, \ t \in (0,1] \right\} \cong (0,1]$$

23/1

Non-nilpotent \mathfrak{s} , proper J

- If dim $\mathfrak{s}'_J = 2$, or
- dim $\mathfrak{s}'_J = 4$ and \mathfrak{s}'_J is non-abelian,

then (\mathfrak{s}, J) is decomposable .

- If $\mathfrak{s}'_J = \mathbb{R}^4$, we obtain:
- **(**) A non-standard complex structure on $\mathfrak{aff}(\mathbb{C}) \times \mathbb{R}^2$.
- Two Lie algebras s₁, s₂: s₁ has two non-equivalent structures and s₂ has a unique structure.
- A 2-parameter family of non-isomorphic Lie algebras. Each one admits a unique structure up to equivalence.

Non-nilpotent \mathfrak{s} , proper J

• If dim
$$\mathfrak{s}'_J = 2$$
, or

• dim $\mathfrak{s}'_J = 4$ and \mathfrak{s}'_J is non-abelian,

then (\mathfrak{s}, J) is decomposable .

- If $\mathfrak{s}'_J = \mathbb{R}^4$, we obtain:
- A non-standard complex structure on $\mathfrak{aff}(\mathbb{C}) \times \mathbb{R}^2$.
- Two Lie algebras \$\varsigma_1\$, \$\varsisma_2\$: \$\varsisma_1\$ has two non-equivalent structures and \$\varsisma_2\$ has a unique structure.
- A 2-parameter family of non-isomorphic Lie algebras. Each one admits a unique structure up to equivalence.

Theorem (A-B-D, 2009)

Let \mathfrak{s} be a 6-dimensional Lie algebra with a non-proper abelian complex structure J. Then dim $\mathfrak{s}' = 3$ and (\mathfrak{s}, J) is holomorphically isomorphic to $\mathfrak{aff}(A)$ with its standard complex structure, where A is a 3-dimensional commutative associative algebra such that $A^2 = A$. $A = A_i$ for some $1 \le i \le 5$, where

$$A_{1} = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \right\}, \qquad A_{2} = \left\{ \begin{pmatrix} a \\ b \\ c \\ b \end{pmatrix} \right\},$$
$$A_{3} = \left\{ \begin{pmatrix} a \\ b \\ b \end{pmatrix} \right\}, A_{4} = \left\{ \begin{pmatrix} a & b & c \\ c & b \end{pmatrix} \right\},$$
$$A_{5} = \left\{ \begin{pmatrix} a & 0 & c \\ a & b \\ c \end{pmatrix} \right\}.$$

うへで 25/1

Theorem (A-B-D, 2009)

Let \mathfrak{s} be a 6-dimensional Lie algebra with a non-proper abelian complex structure J. Then dim $\mathfrak{s}' = 3$ and (\mathfrak{s}, J) is holomorphically isomorphic to $\mathfrak{aff}(A)$ with its standard complex structure, where A is a 3-dimensional commutative associative algebra such that $A^2 = A$. $A = A_i$ for some $1 \le i \le 5$, where

$$A_{1} = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \right\}, \qquad A_{2} = \left\{ \begin{pmatrix} a \\ b \\ c \\ b \end{pmatrix} \right\},$$
$$A_{3} = \left\{ \begin{pmatrix} a \\ b \\ c \\ b \end{pmatrix} \right\}, A_{4} = \left\{ \begin{pmatrix} a & b & c \\ c & b \\ a \end{pmatrix} \right\},$$
$$A_{5} = \left\{ \begin{pmatrix} a & 0 & c \\ a & b \\ c \\ a \end{pmatrix} \right\}.$$

うへぐ 25/1