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Classi�cation of acetic acid bacteria and their 
acid resistant mechanism
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Abstract 

Acetic acid bacteria (AAB) are obligate aerobic Gram-negative bacteria that are commonly used in vinegar fermenta-
tion because of their strong capacity for ethanol oxidation and acetic acid synthesis as well as their acid resistance. 
However, low biomass and low production rate due to acid stress are still major challenges that must be overcome 
in industrial processes. Although acid resistance in AAB is important to the production of high acidity vinegar, the 
acid resistance mechanisms of AAB have yet to be fully elucidated. In this study, we discuss the classification of AAB 
species and their metabolic processes and review potential acid resistance factors and acid resistance mechanisms 
in various strains. In addition, we analyze the quorum sensing systems of Komagataeibacter and Gluconacetobacter 
to provide new ideas for investigation of acid resistance mechanisms in AAB in the form of signaling pathways. The 
results presented herein will serve as an important reference for selective breeding of high acid resistance AAB and 
optimization of acetic acid fermentation processes.
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Key points

• Summarize the current classification of AAB (19 gen-

era and 92 species) in detail for the first time;

• Investigate the acid resistance mechanism in AAB 

systematically and comprehensively;

• Explain the acid resistance mechanism from the new 

perspective of signal pathways.

Introduction
Acetic acid bacteria (AAB), which are also known as Ace-

tobacter sp., are obligate aerobic Gram-negative bacteria 

found in the Alphaproteobacteria class, Rhodospirilla-

les order, and Acetobacteraceae family (Kersters 2006). 

AAB are often found in warm and humid regions, in 

fruits, flowers, fruit fly guts, and some fermented foods 

(Chouaia et  al. 2014; Kersters et  al. 2006; Sengun and 

Karabiyikli 2011; Soemphol et  al. 2011; Trček and Barja 

2015). When compared with other bacteria, AAB show 

high variability (Azuma et  al. 2009). �erefore, the tax-

onomy of AAB has undergone a long process of develop-

ment that started with an initial phenotypic classification 

and continued as the polyphasic classification approach 

became available. Polyphasic classification mainly 

includes phenotypic, chemical, and genetic classification 

methods (Greenberg et  al. 2006; Lisdiyanti et  al. 2006). 

In the past few decades, the development of molecular 

biology techniques has further refined the biological clas-

sification of AAB. However, as  things  stand  at present, 

no researchers have summarized the newly discovered 

specific genus and species classification of AAB system-

atically, except for a 2008 article that only summarized 

the 10 genus and 45 species (Cleenwerck and Vos 2008), 

which is a major focus of our article.

Major metabolic pathways in AAB include the ethanol 

oxidation respiratory chain pathway, tricarboxylic acid 

cycle pathway, pyruvate metabolic pathway, and pentose 
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phosphate pathway. Among these, the most significant 

reaction is the incomplete oxidation of sugars, alcohols, 

or sugar alcohols into aldehydes, ketones, and organic 

acids (Sengun 2017). �e greatest strength of AAB is 

their ability to use less biomass to produce large amounts 

of acetic acid compared to other bacterias that produce 

organic acids (López-Garzón and Straathof 2014); there-

fore, they are important industrial microorganisms that 

are widely used in the production of vinegar and fruit 

vinegar, gluconic acid products, and development of bio-

fuel cells (Lynch et al. 2019; Misra et al. 2012; Sainz et al. 

2016).

�e presence of acetic acid in vinegar products makes 

AAB fermentation unique (Zhang et  al. 2016; Zheng 

et  al. 2018). Specifically, acetic acid changes the flavor 

of vinegar and increases the survival advantages of AAB 

(Lynch et  al. 2019; Hong 2016, 2017); however, acetic 

acid accumulation causes acid stress that inhibits AAB 

growth (Trček et  al. 2015). During fermentation, the 

large number of dehydrogenases on the cell membrane 

of AAB causes the incomplete oxidation of many carbon 

sources into acetic acid (Matsushita et al. 2016). Because 

of the incomplete glycolysis, the main energy sources for 

maintaining cellular homeostasis are from the respiratory 

chain, tricarboxylic acid cycle, and pentose phosphate 

pathway (Illeghems et al. 2013). Resistance towards highly 

acidic environments requires large amounts of energy, 

which severely limits cell growth. As a result, AAB with 

high acid resistance can increase acetic acid productivity 

and conversion rate, thereby increasing the bioconver-

sion efficiency of acetic acid. Hence, elucidation of acid 

resistance mechanisms can provide important guidance 

for the selective breeding of acetic acid-producing bacte-

ria and bioconversion of high acidity vinegar.

We found that most researchers only wrote part of the 

acid resistance mechanism of AAB and none of them 

described the relationship between the quorum sensing 

and acid resistance mechanism of AAB. In this review, 

we discuss the specific classification of AAB for the first 

time and its metabolic pathways before systematically 

and comprehensively summarizing the latest studies on 

acid resistance in AAB. In addition, we analyze the quo-

rum sensing systems of Komagataeibacter and Glucon-

acetobacter to elucidate acid resistance mechanisms in 

AAB from a new perspective of signal pathways.

Overview of AAB and its taxonomy

�ere are many types of AAB, among which the first 

genus, Acetobacter, was first proposed and described by 

Beijerinck in 1898 (Beijerinck 1898). Subsequently, four 

major genera (Acetobacter, Gluconobaeter, Gluconace-

tobacter, and Komagataeibacter) were confirmed based 

on their ethanol oxidation capabilities and the type of 

respiratory chain coenzyme they contained (Asai 1935; 

Yamada et al. 1983, 2012). With the development of poly-

phasic classification techniques, new genera and species 

have been continuously found (Cleenwerck 2008), and 

19 genera and 92 species of AAB have been identified 

to date (Table 1). AAB are mainly used in the industrial 

production of vinegars and fruit vinegar beverages, with 

Acetobacter and Komagataeibacter being primarily used 

in vinegar making (Kanchanarach et  al. 2010; Wu et  al. 

2012).

Acetobacter

Acetobacter uses two membrane-bound enzymes (alco-

hol dehydrogenase (ADH) and acetaldehyde dehydro-

genase (ALDH)) to oxidize ethanol to acetic acid during 

respiration, after which it further oxidizes acetic acid and 

lactic acid to carbon dioxide and water. However, Aceto-

bacter are unable to utilize sugar alcohols such as glyc-

erol, sorbitol, and mannitol to produce acetic acid. �e 

respiratory chain coenzyme (CoQ) used by Acetobacter 

is Q9 (Kersters et al. 2006).

At present, the main strains used in industrial produc-

tion of acetic acid in China are A. pasteurianus Zhongke 

AS1.41 and Huniang 1.01 (Chen et  al. 2017), which are 

relatively uniform. Damage will occur in Acetobacter 

strains when the acetic acid concentration reaches 7–8%; 

therefore, these strains are mainly used in conventional 

surface production of vinegar and the final acid concen-

tration usually does not exceed 8%, with a maximum 

acidity of 9–10% (Andrés-Barrao et  al. 2016). A recent 

study reported that A. pasteurianus could produce ace-

tic acid in a two-stage aeration protocol with a maximum 

acidity of 9.33% (Qi et al. 2014). In addition, strains iso-

lated from traditional vinegars such as Chinese grain vin-

egar, Japanese Komesu and Kurosu vinegars, and South 

Korean black raspberry vinegar are mainly A. pasteuri-

anus (Nanda et al. 2001; Song et al. 2016; Wang 2016).

Komagataeibacter

Komagataeibacter can oxidize ethanol to acetic acid and 

oxidize acetic acid to carbon dioxide and water (Yamada 

et  al. 2012). �e respiratory chain CoQ used by Koma-

gataeibacter is Q10 (Kersters et  al. 2006). Members of 

this genus are characterized by an absence of flagella 

and inability to produce brown compounds. In addition, 

some strains can produce cellulose, show an inability to 

produce 2,5-diketo-D-gluconate, are able to produce 

dihydroxyacetone from glycerol, and can oxidize glucose, 

galactose, xylose, arabinoside, and ethanol to produce 

organic acids.

Komagataeibacter strains, which can resist 15–20% 

acetic acid, are mainly used to produce fruit vinegar and 

alcoholic vinegar in liquid-state deep fermentation in 
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Table 1 Current classi�cation of the Acetobacteraceae (19 genera, 92 species)

Speciesa DNA G + C(mol%)b References Speciesa DNA G + C(mol%)b References

Acetobacter aceti 56.4–58.3 Lisdiyanti et al. (2000) Gluconacetobacter diazo-
trophicus

61.0–63.0 Yamada et al. (1997)

Acetobacter ascendens 53.2–53.3 Kim et al. (2018) Gluconacetobacter 
entanii

58.0 Lisdiyanti et al. (2006)

Acetobacter cerevisiae 56.0–57.6 Iino et al. (2012) Gluconacetobacter 
johannae

57.96–67.5 Nishijima et al. (2013)

Acetobacter cibinon-
gensisc

53.8–54.5 Lisdiyanti et al. (2001) Gluconacetobacter 
liquefaciens

63.5–66.9 Yamada et al. (1997)

Acetobacter estunensis 59.2–60.2 Lisdiyanti et al. (2000) Gluconacetobacter 
sacchari

62.1–67.3 Franke et al. (1999)

Acetobacter fabarum 56.8–58 Iino et al. (2012) Gluconacetobacter taka-
matsuzukensis

66.6 Nishijima et al. (2013)

Acetobacter farinalis 56.3–56.5 Iino et al. (2012) Gluconacetobacter 
tumulicola

64.7 Nishijima et al. (2013)

Acetobacter ghanensis 56.9–57.3 Iino et al. (2012) Gluconacetobacter 
tumulisoli

66.5 Nishijima et al. (2013)

Acetobacter indonesiensis 53.7–55.0 Lisdiyanti et al. (2000) Gluconobacter albidusf 58.1–60.0 Malimas et al. (2007)

Acetobacter lambici 56.2 Spitaels et al. (2013) Gluconobacter cerinus 54–56 Malimas et al. (2007)

Acetobacter lovaniensis 57.1–58.9 Iino et al. (2012) Gluconobacter frateurii 57.5–57.7 Malimas et al. (2007)

Acetobacter malorum 57.2 Iino et al. (2012) Gluconobacter japonicus 56.4 Malimas et al. (2009)

Acetobacter musti 58 Ferrer et al. (2016) Gluconobacter kan-
chanaburiensis

59.5 Tanasupawat et al. (2011)

Acetobacter nitrogenifi-
gens

64.1 Dutta and Gachhui 
(2006)

Gluconobacter kondonii 59.8 Malimas et al. (2007)

Acetobacter oeni 58.1 Silva et al. (2006) Gluconobacter nephelii 57.2–57.6 Kommanee et al. (2010)

Acetobacter okinawensis 59.2–59.4 Iino et al. (2012) Gluconobacter oxydans 60.3–63.5 Malimas et al. (2007)

Acetobacter orientalis 52.0–52.8 Lisdiyanti et al. (2001) Gluconobacter roseus 60.5 Tanasupawat et al. (2011)

Acetobacter orleanensis 55.7–58.9 Lisdiyanti et al. (2000) Gluconobacter sphaericus 59.5 Tanasupawat et al. (2011)

Acetobacter oryzoeni 53.1 Baek et al. (2020) Gluconobacter thailan-
dicus

55.3–56.3 Malimas et al. (2007)

Acetobacter oryzifermen-
tans

52.4 Kim et al. (2018) Gluconobacter wanch-
erniae

56.6 Tanasupawat et al. (2011)

Acetobacter pasteurianus 51.8–54.3 Lisdiyanti et al. (2000) Gluconobacter uchimurae 60.4–60.6 Tanasupawat et al. (2011)

Acetobacter papayae 60.5–60.7 Iino et al. (2012) Granulibacter bethensis 59 Ramírez-Bahena et al. 
(2013)

Acetobacter peroxydans 59.7–60.7 Iino et al. (2012) Komagataeibacter 
europaeus

56–58 Yamada et al. (1997)

Acetobacter persicus 58.7–58.9 Iino et al. (2012) Komagataeibacter 
hansenii

58–59 Yamada et al. (1997)

Acetobacter pomorum 52.1 Sokollek et al. (1998) Komagataeibacter inter-
medius

61.6 Yamada et al. (2000)

Acetobacter senegalensis 56 Ndoye et al. (2007) Komagataeibacter 
kakiaceti

62.10 Škraban et al. (2018)

Acetobacter sicerae 58.3 Li et al. (2014) Komagataeibacter kom-
buchae

59.63 Škraban et al. (2018)

Acetobacter syzygii 54.3–55.4 Iino et al. (2012) Komagataeibacter 
maltaceti

62.5–63.3 Slapšak et al. (2013)

Acetobacter tropicalis 55.2–56.2 Lisdiyanti et al. (2000) Komagataeibacter medel-
linensis

58–60.7 Castro et al. (2013)

Acidomonas methanolica 63–66 Ramírez-Bahena et al. 
(2013)

Komagataeibacter 
nataicola

62 Lisdiyanti et al. (2006)

Ameyamaea chiang-
maiensis

66–66.1 Yukphan et al. (2009) Komagataeibacter 
oboediens

59.9 Yamada et al. (2000)

Asaia astilbes 58.8–59.4 Suzuki et al. (2010) Komagataeibacter 
pomaceti

62.53–62.75 Škraban et al. (2018)
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Europe (Andrés-Barrao et al. 2016). Several Komagataei-

bacter strains have been isolated during high acidity vin-

egar production, including K. europaeus, K. intermedius, 

K. oboediens, and K. hansenii (Xia et  al.  2016;  Sievers 

et al. 1992; Trček et al. 2000; Yamada et al. 2012).

Analysis of metabolic pathways in AAB

Major metabolic pathways in AAB include the ethanol 

oxidation respiratory chain pathway, tricarboxylic acid 

cycle pathway, pyruvate metabolic pathway, and pentose 

phosphate pathway (Fig.  1). AAB possess unique oxida-

tion capabilities, of which the classic reaction is incom-

plete oxidation of ethanol into acetic acid, which is used 

to produce vinegar.

�is ethanol metabolic pathway consists of a two-step 

reaction (Mas et  al. 2014; Tesfaye et  al. 2002) (Fig.  1a). 

ADH present on the outer cell membrane in the res-

piratory chain facing the periplasmic space binds to 

pyrroloquinoline quinone (PQQ) to oxidize ethanol to 

acetaldehyde. Next, acetaldehyde is further oxidized by 

ALDH into acetic acid (Saichana et al. 2015). �e entire 

process is an exothermic reaction, and oxidation of 1 mol 

of ethanol into acetic acid releases 493 kJ of heat (Matsu-

tani et al. 2013).

In addition, AAB possess NAD-ADH and NADP-

ALDH, which use  NAD+/NADP+ as coenzymes. NAD-

ADH and NADP-ALDH are located in the cytoplasm and 

can convert ethanol that enters the cell into acetic acid 

before converting acetic acid into acetyl-CoA to enter the 

tricarboxylic acid cycle for complete oxidation into car-

bon dioxide and water. PQQ-ADH and ALDH mainly 

participate in ethanol oxidative fermentation. During 

acetic acid synthesis, the activities of NAD-ADH and 

NADP-ALDH are completely inhibited (Chinnawirot-

pisan et  al. 2003; Gullo et  al. 2014; Yakushi and Matsu-

shita 2010).

In addition to metabolic pathways for acetic acid syn-

thesis, there are also many types of oxidation processes 

in AAB (Saichana et  al. 2015). �ese reactions primar-

ily occur on the cell membrane and are catalyzed by 

Table 1 (continued)

Speciesa DNA G + C(mol%)b References Speciesa DNA G + C(mol%)b References

Asaia bogorensis 59.3–61.0 Yamada et al. (2000) Komagataeibacter 
rhaeticus

63.4 Dellaglio et al. (2005)

Asaia krungthepensis 60.2–60.5 Yukphan et al. (2004) Komagataeibacter 
swingsii

61.7 Dellaglio et al. (2005)

Asaia lannaensis 60.8–60.9 Malimas et al. (2008) Komagataeibacter sucro-
fermentans

62.33 Škraban et al. (2018)

Asaia platycodi 60.0–60.1 Suzuki et al. (2010) Komagataeibacter sac-
charivorans

61 Lisdiyanti et al. (2006)

Asaia prunellae 58.9–59.3 Suzuki et al. (2010) Komagataeibacter xylinus 59.4–63.2 Yamada et al. (1997)

Asaia siamensis 58.6–59.7 Katsura et al. (2001) Kozakia baliensis 56.8–57.2 Ramírez-Bahena et al. 
(2013)

Asaia spathodeae 59.7–59.8 Kommanee et al. (2010) Neoasaia chiangmaien-
sisg

63.1 Ramírez-Bahena et al. 
(2013)

Bombella apis 59.5 Yun et al. (2017) Neokomagataea 
tanensis

51.2 Yukphan et al. (2011)

Commensalibacter 
intestini

36.85 Kim et al. (2012) Neokomagataea thai-
landica

56.8 Yukphan et al. (2011)

Commensalibacter 
papalotli

36.66 Servin-Garciduenas et al. 
(2014)

Nguyenibacter vanlan-
gensis

59.3–61.0 Vu et al. (2013)

Endobacter medicaginis 60.3 Ramírez-Bahena et al. 
(2013)

Saccharibacter �oricola 51.9–52.3 Jojima et al. (2004)

Gluconacetobacter 
aggeris

65.4 Nishijima et al. (2013) Swaminathania salitol-
erans

57.6–59.9 Ramírez-Bahena et al. 
(2013)

Gluconacetobacter 
asukensis

65.2–65.4 Nishijima et al. (2013) Swingsia samuiensis 59.3–61.0 Malimas et al. (2013)

Gluconacetobacter azoto-
captans

64.01–65.7 Nishijima et al. (2013) Tanticharoenia sakaer-
atensis

64.5–65.6 Yukphan et al. 2008)

a The type species of each genus is indicated in bold
b Data taken from literature (for Acetobacter: Iino et al. 2012; Kim et al. 2018; Lisdiyanti et al. 2000, 2001; Malimas et al. 2007, 2008; Ramírez-Bahena et al. 2013; Suzuki 
et al. 2010; Tanasupawat et al. 2001, 2011; Yamada et al. 2000; Yukphan et al. 2004; for Acidomonas: Yamada et al. 1997; for Ameyamaea: Kommanee et al. 2010; for 
Asaia: Kim et al. 2012; Servin-Garciduenas et al. 2014; Škraban et al. 2018; Slapšak et al. 2013; Spitaels et al. 2013; Yun et al. 2017; for Bombella, Commensalibacter, 
Endobacter, Gluconobacter, Gluconacetobacter, Granulibacter, Komagataeibacter, Kozakia, Nguyenibacter, Neoasaia, Neokomagataea, Saccharibacter, Swaminathania, 
Swingsia, Tanticharoenia: from reference in table above)
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pyrroloquinoline quinone-bound dehydrogenase. In 

these reactions, substrates undergo incomplete oxida-

tion to be converted into corresponding products that 

are released into the environment. Electrons released by 

different dehydrogenases are transferred to the termi-

nal oxidase under the assistance of CoQ, which binds to 

oxygen (the final electron acceptor) to synthesize water. 

However, under hypoxic conditions other compounds 

can be used as the final electron acceptor to ensure bac-

terial growth (Drysdale and Fleet 1988). For example, 

acetaldehyde is used as the final acceptor in alcoholic vin-

egar fermentation, but microorganisms can only main-

tain physiological activity under this state and are unable 

to conduct acetic acid anabolism (Millet and Lonvaud-

Funel 2000). Nevertheless, certain AAB are able to use 

quinones or vat dyes under hypoxic conditions, enabling 

respiration to continue (Qi et al. 2013).

Most metabolic pathways in AAB require oxygen, and 

oxygen consumption is directly proportional to acetic 

acid production. Hypoxia causes production capacities 

to rapidly decrease, and may even cause bacteria to die 

(Ory et al. 2002, 2004). �erefore, sufficient oxygen must 

be provided during fermentation.

Acid resistance mechanisms in AAB

Acetic acid is a common weak acid that is used in biology 

and medicine. Acetic acid is highly toxic to microorgan-

isms, with concentrations greater than 5  g/L inhibiting 

microbial growth and metabolism (Trček et al. 2015). �e 

main reason acetic acid is toxic to microorganisms is its 

Fig. 1 The metabolic pathways and mechanism of acetic acid resistance recorded in AAB. a The ethanol oxidation respiratory chain pathway; 
b The tricarboxylic acid (TCA) cycle pathway; c The heat stress proteins (HSPs); d A putative schematic representation of quorum sensing (QS) 
regulating modules in the cell membrane of Gluconacetobacter intermedius; e The ATP-binding cassette (ABC) transporter; f The proton motive 
force-driven efflux pumps. ADH, Alcohol dehydrogenase; ALDH, Acetaldehyde dehydrogenase; UQ, Ubiquinone; TO, Terminal oxidase; PDB, 
Pyruvate decarboxylase; PDH, Pyruvate dehydrogenase; CS, Citrate synthase; CA, Cis aconitase; ICDH, Isocitrate dehydrogenase; KDH, Ketoglutarate 
dehydrogenase; SUCS, Succinyl CoA synthase; SDH, Succinate dehydrogenase; FS, Fumarate synthase; MDH, Malate dehydrogenase; EMP, Glycolytic 
pathway; HMS, Hexose monophosphate shunt



Page 6 of 15Qiu et al. AMB Expr           (2021) 11:29 

ability to cross the cell membrane and enter cells. �is 

increases intracellular acetic acid concentrations and dis-

rupts some physiological functions of the cell membrane 

(Conner and Kotrola 1995). �ere are large differences in 

acid resistance between different AAB species, with K. 

europaeus having high acid resistance and the ability to 

tolerate 15–20% acetic acid (Andrés-Barrao et al. 2016). 

In contrast, A. aceti and A. pasteurianus, which are com-

monly used in acetic acid fermentation, can only tolerate 

5–8% acetic acid (Trček et al. 2007), while Saccharibacter 

and Asaia shows almost no growth in acetic acid-con-

taining culture medium (Kommanee et al. 2011; Spitaels 

et al. 2013).

Acid resistance in AAB is intimately associated with 

cell structure and the levels of some enzymes in the cell 

membrane and cytoplasm. Acid resistance factors in 

Acetobacter and Komagataeibacter may be pyrroloquin-

oline quinone-dependent alcohol dehydrogenase (PQQ-

ADH) and phospholipids on the cell membrane, proton 

motive force-dependent efflux pumps, ABC transporter, 

and some enzymes and stress proteins in the TCA cycle 

(Nakano and Fukaya 2008). In addition, some AAB are 

able to change their morphology and form pellicles on 

the cell surface to increase acid resistance. QS systems, 

which are present in Komagataeibacter and Gluconaceto-

bacter, provide new ideas for acid resistance mechanisms 

in AAB from the signaling pathway perspective.

Acid resistance factors on the cell membrane
Cell morphology and cell membrane composition

Acetic acid has some effects on morphology in AAB. 

In the absence of acetic acid, K. europaeus appears as 

short rods. At an acetic acid concentration of 3% (v/v), 

K. europaeus appears as long rods and small depressions 

appears at the cell membrane. As acetic acid concentra-

tion increases, K. europaeus forms longer and thinner 

rods (Trček et  al. 2007). Changes in cell morphology 

decreases the effective area for passive diffusion of acetic 

acid into cells and the toxicity of acetic acid accumulation 

in microorganisms, enabling them to tolerate high acetic 

acid concentrations.

Acetobacter and Komagataeibacter are acetic acid-pro-

ducing strains commonly used in industrial processes, 

but the latter has higher acid resistance than the former. 

Analysis of the glycolipid and phospholipid content in K. 

europaeus revealed that the glycolipid content increased 

by 67% in bacteria growing in 3% (v/v) acetic acid cul-

ture medium compared with strains growing in culture 

medium without acetic acid while total phospholipid 

content decreased by 16.3% (Trček et  al. 2007). Chemi-

cal analysis of cell membrane phospholipids revealed that 

the phosphatidylcholine (PC) content of Komagataei-

bacter was significantly higher than that of Acetobacter, 

while the phosphatidylethanolamine (PE) content was 

significantly lower than that of Acetobacter (Goto et  al. 

2000). As the acetic acid concentration increases, the 

proportion of PC in the cell membrane increases while 

the proportion of phosphatidylglycerol (PG) decreases 

(Higashide et  al. 1996). By using the method of gene 

inactivation, it is proved that PC on the cell membrane 

is not only the main phospholipid component, but also 

an essential factor for high acid resistance in A. aceti 

(Hanada et al. 2001). A higher PC content and lower PE 

content are considered to be more favorable to the pro-

duction of high concentrations of acetic acid.

When compared with other microorganisms, the cell 

membrane lipids of Komagataeibacter also contain high 

levels of carotenoids, particularly tetrahydroxybacte-

riohopane (THBH) (Matsushita et  al. 2016). THBH is 

a characteristic component in the cell membranes of 

Zymomonas mobilis, and THBH content increases during 

alcohol fermentation (Hermans et  al. 1991). �e THBH 

content in the membrane lipid of AAB up to 25% and 

THBH contributes to the stabilization of cell membrane 

at high ethanol concentrations (Ebisuya 2015). Overex-

pression of squalene-hopen cyclase, which participates 

in the synthesis of THBH precursors, increased the acetic 

acid resistance of AAB compared with the wildtype strain 

which confirms that THBH is related to the acetic acid 

resistance in AAB (Ebisuya 2015).

Furthermore, Acetobacter can be classified by cell mor-

phology as R (when the cell surface is rough) or S (when 

the cell surface is smooth) (Deeraksa et  al. 2005). Stud-

ies have shown that the R strain can produce more ace-

tic acid and possess acetic acid further oxidation ability 

compared to the S strain. �e acetic acid further oxida-

tion capacity is considered to be an important pres-

entation of acid resistance in AAB, showing that the A. 

pasteurianus R strain has higher acid resistance than the 

S strain. In addition, the intracellular acetic acid/acetate 

content in the S strain is 3–4 times higher than that of 

the R strain, showing that acetic acid molecules can easily 

enter the cell membrane of the A. pasteurianus S strain 

due to absence of the pellicle (Kanchanarach et al. 2010). 

When the polE gene that is used for cell surface polysac-

charide synthesis to confirm is deleted, the R strain has 

better resistance towards ethanol and acetic acid (Brandt 

et al. 2017). �is is because the pellicle on the cell surface 

prevents the entry of acetic acid into cells and enables 

high concentration acetic acid fermentation.

Enzyme activity level of pyrroloquinoline 

quinone-dependent alcohol dehydrogenase

PQQ is an important coenzyme that is ubiquitous in 

Gram-negative bacteria, participates in electron trans-

port and can increase resistance towards radiation, high 
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acidity, high temperature, and other extreme environ-

ments in certain microorganisms (Rajpurohit et al. 2008). 

PQQ-ADH is the key enzyme responsible for synthesiz-

ing acetic acid from ethanol in AAB (Fig. 1a).

�e PQQ-ADH activity in highly acidic K. europaeus 

cells is two times greater than that of A. pasteurianus 

(Rajpurohit et al. 2008). When the ADH gene is deleted in 

A. pasteurianus, acid resistance is lost (Chinnawirotpisan 

et  al. 2003), indicating that ADH activity contributes 

directly to acid resistance (Trček et  al. 2007, 2006; Xia 

et  al. 2015). Analysis of the genome of A. pasteurianus 

Ab3 revealed that it contains many membrane-bound 

PQQ-ADH (Wang et  al. 2015c). Integrated analysis of 

published AAB genomes demonstrated that there are sig-

nificant species differences in the gene copy number of 

PQQ-ADH. Komagataeibacter contains the most genes 

encoding PQQ-ADH and ADH, and these genes are 

absent in some strains of Gluconobacter and Gluconace-

tobacter. In addition, PQQ-ADH differs among species. 

Specifically, K. europaeus 5P3 contains six copies, while 

this gene is absent from K. hansenii ATCC 23,769 and 

K. medellinensis NBRC 3288. �e copy number of PQQ-

ADH in A. pasteurianus is relatively stable. �erefore, 

differences in the number of PQQ-ADH genes may be 

crucial to differences in acid productivity and acid resist-

ance in different AAB strains (Wang et al. 2015a).

ATP-binding cassette transporter

ABC transporter, which is located on cell membranes, is 

responsible for the transport of intracellular and extracel-

lular substances and is ubiquitous in animals, plants, and 

microorganisms (Lewis et al. 2012). Currently, eight sub-

families of the ABC transporter superfamily have been 

identified based on amino acid sequences; namely, A, 

B, C, D, E, F, G, and H. Among these, the ABCA1 trans-

porter, which participates in lipid transport and plays an 

important role in anti-atherosclerosis and promotion of 

cholesterol efflux in macrophages, is the most well stud-

ied (Lv et al. 2013).

A putative ABC transporter that affects acid resist-

ance in A. aceti, is present on the cell membranes of A. 

aceti and is induced by acetic acid (Nakano et  al. 2006) 

(Fig. 1e). Analysis of a series of proteins produced in A. 

aceti cell membranes and acetic acid by two-dimensional 

electrophoresis identified a 60 ku protein that is sensitive 

to acetic acid, which was named AatA. Molecular biol-

ogy analysis of AatA revealed that it has a length of 591 

amino acids, contains an ABC sequence and an ABC 

marker signal sequence, and that it belongs to the type B 

of ABC transporter subfamily (Linton and Higgins 1998). 

Comparison of AatA and macrolide transporters that are 

used as antibiotic efflux pumps revealed that they pos-

sess a common structure, showing that AatA may have a 

similar function as the latter (Kanchanarach et al. 2010; 

Méndez and Salas 2001; Mullins et al. 2012).

Studies have shown that aatA-deletion mutants have 

decreased formic acid, acetic acid, propionic acid, and 

lactic acid resistance. Disruption or deletion of the region 

between the two ABC transporters was found to lead to 

decreased acid resistance (Olano et  al. 1995). Addition-

ally, acetic acid resistance was restored if the plasmid 

pABC101 containing the aatA gene was inserted into 

aatA deletion mutants and acid resistance in E.coli con-

taining pABC101 increased (Olano et  al. 1995). �ese 

findings confirmed that aatA is an ABC transporter that 

is associated with acid resistance in bacteria and may act 

as an efflux pump for acetic acid (Nakano et al. 2006).

Comparative genomic analysis demonstrated that 

Komagataeibacter species contains more genes encoding 

putative ABC transporter proteins than Acetobacter (K. 

oboediens 174Bp2 possess 93 genes while A. pasteurianus 

IFO 3283–32 possesses 21 genes) (Wang et  al. 2015a). 

�is correlation demonstrates that strains with a high 

number of putative ABC transporter genes have higher 

acid resistance than strains with low numbers of putative 

ABC transporter genes.

Proton motive force-driven e�ux pumps

Studies of the acid resistance mechanisms in Acetobacter 

identified A. aceti that can adapt to high concentrations 

of acetic acid. �e concentration of cytoplasmic acetic 

acid in this bacteria is significantly lower than that of 

AAB that cannot adapt to high concentrations of acetic 

acid. Some researchers speculate that the cell membrane 

may contain an efflux pump that can pump acetic acid 

from the cytoplasm out of the cell membrane (Fig. 1f ).

To verify whether acetic acid efflux pumps are pre-

sent in the cell membranes of AAB, Matsushita et  al. 

(2005) employed isotope labeling to study the transport 

of acetic acid/acetate in intact A. aceti IFO 3283 cells 

and found that they possess an acetic acid efflux pump 

that is dependent on the proton motive force. In bacte-

rial cells, acetic acid and two electrons are produced from 

ethanol under the action of ADH and ALDH (Matsushita 

et al. 2004; Nakayama 1961). �e synthesized acetic acid 

undergoes passive transport from the periplasmic space, 

past the cell membrane into the cytoplasm. �e synthe-

sized electrons are then transported to the oxidase coen-

zyme to generate a proton motive force. By using the 

proton motive force, efflux pumps can pump intracellular 

acetic acid out of cells and prevent acetic acid accumula-

tion from affecting the growth and metabolism of AAB, 

enabling them to tolerate a highly acidic environment.

�is efflux pump does not act on ethanol and is vastly 

different from the classical ABC transporter Pdr12, which 

is used to transport acetic acid anions in yeast cells. 
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Hence, this acetic acid efflux pump is a  H+ retrograde 

transporter and not an ABC transporter (Matsushita 

et al. 2005). �e acetic acid pump pumps out protonated 

acetic acid to maintain a low acetic acid environment in 

AAB.

Acid resistance factors in the cytoplasm
Overexpression of certain enzymes in the tricarboxylic acid 

cycle

A study found that AAB can oxidize acetic acid into car-

bon dioxide and water when the ethanol substrate in cul-

ture medium is exhausted to promote secondary growth 

(Matsushita et al. 2016). In this process, which is known 

as acetic acid assimilation, acetyl-CoA synthetase (acs) 

catalyzes the conversion of acetate to acetyl-CoA and 

citrate synthase (aarA). Acetyl-CoA then enters the TCA 

cycle, enabling the removal of acetic acid through the 

TCA cycle (Ramírez-Bahena et al. 2013) (Fig. 1b). A. aceti 

decreases the harmful effects of acetic acid accumulation 

through cytoplasm acidification, showing that the cyto-

plasm may possess substances that can adapt to an acidic 

environment.

Proteomics analysis of A. pasteurianus (4% (W/V)) and 

Komagataeibacter spp. (> 10%(W/V)) under acid stimula-

tion revealed various proteins that play important roles 

in stress response, the tricarboxylic acid cycle, cell mem-

brane modification, and outer membrane protein and cell 

morphology changes (Andrés-Barrao et al. 2012). Among 

these proteins, overexpression of enzymes involved in the 

tricarboxylic acid cycle, such as citrate synthase, isoci-

trate dehydrogenase, dihydrolipoamide dehydrogenase, 

succinate dehydrogenase, succinyl-CoA and CoA trans-

ferase (Andrés-Barrao et al. 2016), further confirmed the 

role of the TCA cycle in acid resistance in AAB.

To analyze the specific acetic acid resistance factors in 

the cytoplasm of AAB, analysis of proteomes induced by 

acetic acid was performed to detect genes and enzymes 

related to acid resistance. �e results revealed that three 

genes (aarA, aarB, and aarC) will affect acid resistance in 

AAB and deletion of all three genes causes acid resist-

ance to disappear in A. aceti 1023 (Fukaya et al. 1990). CS 

activity was not found in aarA gene deletion mutants of 

A. aceti, but introduction of aarA-containing plasmids 

restored CS activity. �ese findings demonstrated that 

the aarA gene is citrate synthase, which is closely associ-

ated with acid resistance in A. aceti (Mullins et al. 2008). 

Deletion of the aarC gene in A. aceti decreases acetic acid 

resistance and utilization capacities, but these two func-

tions are restored after introduction of the aarC gene. In 

the TCA cycle, aarC replaces succinyl-CoA synthetase 

and directly converts succinyl-CoA to acetyl-CoA. �e 

appearance of the branch can decrease the cell’s meta-

bolic need for free CoA and regulate the effects of the 

TCA cycle on cytoplasmic pH (Francois et al. 2006). It is 

speculated that the aarB gene encodes the TCA activa-

tor SixA (Mullins et  al. 2008). When there is a need to 

decrease intracellular acetic acid concentrations, these 

three aar genes synergistically act together to form a 

complete cycle that is different from the conventional 

TCA cycle (Fukaya et al. 1993). Large amounts of a 100 

ku protein were found in acetic acid-containing culture 

medium, and sequence analysis revealed that it may be 

aconitase. Aconitase-overexpressing A. aceti can produce 

high acetic acid concentrations and decrease the growth 

doubling time. Increased aconitase activity and acid 

resistance was also found to increase the acetic acid con-

centration by 25%, which was a significant improvement 

in the fermentation productivity of acetic acid (Nakano 

et al. 2004).

�e above studies confirmed that increasing the activity 

of one or more enzymes in the TCA cycle such as citrate 

synthase and aconitase will lead to rapid consumption of 

acetic acid or elimination of toxicity due to entry of acetic 

acid into the cytoplasm, causing intracellular acetic acid 

to be maintained at a low level and increasing acetic acid 

resistance.

Heat stress proteins

Universal stress mechanisms are regulated by stress pro-

teins known as molecular chaperones or chaperone pro-

teins. HSPs are typical stress proteins that ensure correct 

folding of synthesized proteins in adverse environments 

and prevent intracellular protein denaturation (Hartl and 

Hayer-Hartl 2002).

GroES/L and DnaK/J are two common universal stress 

protein systems in AAB that are able to respond to many 

types of adverse environments (Yukphan et al. 2009). �e 

HSP GroEL is significantly upregulated in A. aceti dur-

ing batch feeding and continuous fermentation (Steiner 

and Sauer 2001). �e transcript level of the groESL gene 

in A. aceti IFO 3283 was upregulated by heat, ethanol, 

and acetic acid. Furthermore, intracellular overexpres-

sion of the groESL gene can increase resistance to the 

aforementioned factors, showing that the groESL gene 

is related to resistance to adverse environments in AAB 

(Okamoto-Kainuma et  al. 2002). Overexpression corre-

sponding genes of intracellular grpE and dnaKJ increased 

resistance towards the fermentation environment in AAB 

(Ishikawa et  al. 2010; Okamoto-Kainuma et  al. 2004). 

Employing two-dimensional electrophoresis to conduct a 

comprehensive study of intracellular protein levels in A. 

pasteurianus LMG 1262 T during acetic acid fermenta-

tion, it was found that fermentation increased the protein 

expression levels of GrpE, DnaK, DnaJ, GroES, GroEL, 

and ClpB to varying extents, with the expression level of 

GrpE being increased by 9.42 times compared with the 
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early fermentation stage (Andrés-Barrao et al. 2012; Wu 

et al. 2017). Overall, the aforementioned studies showed 

that the universal stress mechanism mediated by HSPs is 

one of the ways by which AAB ensure smooth acetic acid 

fermentation (Fig. 1c).

Other factors
Quorum sensing

Quorum sensing (QS) refers to the spontaneous produc-

tion and release of specific signaling molecules by micro-

organisms in response to changes in the environment 

and sensing of changes in the concentration of these 

molecules for cell–cell exchange, thereby regulating the 

population behavior of microorganisms (Papenfort and 

Bassler 2016). Known major signaling molecules include: 

N-acyl-homoserine lactones (AHLs), autoinducer-2 

(AI-2), diketopiperazines (DKPs), diffusible signal fac-

tors (DSFs), and 4-hydroxy-2-alkylquinolines (HAQs) 

(Mukherjee and Bassler 2019).

To date, QS in Pseudomonas aeruginosa, Staphylo-

coccus aureus, Pseudomonas fluorescens, Streptococcus 

mutans, and Helicobacter pylori have been thoroughly 

investigated (Huang et  al. 2009; Mukherjee et  al. 2019; 

Rader et  al. 2011; Wang et  al. 2015b; Zhao et  al. 2016), 

and studies have shown that QS plays important roles 

in biofilm formation, synthesis of virulence factors, and 

stress responses (Nickzad et al. 2015). However, research 

regarding QS in industrial microorganisms is relatively 

scant and has primarily focused on Lactobacillus (Mal-

donado-Barragán et  al. 2009). �e QS system has been 

found to be intimately associated with bacteriocin secre-

tion and cathelicidin production during the growth of 

Lactobacillus. Additionally, QS plays an important role 

in cell morphology changes and changes in adhesion in 

response to adverse external environments (Kareb and 

Aïder 2019). Genome analysis studies have shown that 

certain AAB genomes possess homologous sequences 

that are similar to the luxI/luxR gene (luxI/luxR genes are 

usually homologues of ginI/ginR). �erefore, QS systems 

may play an important regulatory role in acid resistance, 

acid production, and growth of AAB.

�e first AAB that was shown to possess a QS regu-

latory mechanism was K. intermedius, and Iida et  al. 

(2008a) was the first to report the ginI/ginR QS system in 

K. intermedius. �e ginI gene encodes an AHLs synthase 

and ginR encodes a signal sensor protein. Knocking out 

ginI or ginR genes can increase the growth rate of AAB 

in ethanol-containing culture media as well as increase 

acetic acid and gluconic acid productivity and defoam-

ing ability (Iida et al. 2008a). Further analysis also showed 

that GmpA, a protein from the OmpA family, is regulated 

by QS systems and that this protein plays an important 

role in inhibition of oxidative fermentation of acetic acid. 

Moreover, GmpA is directly regulated by GinA, which is 

a protein with a length of 89 amino acids that is encoded 

by a gene located downstream of ginI (Iida et al. 2008b). 

�is protein is unique to AAB and its expression is regu-

lated by QS. In addition, the GinA protein can regulate 

the expression of other genes, including gltA, pdeA, 

pdeB, and nagA (Iida et  al. 2009) (Fig.  1d). �e culture 

medium of Ga. diazotrophicus PAL5 was detected eight 

QS signal molecules and confirmed that this organism 

possesses a QS regulatory mechanism (Nieto-Peñal-

ver et  al. 2012). In addition, whole genome sequencing 

showed that this bacteria possesses many signaling path-

way encoding genes, including 16 c-di-CMP synthases, 

14 membrane-bound histidine kinase signaling protein 

encoding genes, as well as a set of complete luxI/luxR 

QS encoding genes (Bertalan et  al. 2009; Bertini et  al. 

2014). Subsequently, a study found that some genes in K. 

xylinus CGMCC 2955 jointly regulate intracellular c-di-

GMP (a critical activator of the Bcs subunit) levels and 

confirmed the presence of the luxR gene (Liu et al. 2018). 

�ese findings demonstrate that QS is present in K. xyli-

nus CGMCC 2955. Quenching of QS systems causes 

significant changes in the expression of intracellular and 

extracellular proteins, showing that QS systems may play 

an important role in population exchange, host coloniza-

tion, and stress responses.

To date, QS regulatory mechanisms in AAB have only 

been found in Komagataeibacter and Gluconacetobacter 

and there have been no reports of QS in other species. 

�is is because the genome data of many AAB are incom-

plete. Additionally, even though sequences homologous 

to QS encoding genes are present in the genomes of 

AAB, the functions of these genes are mostly not anno-

tated or they are hypothetical proteins. At the same 

time, the similarity of genes is low between different 

genera. Finally, AAB are highly variable, have unstable 

genomes, and different AAB may produce specific signal-

ing molecules that cannot be detected based on existing 

detection methods. Although the potential correlation 

between QS system and other acid resistance mecha-

nisms was proposed, there are still many processes that 

need more research to explain (Xia et  al. 2017) (Fig.  2). 

In conclusion, QS research regarding Komagataeibacter 

and Gluconacetobacter has provided new data that will 

be useful for investigations of other AAB. With continu-

ous improvements in AAB genomic data and annotation 

of new gene functions, signaling pathways regulated by 

acid resistance in AAB will be elucidated.

Challenges and perspectives
Although AAB has long been used in vinegar fermen-

tation, its incomplete oxidation characteristic has 

attracted increasing attraction owing to its potential 
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in such applications as sugar alcohol oxidation, bio-

fuel cells, and biosensors. Elucidation of acid resist-

ance mechanisms in AAB is important to the selective 

breeding of AAB with high acid resistance and improv-

ing acetic acid fermentation processes. However, the 

acid resistance mechanisms in AAB are still not com-

pletely clear, as currently available data is insufficient 

for elucidation of the molecular mechanisms involved.

Too few proteins have been identified in proteomics 

to support global differential profile analysis, resulting 

in fragmentation and generalization of existing knowl-

edge pertaining to acid resistance mechanisms. �is 

poses challenges in construction of a complete pathway 

or process. In addition, further functional annotation 

of large amounts of unknown proteins is required. At 

the same time, the identification of low numbers of less 

abundant proteins, membrane proteins, and transcrip-

tion factors also limits our understanding of how AAB 

respond to high acidity stress. Accordingly, further 

studies using more effective methods such as iTRAQ or 

MRM are needed.

QS systems provide new ideas for studying acid 

resistance mechanisms in AAB from a signaling path-

way perspective. However, QS research regarding AAB 

is mainly focused on Komagataeibacter and Glucon-

acetobacter, and their intrinsic molecular regulatory 

mechanisms have not been fully studied. �ere is also 

an absence of studies confirming the distribution and 

regulatory pathways of QS in other AAB species. �ere 

are still many questions regarding the role of QS in reg-

ulating the physiological status of AAB and studies of 

genomics and metabolomics are needed (Fig. 2).

Other signaling pathways that are similar to the QS 

system, such as two-component systems and toxin-

antitoxin systems, have been widely described in other 

bacteria and are known to be the major signaling regu-

latory networks. �e regulation of acetic acid fermenta-

tion and acid resistance mechanisms in AAB by these 

Fig. 2 The possible quorum sensing system model in Komagataeibacter and Gluconacetobacter. The red dotted line and “?” refer to the potential 
relationship or the process have not been identified. The abbreviation of HK refer to histidine kinase
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other signaling pathways may be worth studying in the 

future.
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