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Abstract

We consider an ancient solution g(-,¢) of the Ricci flow on a
compact surface that exists for ¢ € (—oo,T") and becomes spherical
at time ¢t = T. We prove that the metric g(-,¢) is either a family
of contracting spheres, which is a type I ancient solution, or a
King—Rosenau solution, which is a type II ancient solution.

1. Introduction

We consider an ancient solution of the Ricci flow
0

(1.1) gz’ — 2Ry

on a compact two-dimensional surface that exists for time ¢ € (—o0,T)
and becomes singular at t = T, for some T' < oo. In two dimensions
we have R;; = %Rgij, where R is the scalar curvature of the surface.
Moreover, on an ancient non-flat solution we have R > 0. It is well
known [2, 7] that the surface also becomes extinct at 7' and becomes
spherical, which means that after a normalization, the normalized flow
converges to a spherical metric, to which we will refer as to the limiting
sphere.

Since R > 0, by the Uniformization theorem and the fact that the
Ricci flow in dimension 2 preserves the conformal class, we can param-
etrize the Ricci flow by the limiting sphere at time T, that is, we can
write

g('v t) = u('7 t) gs2.
The spherical metric can be written as

(1.2) gg2 = dy® + cos? ¢ db?

where 1, § denote the global coordinates on the sphere. An easy compu-
tation shows that (1.1) is equivalent to the following evolution equation
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for the conformal factor u(-,t), namely,
(1.3) up = Ag2logu — 2 on 52 x (—o0,T)

where Agz denotes the Laplacian on S2. Let us recall, for future refer-
ences, that the only nonzero Christoffel symbols for the spherical metric
(1.2) are

in 2
Iy =T3 = —tany, T3 = sz 1/17

where we use the indices 1,2 for the 1,6 variables, respectively. It
follows that for any function f on the sphere we have

Ag2f = fyyp —tany fy + Se02¢f99
which, in the case of a radially symmetric function f = f(¢), becomes

Agf = fww — tan¢f¢.
We will assume, throughout this paper, that g = udsz is an ancient
solution to the Ricci flow (1.3) on the sphere that becomes extinct at
time 7' = 0.

It is natural to consider the pressure function v = w~! that evolves
by

(1.4) vy = v? (Age2 logv + 2) on S? x (—00,0)
or, after expanding the Laplacian of log v,
(1.5) vy = v Agev — |Vg2v|? + 20° on 52 x (—00,0).

Definition 1.1. We will say that an ancient solution to the Ricci
flow (1.1) on a compact surface M is of type I if it satisfies

limsup (|¢| max R(,t)) < oo.
t——o0 M

A solution that is not of type I will be called of type II.

Explicit examples of ancient solutions to the Ricci flow in two dimen-
sions are:

i. The contracting spheres
They are described on S? by a pressure vg that is given by

(1.6) vs(1) = 55

and they are examples of ancient type I shrinking Ricci solitons.
ii. The King—Rosenau solutions

These solutions were discovered by J.R. King [13, 14] and later,

independently, by P. Rosenau ([16]). They are described on S? by

a pressure vk that has the form

(1.7) v (¥, t) = a(t) — b(t) sin® ¢

with a(t) = —p coth(2ut), b(t) = —p tanh(2ut), for some p > 0.
These solutions are not solitons. We can visualize them as two
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cigars “glued” together to form a compact solution to the Ricci
flow. They are type II ancient solutions.

Our goal in this paper is to prove the following classification result:

Theorem 1.2. Let g = ugg2 be an ancient compact solution to the
Ricci flow (1.1). Then u is either one of the contracting spheres or one
of the King—Rosenau solutions.

Remark 1.3. The classification of two-dimensional, complete, non-
compact ancient solutions of the Ricci flow was recently given in [6] (see
also [9, 3]). The result in Theorem 1.2, together with the results in [6]
and [3], provides a complete classification of all ancient two-dimensional
complete solutions to the Ricci flow, with the scalar curvature uniformly
bounded at each time slice.

The outline of the paper is as follows:

i. In section 2 we will show a priori derivative estimates on any ancient

solution v of (1.5), which hold uniformly in time, up to t = —cc.
These estimates will play a crucial role throughout the rest of the
paper.

ii. In section 3 we will introduce a suitable Lyapunov functional and
will use it to show that the solution v(-,¢) of (1.5) converges, as
t — —o0, in the O norm, to a steady state vo.

iii. Section 4 will be devoted to the classification of all backward limits
Uso. We will show that there is a parametrization of the flow by a
sphere, in which ve (1, 0) = p cos? 1, for some > 0 (¢, 0 are the
global coordinates on S2?). When g > 0, then v, represents the
cylindrical metric.

iv. In section 5 we will show that if v (2,0) = p cos? v, with u > 0,
then v must be one of the King—Rosenau solutions.

v. Finally in section 6 we will show that if v, = 0, then the solution
v must be one of the contracting spheres.

Acknowledgments. We are indebted to the referees of this article for
their valuable suggestions and comments.

Daskalopoulos was partially supported by NSF grant 0604657. Sesum
was partially supported by NSF grant 0905749.

1.1. Change of variables. Throughout the paper we will be perform-
ing different changes of variables that we summarize below. We may
write the evolving metric

g(',t) = u('vt)gSz = a('7t)ge = ﬁ('vt)gc

where gg2, ge, g denote the metrics on the standard sphere S2, the eu-
clidean plane, and the cylinder, respectively. Denote by 1, 8 the global
coordinates on S?, by r, 0 the polar coordinates on the plane, and by
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s, 0 the global coordinates on the cylinder. Mercator’s projection gives
us a relation between the sphere and the cylinder, that is,
g(-,t) = u(1, 6,t) (dy?* + cos® ¢ db?) = u(s, 0,t) (ds* + db?)
with
(1.8) a(s,0,t) = u(2,0,t) cos® 1 cos 1) = (cosh s)7L.
It follows that
(1.9) cosh s = sec and sinh s = tan.

A simple computation shows that if w is a solution of (1.3), then @
satisfies the equation

(1.10) i = Acdogtu  on R x [0,27] X (—o0,0),
where A, is the cylindrical Laplacian; that is,
Acf = fss+ foo

for a function f defined on R x [0, 27]. Furthermore, if

g(-,t) = a(r, 0, t)(dr? + r* d6?)
where (r,6) denote the polar coordinates of the plane obtained by pro-
jecting S%\ {¢) = %} or S2\ {¢ = —%} via stereographic projection, it
is easy to compute that
(1.11) (s, 0,t) = r*a(r,0,t), r=e’.
The function u satisfies the equation
(1.12) uy = Alogu on R? x (—00,0)

where A is the euclidean Laplacian in polar coordinates.
Equivalently, the pressure functions in cylindrical and polar coordinates
given by

1 1
0(s,0,t) = —— d o(r,0,t) = ——
8(s,6,1) a(s,0,t) and  o(r,6,t) a(r,0,t)

satisfy the evolution equations

by =0 A0 —|VO*  on R? x (—o0,0)
and

U =0A0— |Vo|?  on R? x (—00,0),
respectively.

The change of variables between the sphere S \ {¢) = Z} and the
plane that maps the south pole ¥y = —7/2 to the origin is given via
stereographic projection, that is,

1+ siny
r =

cos



COMPACT SOLUTIONS TO THE RICCI FLOW ON SURFACES 175

and if 9(7 t) = u(¢7 07 t)gs2 = ﬂ(r, 07 t)ge7 then
cos* 1)

ﬂ(r,@,t) = mu

(1,0,1).

2. A priori estimates

We will assume, throughout this section, that v is an ancient solution
of the Ricci flow (1.5) on S? x (—o0,0) that becomes extinct at T = 0.
We fix tg < 0. We will establish a priori derivative estimates on v
that hold uniformly on S2 x (—oo,ty]. We will denote by C various
constants that depend on ¢ty and may vary from line to line but are
always independent of time t € (—o0, to).

Since our solution is ancient, the scalar curvature R = v; /v is strictly
positive. This in particular implies that v; > 0. Hence, we have the
bound

(2.1) v(-,t) < C(to) on (—oo,tp)
for any ty < 0. Define the backward limit
Voo 1= t_l}l_noov(-,t)

that exists because of the inequality vy > 0 but may vanish at some
points on S2. This actually happens in our model, the King-Rosenau
solution. As a result, equation (1.5) fails to be uniformly parabolic
near those points, as t — —oco, and the standard parabolic and elliptic
derivative estimates fail as well. Nevertheless, it is essential for our
classification result, to establish a priori derivative estimates that hold
uniformly in time, as t — —oo0.

We recall that on our ancient solution, the Harnack estimate for the
scalar curvature shown in [7], takes the form

|VR|§
Rt 2 R )
which in particular implies that R; > 0. Hence, we also have
(2.2) R(-,t)<C on (—oo, o]

for any to < 0, because R(-,t) < R(-,tp). Once we have the uniform
curvature bound along the flow, Shi’s derivative estimates in [17] (in the
compact case, the curvature derivative estimates have been obtained by
Hamilton in [12] as well) imply that

IVER| < C(k) t <ty <O.
In addition, the limit
Ry = tlim R(-,t)
——00

exists and is bounded. We will actually show in the next section that
R, =0 a.e. on S2.
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It is well known that R evolves by
Ry = AR+ R

Expressing g = v™! gg2, in which case Ay = v Ag2 and V|2 = 0|V - [%,,
we may rewrite the Harnack estimate for R as

R 2
vAgR+ R > Vel
R
or equivalently,
R? _ |VgR|?
2.3 AR+ —>—2>—.
(2.3) g+ -2 R
The pressure v satisfies the elliptic equation
(2.4) v Agev — |Vgev|* + 202 = Rw.

We will next use this equation and the bounds (2.1), (2.2), and (2.3) to
establish uniform first- and second-order derivative estimates on v.

Lemma 2.1. There exists a uniform constant C, independent of
time, so that

sup <|A52v| +

[V g2v]?
S2 v

>(-,t)§C’ for all t <ty <O.

Proof. To simplify the notation we will set, throughout the proof,
A= Ag2 and V := Vg2. We first differentiate (2.4) twice to compute
the equation for Av. After a direct computation, where we also use the
Bochner formula on S?, we find that
n (Av)? —2|V20|? 2|Vv|2 _ A(Rw)

v

v v

A(Av) +4Av +

which implies the inequality

2 .
_2’V’U’ +AR—|—2VR VU+RAU
v v v

25)  A(Av+4v) >

since by the trace formula we have
(Av)? < 2|V
By (2.4) we also have
_ [l
v

and if we use this to replace Av from the last term on the right-hand
side of (2.5), we obtain

2 , 2
|Vl +AR+2VR Vv+§<|Vv|
v v v

(2.6) Av —2v+ R,

A(Av +4v) > =2

—2v+R>
v

|Vo|? R? VR-Vv R|Vv|?
- +2 + =

= -2 + (AR + 7) 2R.

v v2



COMPACT SOLUTIONS TO THE RICCI FLOW ON SURFACES 177

Combining the last inequality and the Harnack estimate, (2.3) we obtain
Vo2 |VR|? VR-Vv . R|Vv|?

A(A qv) > -2 2 — 2R
(Av 4 4v) > ” + 7 + ” 2
2 Y \V/ 2
_ |V”| (yVRP +2VR- R~ 4 R | UZ' > _9R
2
= Wj' + ‘VR—l—va —2R.
Since R > 0, we conclude the estimate
2
(2.7) Ao+ 40> 2V _op

v
If we multiply (2.6) by m = 2 and add it to (2.7), we get

A(Av+6v) > —4v > -C
for a uniform constant C' (independent of time). By (2.6) we also have
(2.8) Av>—-2v+R>-C,

and therefore -
X =Av4+C+6v>0

and
(2.9) AX > -C.
Standard Moser iteration applied to (2.9) yields to the bound
(2.10) sup X < C X da + Cs.
S2

Observe that
Xda:/ (Av—l—C’+6v)da:/ (C + 6v)da < C.
S2 S2 S2

The last estimate combined with (2.10) yields to the bound

Av < C.
This, together with (2.8), implys
(2.11) sup |Av|(-,t) < C for all t € (—o0, 1],
2

for C is a uniform constant. Since

[Vol®

=Av+2v—R
the estimate (2.11) and R > 0 readily imply the bound
2
(2.12) sup [Vol® <C for all t € (—o0,to].
S2 v
q.e.d.

As a consequence of the previous lemma we have:
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Corollary 2.2. For any p > 1, we have

(2.13) [v(-, ) lw2p(s2) < C(p) for all t € (—o0,to].
It follows that for any a < 1, we have
(2.14) [v(, D)l cra(s2) < Cla) for all t € (—o0,tg].

Proof. Since Ag2v = f in S2, with f € L™, standard WP estimates
for Laplace’s equation imply that v € W2P(S2) for all p > 1. Hence,
(2.14) follows by the Sobolev embedding theorem. q.e.d.

We will now use the estimates proven above to improve the regularity
of the function v.

Lemma 2.3. For every 0 < o < 1, there is a uniform constant C(«)
so that

(2.15) H|V32U(‘,t)|2||cl,a(s2) < C(a) for all t <ty <O.

Proof. To simplify the notation, we will set A := Ag2 and V := V2.
A direct computation shows that |Vv|? satisfies the evolution equation

% IVo|? = v A(|Vo]?)—6v V202 4+20|Vo|?4+2|Vu|? Av—2 V(|Vo|?)- V.
On the other hand, differentiating the equation v; = Rv gives

9 o2

il -9 V.

iy Vol V(Rv) - Vv

Combining the above yields

(2.16) A(IVuP?) = f
with f given by
(2.17)

Vol?

Av +

2 2). 2 .
£ = 2V22 = 6|Vof? — 2\ V(|Vvl]?) - Vo N V(Rv) Vfu.
v v v
We will show that for every p > 1, we have
(2.18) [f (O r(s2) < Cp)  forall ¢ € (—o0,tq]

with C(p) independent of ¢. We will denote in the sequel by C(p)
various constants that are independent of t. We begin by recalling that
by (2.13), we have

IV2u(-,8)||le < C(p) for all t € (—o0,to].
Also, by Lemma 2.1, we have

[Vol®
v

12525 Avlpogsey + V0P zogse) < C)  for all ¢ € (~oo,to].

Since ) )
V(!Vvl) ) Vv‘ < 2W2@‘ \V;\
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by the previous estimates, we have

HMHL <C( ) for all t <ty <O0.
We also have
MUDETE
v v
< crwavey (Bd)<c

Vo

for all t < tg < 0, since \/v|VR| = |[VR|yy < C. We can now con-
clude that (2.18) holds for p > 1. Standard elliptic regularity estimates
applied to (2.16) imply the bound

Vo lw2e < C(p) for all ¢t € (—o0, o).

Since the previous estimate holds for any p > 1, by the Sobolev embed-
ding theorem, we conclude (2.15). q.e.d.

Lemma 2.4. For any 0 < a < 1, there is a uniform in time constant
C(«), so that

V0 V| coa(s2y < C(a) for all t <ty <O.
Moreover,
[lv V%Q’UHLOO(SQ) <C forall t <ty <0
for a uniform in time constant C.

Proof. To simplify the notation, we will set A := Ag2 and V := V2.
To prove the estimate on ||\/v V20| co.a(s2), We observe that we can
rewrite (2.4) in the form

9|Vul|?
4/v
We claim that the right-hand side of the previous identity has uniformly

in time bounded C%® norm, for any 0 < a < 1. To see this, observe
that for every p > 1 and for any ¢, j, we have

(2.19) Av3/? = —30%% 4 gR\/E.

(2.20)
VivV,v Vv Vv
19 ) a5ty < € (195 1 ety + I 12 )
< C(p)
and also
IV(RV)|| o (s2) < C
since
Vo .
% (Rf)\<yVR\f+R’ ’<yvmg C<C.

2\/v
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All of the above inequalities hold uniformly on ¢t < ty < 0. By the
Sobolev embedding theorem, we conclude that the right-hand side of
(2.19) has uniformly bounded C%® norm, for any a < 1. Standard
elliptic regularity theory applied to (2.19) implies that
0% ]| e 52y < C(a),
which in particular yields the estimate
Vv V20| ce < C(a) for all t € (—o0, o]

since

3 VZ'UVjU

4 oo

and the first term on the right-hand side is in C%* by (2.20).
To prove the second estimate, we now rewrite (2.4) as

(2.21) Av? = 4|Vv|]? — 4% + 2Rw.

3
V?jv3/2 = + 5\/5V22]'U

Lemma 2.3 implies that 4|Vv|?> — 4v? has uniformly in time bounded
C1H® norm. We claim the same is true for the term Rv. To see this, we
differentiate it twice and use the inequality

|V2(Rv)| < |V20| R+ |V2R|v + 2|VR||Vl.
By Lemmas 2.1 and 2.3 and the bounds
v|V2R| = |V?R|, < C, u|VR|=|VR|,<C, R<C,
we conclude that for all p > 1, we have
HV2(RU)HL;;(52) < C(p), for all ¢ € (—o0, to].

The Sobolev embedding theorem now implies that || Rv||c1.a(g2) is uni-
formly bounded in time, for every a < 1. Standard elliptic theory
applied to (2.21) yields the bound [|v?||¢cs.« < C(a), for all t < ¢y < 0.
In particular,

V30| poo(sy) < C

for a uniform constant C'. Since
Vv
o V20| oo (55) < C (V20| oo (5) + 1V V0| oo 55, H\ﬁHLoo(sz)),
this readily implies the bound ||v V3v||Loo(Sz) <C. q.e.d.

3. Lyapunov functional and convergence

In this section, we introduce the Lyapunov functional

(3.1) J(t) = /S (M - 4v> da.

We will show next that J(¢) is nondecreasing and bounded. In the
sequel, we will combine these properties with the a priori estimates
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shown in the previous section to show that v(-,t) converges, as t — —o0,
in the C norm to a steady-state solution v.

Lemma 3.1. The Lyapunov functional J(t) is monotone under (1.5),
and in particular, we have

d v} |V g2v]?
. = -2
(3.2) <) /S " da /S S0 vy da

Proof. To simplify the notation, we will set A := Age and V := Vg2.
Equation (1.5) and a direct calculation show

\VUP Vo Vg / |Vo|?
S2

= 2
dt v g2 v v2

A 2
= —2/ —thda+/ |Vz21| ve da
S22 U s2 U

2 2
= —2/ ( 2+WU‘ —2)Utda—|—/ WZ‘ v da
s2 U g2 U

v2

\V/ 2
— _2/ ”gd / [Vl vtda+4/ v da.
s2 U s2 U S2

We then conclude that

d |Vol? v? |Vo|?
. I - = d
(3.3) dt/sz< » 4v> da 2/5‘2 v2d /52 2 vrda

that is,

vy da

2
(3.4) —J :—2/ ”—gd / Vol da
s2 v s2 U
where both terms on the right-hand side of (3.4) are nonpositive, since
on an ancient solution of (1.5) we have v; > 0. q.e.d.

As an immediate consequence of the estimate in Lemma 2.1 and the
inequality
v Av — |Vol> + 20 >0,

we have:

Lemma 3.2. There exists a uniform constant C' so that
—-C<Jit)<0 forall —oo <t <ty<DO.

We will next use Lemma 3.1 to show that on our ancient solution the
backward time limit

Ry = lim R(-,t)

t——o0

of the scalar curvature R is equal to zero almost everywhere on S2.

Lemma 3.3. On an ancient solution v of equation (1.5), we have
R =0 a.e. on S2.
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Proof. 1t is enough to show that

/ R% da = 0.
S2

Indeed, assume the opposite, namely, that f g2 R? da := ¢ > 0. Then,
since Ry > 0, we have [go R?(-,t)da > ¢, that is,

2

v
/ —’;dazc.
S2 U

Integrating (3.2) in time while using the above inequality and the fact
that vy > 0 gives

to ?}2
J(ta) — J(t1) s—/ / —dadt < —c(ty — t1)
t1 S2 v

for every —oo < t1 < tg < tg < 0. This obviously contradicts the
uniform bound —C' < J(t) < 0 shown in Lemma 3.2. q.e.d.

We will now combine some of the a priori estimates of the previous
section with Lemma 3.3 to prove the following convergence result.

Proposition 3.4. The solution v(-,t) of (1.5) converges, as t —
—00, to a limit ve, € CH*(S?), for any o < 1. Moreover, ||vso V%Qvoo
”Ca(SQ) < 00, for all @ < 1, and ve satisfies the steady-state equation

(3.5) Voo Ag2Uos — |V g2000|? + 202 = 0.
Proof. Since vy > 0 and v > 0, the pointwise limit
Voo 1= t_l}l_noov(-, t)

exists. Lemmas 2.3 and 2.4 ensure that for every a < 1 and every

sequence t; — —oo, along a subsequence still denoted by ¢;, we have
Cl,a(SZ) B 9 CQ(S2) e ~ .
v(t;)  — 0 and vVyu(st) — " 9V4,0. By the uniqueness of

the limit, ¥ = v4, which means that for every a < 1, we have

U('v t)
We can now let ¢ — —o0 in equation

vAgev — |Vgev|? 4+ 2v% = Ro

o (S?)

Cl,a SZ
( )voo and  (vV%v)(,t) — UeoVieleo, as t— —0c.

and use Lemma 3.3 to conclude that v, satisfies equation (3.5). g.e.d.

4. The backward limit

In this section we will classify all the backward limits veo = limy—, o v(+, 1)
proving:



COMPACT SOLUTIONS TO THE RICCI FLOW ON SURFACES 183

Theorem 4.1. There ezists a conformal change of S? in which the
limat
oo (16,0) = lim_0(4,6,) = s cos”

for some constant p > 0, where 1,0 denote global coordinates on a con-
formally changed sphere. Moreover, the convergence is in C* on S2,
for any 0 < a < 1, and in C*™ on every compact subset of S*\{S, N},
where S, N denote the south, north poles of S%, respectively (the points
that correspond to ¢ = £ ).
. . . Cl,a(SZ)

We have shown in the previous section that v(-,t) ~ — " v, for any

a € (0,1), where vy, is a weak solution of the steady-state equation

Voo AVso — [V |2 4+ 202, = 0.

To classify all the backward limits v, we will need the following Propo-
sition, which constitutes the main step in the proof of Theorem 4.1.

Proposition 4.2. The limit vy s either identically equal to zero or
has at most two zeros.

For a fixed ty < 0, the conformal factor u of our evolving metric on
5?2 is uniformly bounded from above and below away from zero. Set

tg) := inf ,to)-
m(to) Zlgsﬂ(z 0)

Assume that vy is not identically equal to zero. Then, since vy
is a continuous function, there exist two points P;, P, € S? such that
limy oo v(P;,t) > 0, i« = 1,2, or equivalently, lim; o, u(Py,t) < oo,
i = 1,2. By performing a conformal change of coordinates, we may
assume that P; is the south pole S and Ps is the north pole N of the
background sphere S2. Let 1,6 be global coordinates on S2, where
Y = § and 1) = —F correspond to the poles (denote them by S and NN).
Denote by u the conformal factor of our metric in plane coordinates,
after the stereographic projection that maps S to the origin. It follows
that

lim @(0,t) = U0 (0) < o0.

t——o00

We have seen that u satisfies equation (1.12). We will show:

Lemma 4.3. Given any rg > 0 and tg < 0, there exists a uniform in
time constant C(rg) that also depends on U (0) and m(ty) such that

(4.1) / (log )" (z,t) dz < C(ro) for all t < tp.
|lz|<ro
Proof. Set

2T
U(r,t):/ log u(r, 0,t) db.
0
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Since Alogu = —Ru < 0, integrating the inequality Aloga < 0 in 6
yields the inequality

r! (r U)r <0.
Integration in r (using the fact that u(-,t) is smooth at the origin) shows
that U, < 0, implying the bound

U(r,t) <logu(0,t) <logic(0) < oco.
Hence, for any t < tg, we have
[ osulen)de < C logan ()73 < i)
|lz|<ro
for a uniform in ¢ constant Ci(rg). In addition, the inequality u; < 0

implies the bound

inf  a(e.) > inf  a(n,te) > c(mit
seil o B@ 2 il o 6(@,t0) 2 e(m(to), mo) >0,

which gives
/ (log )™ (z,t) de < Ca(rp).
|lz|<ro
Combining the previous two integral bounds yields (4.1). q.e.d.

The following L bound is inspired by the beautiful paper of Brezis
and Merle [1]. It will play a crucial role in the proof of Proposition 4.2.

Lemma 4.4. Let § > 0 be a given small number. If for some t < t,
p <1 and xg € R?, with |xo| < ro, we have

(4.2) / Ru(z,t)dx < 4m — 20,
BP(IO)

then

(4.3) sup u(-,t) < C(rg,p,9)
B, /4(z0)

for a constant C(rg, p,0) that depends on ro, p, 0, tso(0), and m(ty) but
is independent of time t.

The proof of the bound (4.3) will use the ideas of Brezis and Merle
[1], including the following result, which we state for the reader’s con-
venience.

Theorem 4.5 (Brezis—Merle). Assume that Q C R? is a bounded
domain and let w be a solution of

(4.4) {—Aw = f(x) in Q,
u=0 on 01,

with f € LY (). Then, for every § € (0,47), we have

(r—d)|w(z)| 472
/e WMo dg < T(diamQ)2.
Q
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Proof of Lemma 4.4. Fix t < tg so that (4.2) holds, according to the
statement of the lemma. Throughout the proof of the lemma, we will
denote by C(p,d) various constants that depend on p and § but are
independent of time ¢.
Set w :=log u(-,t) and observe that w solves the elliptic equation
—Aw = Re" in B,(xo),
with R denoting the scalar curvature. Let w; solve problem (4.4) in
2 := B,(xg) with f := Re". Since
[ fllr ) < 4m — 20

by our assumption (4.2), Theorem 4.5 implies the bound

(4.5) / P @l gy < C(p, 0)
BP(IO)
with
R ) o1
LTy S
Combining (4.5) and Jensen’s inequality gives the estimate
(4.6) lwillL1(B,(z0)) < C(ps6).

The difference wy := w — w; satisfies Awy = 0 on B,(xg). Hence, by
the mean value inequality,

(4.7) [w3 |20 (B, 5(x0)) < C(0) Wy | 1B, (20)-
Since wy < w' + |w;| combining, (4.6) and (4.1) yields the bound

w3 (| L1 (B, (ze)) < C(ro, p;0)
if |zg| < 79, with C(rg, p,0) also depending on m(tg) and s (0), as in
the statement of Lemma 4.3. Express Re¥ = Re"?e®! and recall that
—Aw = Re" with R is uniformly bounded, so that Re* < Ce" on
B,/2(z0) by (4.7). We conclude by standard elliptic estimates and (4.5)
that

[w | oo (B, 4(x0)) < C (101218, (o)) FIe ™ Lo (B, o (x0))) < Cp:6, po),
finishing the proof of the Lemma. q.e.d.
We will now prove Proposition 4.2.

Proof. We argue by contradiction. Assume that there exist at least
three distinct points p;, i = 1,2,3, such that lim;_,o v(p;,t) = 0, i =
1,2, 3, or equivalently, lim;_, u(p;, t) = +00. By our choice of the north
and south poles in our given coordinates (as in the beginning of this
section), these points belong to S%\ {S, N'}; hence, they are mapped to
three distinct points z;, i = 1,2, 3 on R? via the stereographic projection
that maps S to the origin. We choose 0 < p < 1 so that all balls B,(z;)
are disjoint.
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Let 0 < 1/2 be a given positive number. Given any sequence t; — 00
and any of the three points z;, we may choose a subsequence, still
denoted by {t;}, such that

/ Rau(z,ty)dx > 4w — 20
BP(%‘)

for the particular point x;. Otherwise, lim;_, o u(z;,t) < oo by (4.3),
which would contradict the choice of x;. This readily implies the exis-
tence of a sequence t;, — —oo for which

(4.8) / Ru(z,ty) dz > 41 — 26, vk
Bp(l’i)

and for all three points z;, ¢ = 1,2, 3.
Recall that the balls B,(x;) are chosen to be disjoint. It follows that
the total curvature for our metric g(tx) := u(-, tx) satisfies

3
/ Rudsz/ Ru(x, ty) dz > 12w — 66 > 87
R2 ; B,(x;

=1 P( 1)

if 6 < 1/2, a contradiction to the total curvature of g(¢;) being equal to
8m. This completes the proof of the proposition. q.e.d.

We are now in a position to classify all backward limits wq.

Proof of Theorem 4.1. Assume from now on that the backward limit v
is not identically zero. We have just shown in Proposition 4.2 that ve
has at most two zeros. Choose a conformal change of S? that brings
those two zeros to two antipodal poles on S? (if there is only one zero,
we bring it to the south pole and choose for a north pole its antipodal
point). Let 1,0 be global coordinates on S?, where ¢ = 5 and ¢ =
—% correspond to the poles (denote them by S and N). Observe that
equation (1.5) is strictly parabolic away from the poles, uniformly as
t —» —oo. It follows by standard parabolic PDE arguments that the
convergence v(-,t) — Vs, as t — —00, is in C*° on compact subsets
of S2\{S, N}. Perform Mercator’s transformation (1.8) and denote by
0(s,0,t) = v(1,0,t) cosh? z the pressure in cylindrical coordinates. We
conclude that
lim (s, 0,t) = Voo (s,0) := Voo (¢, 0) cosh?z > 0

t——o00
and the convergence is smooth on compact subsets of R x [0, 27]. The
limit U5, satisfies

Voo Alne — | Vi |> = 0,

or (since 00(s,0) > 0 on R x [0,27]) equivalently,

(4.9) Aclog i = 0
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where A, denotes the cylindrical laplacian on R2. To finish the proof
of Theorem 4.1, we need to classify the solutions of equation (4.9) that
come as limits of ancient solutions (-, t).

To this end, set w := log U so that A.w = 0, by (4.9). We can view w
as a harmonic function on R?, after extending it in the @ direction so that
it remains 27-periodic. In addition, since s (s,6) = voo(1),8) cosh? s
and voo = limy—, oo v(-,t) < C, it follows that there are uniform con-
stants C7, Cs such that

(4.10) w(s,0) < Cyp + Cqsl.

Since w is harmonic on R?] it follows by the mean value formula (via
a standard argument) that the same bound (4.10) holds for |w|. It is
now a well-known fact that the only harmonic functions on R? with
linear growth at infinity are the linear functions. Since our function w
is periodic in 6, it follows that w(s, ) = a; + az s, for some constants
a1, a9, and after exponentiating we obtain

(4.11) oo (5,0) = e

for some constants g > 0 and A € R. Since we have assumed that the
function ¥ is not identically zero, we have y > 0.

To finish our argument, we need to show that A = 0. We recall the
estimate |Vg2v| < C/v, shown in Lemma 2.1, or equivalently, |v,| <
C'v/v, which in cylindrical coordinates gives the bound

|0s(s,0,t) —20(s,0,t) tanh s| < C\/0(s,0,1),

which holds for ¢ < ¢ty < 0. Taking ¢ — —oco, we obtain

|(000)s(8,0) — 2050 (s,0) tanh s| < C'\/0oo (s, 0),

or equivalently,
VA =2 tanh s| < Ce /2 Vs € (—o0,+00),

which is impossible unless either A =2 or A = 0.

In the case that A = 2, then if @ is the conformal factor of our metric
g parametrized by the standard plane and @ := @' the corresponding
pressure function, then limy , o, 9(-,t) = u, on R? \ {0}. Since u > 0,
we have

lim a(z,t) =~:=p ! < o0 on R?\ {0},
t——o00

which in particular implies that (-, ¢) is bounded from above and below
away from zero on any compact subset K C R2. Standard parabolic
PDE arguments imply that @(-,t) — 7, as t = —o0, in C*° on compact
subsets of R?. By Lemma 6.9 (which will be proven at the end of Section
6), this is impossible. We conclude that A\ = 0.
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The above discussion yields that 9(s,0) = p, with 4 > 0. Going
back to the sphere S2, via Mercator’s transformation, we conclude that

Uoc(1,6) 1= Tim_0(©,6,) = p cos* .

Moreover, the convergence is smooth on compact subsets of S?\{S, N'}.
This finishes the proof of the theorem. q.e.d.

5. The King—Rosenau Solutions

We have shown in the previous section that there exists a parametriza-
tion of our evolving metric g(t) on S2, namely, g(t) = u(v,0,t) ds?, for
which the backward limit of the pressure function v := u~! satisfies

voolt,0) == lim_v(35,0,1) = 1 cos?

with p > 0. Assuming, throughout this section that p > 0, we will
show:

Theorem 5.1. If the backward limit v (1, 0) = p cos? 9, with u > 0,
then v is one of the King—Rosenau solutions (?7).

The case where p = 0 will be treated separately in the last section of
the paper. Observe that when u > 0, the metric go := v}t ds, is just
the cylindrical metric written on S2. By performing a simple rescaling
in t and v, we may assume, without loss of generality, that y = 1.

Let S, N denote the north and south pole of the sphere S? corre-
sponding to ¢ = —F and ¢ = 7, respectively. Consider the stereo-
graphic projections ®g : S2\ {N} — R? and &y : S?\ {S} — R? such
that ®g(S) = 0 and ®x(N) = 0 and set

T)S(‘rvyat) = U((pgl(xvy)?t) and T)N(C7€7t) = 'U(CI)Xfl(Caf)vt)

where v(¢,6,t) denotes the pressure function on S2. Then if

x Yy
(51) CZ :1;‘274—2 and g_ $2 +y2,
we have
(5.2) vs(x,y,t) = (2° +%)? 0n(C, &, 1).

Observe that, after stereographic projection, the pressure function in
the King—Rosenau solutions takes the form

s (@, y,t) = b(t) + e(t) (2 + y*) + b(t) (2 + y*)°
and, similarly,

O (G, &, 1) = b(t) + (1) (¢ + %) + b(t)(¢* + £)?
where limy_, o ¢(t) = p and limy—, o, b(t) = 0.

We consider the quantities

Qs(z,y,t) == vs [((Q_’S)mw - 3(55)%@/)2

+ ((0)yyy — 3(08)zay)’]
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and, similarly,

_ _ _ 2 _ _ 2
QN (¢, &1) = s [((ov)eee — B(ow)eee) + ((O)ege — 3(0w)ege) -
Both Qx and Qg are identically equal to zero on the King—Rosenau
solutions. A direct calculation (where we make use of (5.1) and (5.2))
shows that

(53) QS($7y7t) = QN(Cvé.vt)
Hence, the quantity

Qs(®s(v,0),1) (1,0) € S*\ {N}
QN(PN(1,0),1) (1,0) € S*\ {S}

is a well-defined and smooth function on S? x (—o0,0).

Sketch of proof: We will show next that Q(-,¢) =0, for all ¢ < 0, by
showing that its maximum is decreasing in time and is equal to zero at
t = —oo. Following this, we will prove that any solution of equation (1.5)
that satisfies Q(-,t) = 0 must be one of the King—Rosenau solutions,
yielding the statement of Proposition 5.1.

Let

Q,0,1) = {

Quax(t) := Bn Q(v,0,1), t € (—00,0).

Lemma 5.2. The function Qumax(t) is decreasing in t.

Proof. To show that Qmax(t) is decreasing, we will compute the evo-
lution equation of (. We may assume, without loss of generality, that
Qmax(t) at an instant ¢ is achieved on the southern hemisphere corre-
sponding to —7/2 <1 < 0 so that

Qmax(t) = sup QS(xyyyt) = QS(x07y07t)
(z,y)€R?

for some point (xg,y0) € R?.
To simplify the notation, set v := vg and

A= Vppr — 3’L—)myy B = Vyyy — 31_)mmy
so that
Ay = Vpgae — 3 Uzzyy By = Uyyyy — 3 Vzzyys

and also set

Qz,y,t) := %Qs(x,y,t) = g (A% + B?)
and

Dy :=20A, +0,A—30,B  Dy:=20B,+ 9, B— 30, A.
A direct computation shows that

LQ:=Qi—1AQ=-01Q5 —01Q) —a2Q —byQy — CQ —4RQ
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where R > 0 denotes the scalar curvature of our metric, and

1 1 A B
a1 = 23 blzﬁ, a2=§D1, szEDz,
and ) ,
¢= v (432 4A2)'
Observe next that
~_2,Df D - AD? B2D2 1
D?+ D
CQ=1 (qpet ) Q=g * g +3(PI+ D)
and )
_ - A*D 1= AD
2 1 1
@@y + a2Qy + B (Qw —)
and, similarly,
B?D? 1 .. BDy

b1Q§+b2Qy+W:F(Qy+T) .

Hence,

~ | ADq 2 ~
LQ=-+ (Qa+ T) (Qy
where we recall that & > 0 everywhere. Slnce Q is smooth (because

v is), it follows that all quantities on the right-hand side of the above
equation are bounded at any given point (z,y,t) € R? x (—00,0) and

LQ=Q—vAQ <0 for all (z,y,t) € R? x (—o0,0).

This readily implies that Qmax(t) is decreasing in ¢, finishing the proof
of the lemma. q.e.d.

BD2 1

We will next show that the backward limit as ¢ - —00 of Quax(t) is
Zero.

Lemma 5.3. We have
lim Qmax(t) = 0.

t——o0

As above, we set v(z,y,t) = vg(x,y,t) and consider the conformal
factor @ = ©~'. Our evolving metric g(t) is then given by g(t) =
a(-,t) (dx? + dy?), where dx? + dy? denotes the standard metric on the
plane. Recall that the function @ satisfies the evolution equation (1.12).

To simplify the notation, we will also denote by % the conformal factor
of our metric over the plane R? expressed in polar coordinates. Then

g(t) = a(-,t) (dr® +r?de*) = a(-,t) (ds* + db?)

where @ is the conformal factor in cylindrical coordinates, defined in
terms of u by (1.8).
In the proof of Lemma 5.3, we will use the following estimate.
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Lemma 5.4. For any ty < 0, there exists a uniform in time constant
C, depending only on ty, such that

(5.4) |(logw)g(-,t)| = |(loga)g(-,t)| < C on —oo <t<ty.
In addition, 0(-,t) <1 and r?a(-,t) <1, for all —oo <t <tg < 0.

Proof. We have seen in Lemma 2.1 that the pressure function v writ-
ten on S? satisfies the bound

|Vgev|?> < Cu on —oo <t <t
for a uniform constant C'. This readily gives us the bound
sec? 4 [vg (¥, 0, 8) < Cu(y, 0, t),
or equivalently,
lug(10,0,1)]* < Cv(1,0,t) cos? .

However, since v; > 0, we have v(v,0,t) > lim;_, o v(¢,0,t) = cos? 1.
It follows that

|’U9(¢7 0, t)| < C’U(¢7 0, t)a
or equivalently, |(log v)g(-,t)| < C. Hence, the conformal factor u := v~
also satisfies

1

[(log u)a (-, t)] < C
The bounds (5.4) now readily follow from (1.8) and (1.11).
For the L*° bounds on u and u, we use that u; < 0, which implies
a(-,t) < limp_oot(-,t) = 1 giving the bound u(-,t) < 1 and also
yielding that r2a(-,t) < 1. q.e.d.

For a given sequence t; — —o0, we define the re-scaled solutions of
(1.12) given by

(5.5) (2, y,t) = pi alp, prys t + ty)
where pf = (4(0,#)) ! is chosen so that
ﬁk(o, 0) =1.

Before we give the proof of Lemma 5.3, we will show:

Lemma 5.5. Passing to a subsequence, {uy} converges uniformly on
compact subsets of R x (—o0,00) to a cigar solution u given by

_ o
(5.6) u(@,y,t) = Be2M + (z — x0)2 + (y — yo)?

for some constants o, 3 > 0, A and some point (xg,1yo) € R2.

Proof. 1t is more convenient to switch for the moment to polar coor-
dinates, defining @x(r, 0,t) = w(pxr, 0, + tx) p3. We will first show the
bounds

(5.7) —C (1 +7%) < loga(r,0,0) < C
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for a uniform constant C' (independent of k). To this end, we begin by
observing that log @y, satisfies the elliptic equation

Alog uy, = — Ry, Uy,
where Ry(r,0,t) = R(pgr,0,t + ti) satisfies the uniform bound
0< Rp < M.
Set .
U(r) = / log (1, 6,0) db, r >0,
and observe that by integrating the inequality
Alogug(-,0) <0
in # we obtain the differential inequality
AU, = r~ Y (rUL(r)) <O0.

Since lim, o r U}(r) = 0, we readily conclude that Ug(r) is decreasing
in r, and hence

2T
/ log i (1, 8, 0) df < log ii(0,0) = 0.
0

In addition, by (5.4) we have |(log 1) (-, 0)| < C, for a uniform constant
C'. The last two inequalities clearly imply the bound from above in (5.7).
For the bound from below, observe that

for a uniform constant C', which gives (after integration in ) the differ-
ential inequality
—r Y (rUL(r)) < C.
The desired bound now readily follows by integrating in r and using
(5.4). This proves (5.7).
Now for a given 7 > 0, we choose k sufficiently large so that ¢ + 7 <
—1, and hence

max R < max R<M
R2 X (—o0,T] R2 x (—o00,—1]

for a uniform constant M. Since (logy); = — Ry, from (5.7) we readily
conclude the bounds

—C(71) (1 +72) < logii(r,0,t) < C(1) on R? x [—7, 7]

for a constant C'(7) that depends on 7 but is uniform in k. Exponenti-
ating gives us the bounds

0 < c(r,r) <ug(r,d,t) <C(r) < 00 on R% x [—7,7].

Standard parabolic PDE arguments imply that the sequence {uy} is
equicontinuous on compact subsets of R? x (—00, 00); hence, passing to
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a subsequence, {&;} converges, uniformly on compact subsets of R? x
(—00,0), to an eternal solution u of equation

uy = Alogu on R? x (—o0, 00)

that in addition satisfies the bound 0 < u(-,t) < C(¢), for all ¢.

The result in [6] now shows that @ is either a cigar solution or the
constant solution & = «. In the latter case, given r > 0, we may find k
sufficiently large (depending on r) so that

[0
ug(r,0,0) == pp u(pyr, 0, t,) > 5

for all 6 € [0,27]. It follows then that

7"2Oé

(oxr)? @(prr, 0, tx) > 5
This will contradict our uniform bound 72 @(r,t) < 1 shown in Lemma
5.4 if we choose 72 = 4/a.

We conclude that our limit u is a cigar solution that in standard plane
coordinates (z,y) takes the form (5.6). The proof of the lemma is now

complete. q.e.d.
We will now proceed to the proof of Lemma 5.3.

Proof of Lemma 5.3. We begin by noticing that our quantity Q(v,6,t)
becomes identically equal to zero if v is either the cigar solution or the
cylinder. Hence, the convergence of v(-,t) to the cylindrical metric in
C>(S%\ {8, N}) readily shows that @Q(-,t) converges uniformly to zero
as t — —oo on compact subsets of $?\ {S, N}.

To prove the lemma, we argue by contradiction. If the conclusion of
the lemma doesn’t hold, then there exists a sequence of times t; and
points P, € S? such that

(58) Q(Pk,tk) >e> 0.

It follows from the above discussion that we may assume, without loss
of generality, that P, — S as k — oo, where S denotes the south pole
of the sphere corresponding to ¢y = —7n/2 in the chosen coordinates.
Denote by P, = (rg,0r) the polar coordinates of the points Py on the
plane obtained by projecting S? \ {N} onto R? and mapping S to the
origin.

Set p? := (4(0,t)) ! and let @, be the sequence of rescaled solutions
defined by (5.5) and used in Lemma 5.5. We will separate between the
following two cases:

Case 1: We have liminfy_ . 1k /pr < 00.

In this case, we may assume, without loss of generality, that (7, 0) :=

(re/pk, 0x) — (r0,0), with o < oo (otherwise we pass to a subsequence
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and rotate in 6). Since uy (7, 0k, 0) = pi w(Trpr, Ok, tr), the convergence
of 4 to the cigar solution readily implies that

lim Q (7%, 0k,0) =0
k—oo

(where @}, is our given quantity corresponding to @ when expressed in
polar coordinates on the plane). However, since this quantity is dilation
invariant, we have

Qr(Tk, O, 0) = Q(rg, Ok, tx) = Q(Py,ty) > € >0,

which contradicts that the limit is zero.
Case 2: We have liminfy_, oo 7 /pr = +00.
It is more convenient to work in cylindrical coordinates and set

u(s,0,t) = r? a(r,0,t), r=e’,

recalling that @ satisfies the equation (1.10). We set
2
U(s,t) ::/ log i(s, 0,t) d
0

and observe that that since A, log@ = 4; < 0, we have Ug(s,t) < 0;
hence, Uy is nonincreasing in s. In addition, by (1.8), we have

logi(s,d,t) =logu(,0,t) — 2log cosh s,

and hence
8213100 Us(-,t) =2 and Slg]go Us(-,t) = =2, Vt € (—00,0).

It follows that
U+, )| < 2, Vt € (—o0,0).

We claim that if si := log ri, we have

(5.9) ﬁ(sk,tk) > -C

for some constant C' > 0. To this end, choose 7 sufficiently large so
that if u(r,0,t) is the cigar solution given in (5.6) expressed in polar
coordinates, then

_ 2
P24(7,9,0) > ?O‘
This is possible because lim,_s 4 o 72 (7, 6,0) = a. Since 72 @y (#,6,0) —

72 4(7,0,0), as k — 0o, we must have

(5.10) P2 p} wlpit, 0, 1) >

e}

if k is sufficiently large and 6 € [0, 27]. It follows that if § := log(7pg),
then

(S, Ok, ti) >

|2
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Since r/pr — +00, we may assume that 7p, << 7, which in particular
implies that §; < sg. By (5.4) and the bound from below on 4, we have
U (3, 1) > —C, for a uniform constant C.

We will now conclude that the bound (5.9) holds. If U(sy, t,) — 0, as

k — oo, then it obviously holds. Otherwise, since lims_,_o U(s,tx) =
—o0 and limy, 5 oo U(s,t;) = 0 on compact subsets of R (remember
limy, o u(s,0,t) = p on compact subsets of R x [0,27] and we have
assumed that p = 1), we easily conclude that Us(s,t) > 0 for s < s,
(recall that sy, := logry — —0c0). It follows that U(sg,tx) > U(8k, tx) >
—C, which proves (5.9).

For the given sequences t, — —oo and s — —oo, we define the
translating solutions

@k(s, 97 t) = ’11(8 + Sk, 07t + tk)7
which also satisfy equation (1.10) on —oo < t < |tg|. Set

2m
Ur(s,t) ::/ log iy (s, 0,t)d6.
0

Then |(Uy)s] <2 and U <0 on R x (—o0, |t] — 1), since |U,| < 2 and
%<1 onRx (—o0,—1). In addition, by (5.9), U(0,0) > —C and also
|(U)e] < C, for all s € R and t < |tz| — 1 for a uniform constant C
(since the scalar curvature R(-,t) is uniformly bounded on ¢ < —1).

It follows that the sequence {Uk} is uniformly bounded on compact
sets in space and time, and by (5.4) the same holds for the sequence
log .. Hence, for a given compact set K C R x [0,27] X (—00,00), we
have

0<e<ig(s,0,t) <1, (s,0,t) e K
if k is chosen sufficiently large so that K C R x [0, 27] x (—oo, |tg] — 1).
Standard parabolic PDE arguments imply that, passing to a subse-
quence, 4, — @ in C°° on compact sets of R x [0,27] X (—00,00). The
function 4 is a smooth eternal solution of equation (1.10) on R x [0, 27] x
(—00,00).

We will next show that @ = v, for some constant «y, which implies
that limg_, o Q(7k, Ok, tx) = 0, contradicting our assumption (5.8).

Claim 5.6. If R(s,0,t) is the scalar curvature in cylindrical coordi-
nates, then we have

(5.11) lim R(Sk, Qk,tk) = 0.

tp——00
Proof. Assume the claim is not true, that is; there exists a § > 0
and a subsequence (sg,0k,tx) so that R(sg,0k,tx) > d > 0, for all k.
Passing to a subsequence, 0, — 6. Since Ry := —Alog 1y, /Uy, satisfies
Ri(s,0,t) = R(s+ sy, 0,t+t) and R, — R := —Alog @/ uniformly on
compact sets, we conclude that R(0, 6, 0) := limy_,oo Ry (0, 05, 0) > 4.
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It follows that there exists an € > 0 and kg so that
(5.12)

R(s + sk, 0,t;) > g, for all (s,0) € I := [—¢€, €] X [0 — €,0p + €].

On the other hand, as we have proved earlier, we have 0 < ¢ < (s, 0,0) <
1, for all (s,0) € I.. Combining this with (5.12) yields

// Ri(-ty) 0 (-,0)dsdd > 6 >0 k> ko,
I

or equivalently,

(5.13) // (te)dsdd >8>0 k> ko,
Ic(sg)

where I.(sg) := [sk — €, Sk + €] X [0p — €,00 + €].

Recall that by Lemma 5.5, ug(z,y,t) = pi u(pre, pry,t + tx) con-
verges uniformly on compact subsets of R x (—o0, 00) to a cigar solution.
This implies that there exists a compact ball B(0,7) (with 7 sufficiently
large depending on 1 and 7 chosen arbitrarily small) so that

‘// Ryug(-,0) dmdy—47r‘ <,
B(0,7)

or equivalently,

|// R(-,tx) a(-, ty) de dy — 47‘(" <.
B(Ovpkf)

We may also choose 7 so that 7 > 7, where 7 is chosen as before so that
(5.10) holds.

Set 7, = e* and 7p, = e°. Recall that since we are in the case
where 11 /pr, — 400, we may assume that §; < sp — 1. The last integral
inequality in cylindrical coordinates gives

Sk 2w
(5.14) |/ / R(- ty)a(-, ty) df ds — 4| < n.

Combining (5.13) with (5.14) and choosing 7 << 4, we obtain that

Sp+e 2w n
(5.15) / R(-,t)a(- tr) df ds > dm + 2.

Recall that s — —oo. Lemma 5.5 may be applied near the north
pole N of S? corresponding to 1) = 7/2, so that we may also conclude
that, after passing to a subsequence, the rescaled solutions converge to
a cigar. In our chosen cylindrical coordinates, this would imply that for
the given sequence of times ¢, — —oo, after passing to a subsequence,
there exists a sequence 5, — 400 for which

(5.16) |/+OO /O%R(-,tk)ﬁ(-,tk)des—47r| < Z-
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Combining (5.15) with (5.16), we conclude that the total curvature

+o00 2
/ / tk tk) db ds > 8,

which is a contradiction to the total curvature of our evolving compact
surface being equal always to 8w. This concludes the proof of the claim.
q.e.d.

To finish the proof of the lemma, we will first show that 4 = v, for a
constant v > 0. To this end, we will ﬁrst prove that the scalar curvature
R:=—Alog u/u of the metric § := 4 (ds? + d6?) is identically equal to
zero. Clearly R > 0. If we prove that R(O,HO,O) = 0, for some point
0y € [0,27], then R = 0 by the strong maximum principle. But this
readily follows from (5.11) by choosing a subsequence so that 6, — 6y
and passing to the limit, similarly as in the proof of the previous claim.

To conclude that @ is a constant, for a fixed ¢, set w := log @ and
observe that w satisfies A;w = 0 and w < 0 on Rx [0, 27] (since g < 1).
We may view w as a harmonic function on R? by extending it in the
direction so that it remains 27 periodic. The bound w < 0 then implies
that w must be a constant function, which shows that log (-, t) = ¢(t),
for all ¢. Since R = 0, we conclude that ¢(t) is constant in ¢, and hence

log @ = c.
We will now conclude the proof of Lemma 5.3. We have just shown
that 4y = u(s + sg,0,tx) — =, for some constant v > 0, and the

convergence is in C*° on compact subsets of R >< [0, 27]. Going back to
the plane coordinates, we conclude that uy := r2 u(rgr, 0,t) — v/r* i

C° on compact subsets of the punctured plane 0 < r < co. Notice that
~/r? is the cylindrical metric in plane coordinates. Since our quantity Q
is dilation invariant and vanishes identically on the cylinder, this implies
that Q(rg, 0,tx) — 0, which contradicts (5.8). q.e.d.

As an immediate consequence of Lemmas 5.2 and 5.3, we obtain:

Corollary 5.7. We have Q(-,t) = 0, for all —co < t < 0. Conse-
quently, the pressure function v := vy satisfies the identities

(5.17) (@) Vpgy =3 Ugyy and (b) Uyyy = 3 Ugay-
The above identities also imply the identities
(5.18) (@) Vpggz = Uyyyy and (D) Upgay = Uyyys = 0.

We will now show that o(-,¢) must be a fourth-order polynomial of a
certain form.

Lemma 5.8. Let o(x,y) be a smooth function on R? satisfying (5.17).
Then v has the form

o(z,y) =a((z—21)° + (y — y1)°)* + q(z,y)
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for some constants a, 1,2, and a quadratic polynomial q(x,y).

Proof. We will omit the details of calculations that can be checked in
a straightforward manner by the reader. We will also denote by C, C;
various fixed constants. Identity (5.18)(b) implies that Uyz. = fi1(2)
and Uyyy = g1(y), and by (5.18)(a) we have fi(z) = Cx + C, g1(y) =
Cy + Cs; hence,

_ C _ C
Vg = 5:1:2+C’1:17—|—gg(y), Uyy = §y2+02y+f2(x).
Combining the above identities with (5.17) gives
_ O 2 O 2 02 _ O 2 O 2 Cl
= — — Crz+—y+C = — — Coy+—x+Cy.
Vg 2x+6y+ 1x+3y+ 3, Uyy 2y+6x+ 2y+3x+ 4
Differentiating these last identities in y, x, respectively gives

_ C Co _ C Ch
Uxxyzgy"’_?y U:cyyzgx"i‘?a

which after integration in x, ¥y, respectively yield

C C. C C
oy = oY + 3296 +g3(y) = 3T+ gly + f3(x).

It follows that

_ c C C
Vpy = gxy—l— ?295—1- ?ly+C5.

If we set ¢ := v — V, where

V(z,y) =a((x—21)*+ (y—u)?)?
with
¢ oG _&
01’ T To4a T To4a
then a direct computation shows that ¢ satisfies

a =

Gz = C3, qyy = Ca, Qzy = Cs,

from which the lemma readily follows. q.e.d.

We will next show that our solution v has the particular form of the
King—Rosenau solutions.

Lemma 5.9. Let v(x,y,t) be an ancient solution of the equation
(5.19) o =0 A0 — Vo2 onR? x (—00,0)
of the form
o(z,y,t) = a((z—21)* +(y—y1)?)2 +b(x—22)? +d (y —y2)* +pay+ec,

where all a,b,c,d, p, and z;,y; are functions of t. Assume in addition
that

(5.20) lim o(z,y,t) =z + o>

t——o00
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uniformly on compact subsets of R%. Then
(5.21) o(2,y,t) = a(t) (2% + y*)* + b(t) (z° + y*) + c(t)

for some functions of time a(t),b(t), c(t) that are defined on —oo < t <
0.

Proof. The lemma follows from a direct calculation where you plug
a solution o(z,y,t) of the given form into equation (5.19) and compute
the relation between all coefficients a, b, ¢, d, p, and x;, y;.

Indeed, by doing so, we first find the following equations relating the
coefficients a, b, ¢, d, p:

(5.22) a' =2a(b+d), (b—d) =-2(b—d)(b+d), p =—2p(b+d).
From (5.20) we have
lim a(t) = lim c(t) = t_l}l_noo p(t) =0,

t——o0 t——o0
which, in particular, imply that 1 < b+d < 3, if t < tg with ¢ sufficiently
close to —oo. Hence, the last two equations in (5.22) readily imply that
b=d and p=0. Hence, v is now of the simpler form

v(z,yt) =a((z—z1)*+ (Y —y1)’)’ +b((@ —22)* + (¥ —92)*) + ¢,

where all a,b,c, and z;,y; are all functions of £. Observe that since
o(z,y,t) > 0 on R? x (—00,0) and lim;_, o, b(t) = 1, all coefficients
a,b, c are positive and 3/4 < b(t) < 5/4, for t <ty < 0. By (5.22), we
now have

m b(t) = lim d(t) =1,

li
t——o00 t——o00

a =4ab< 5a, t<ty<O,
which readily gives the bound
(5.23) a(t) > Cy e

for a constant C; > 0. Now, plugging v back into the equation, we find
by direct calculation that
(5.24) x) = —4b(z1 — x9), Yy = —4b (y1 — y2)
and that X (t) := x1(t) — z2(t) and Y (¢) := y1(t) — y2(t) both satisfy the
same equation
4X
X' = 5 (b? + dac + 4ab (X? +Y?)),

and the same for Y. It follows that ¢(t) := X2 + Y2 > 0 satisfies the
equation

(5.25) ¢ =—

% (b? + dac + 4ab ¢),

where b? + 4ac + 4ab¢ > b? > 0 for t < tg. Since lim;, o, b(t) = 1, we
have 3/4 < b(t) < 5/4, for t <ty < 0. It follows from (5.25) that
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which implies the bound
(5.26) p(t) > Caefl ¢t <ty <0,

for a constant Cy > 0, unless ¢ = 0.
We will next show that ¢ = 0. Observe first that from (5.20) and the
fact that lim—, o b(t) = 1, we have

. 2 200\2 _ . 2 204\ _
dim_a(t) (230 420 =0, lim (a3(0) + 43(0) = .
which yields
. 2 .
(5.27) tligloo a(t) ¢=(t) = 0.
On the other hand, it follows from (5.26) and (5.23) that

which contradicts (5.27). Hence, ¢ = 0. Once we know that ¢ = 0,
(5.24) and (5.20) yield z1(t) = xz2(t) = 0 and y1(¢) = y2(t) = 0 for all .

We conclude from the above discussion that the solution v, is of the
form (5.21). q.e.d.

We will now conclude that our solution is one of the King—Rosenau
solution in plane coordinates. Such solutions were first discovered by
King [13].

Lemma 5.10. Let v(z,y,t) be an ancient solution of the equation
(5.19) of the form (5.21). Then, up to a dilation constant, which makes
a(t) = ¢(t) for all t, we have

(5.28) a(t) = —g csch(4put) and  b(t) = —p coth(4ut).
Proof. 1If we plug a solution of the form (5.21) into the equation (5.19),
we find that the coefficients a, b, c must satisfy the equations
(5.29) a =4ba, d =4be, V¥ =16ac.
Since a(t) > 0 and ¢(t) > 0, the first two equations imply that
(loga(t))" = (logc(t))’,
which shows that
c(t) = A2 a(t)
for a constant A > 0. By performing a dilation oy (z,y,t) = A"2 0(A\z, Ay, t)

(which leaves b(t) unchanged), we may assume that A = 1; i.e., a = c.
The functions a, b satisfy the system

(5.30) d =4ba  and b =164
Solving this system gives us (5.28) for a given constant p > 0 (if we
assume that limy_, o, b(t) = 1, then pu =1). q.e.d.

We will now conclude the proof of Theorem 5.1.
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Proof of Theorem 5.1. We observe that if o(r,t) = a(t) r*+b(t) r2 +a(t)
is the King—Rosenau solution in polar coordinates, then in cylindrical
coordinates it takes the form

(s, t) = 2a(t) cosh® s + b(t).

Recalling that a(t) and b(t) are given by (5.28) and using (1.8), we
conclude, by direct calculation, that

v(1h,t) = —pcoth(2ut) + p tanh(2ut) sin? 1,
finishing the proof of the theorem. g.e.d.

6. The Contracting Spheres

Throughout this section we will assume that the backward lmit

(6.1) Voo 1= tl}r_noov(-,t) =0.

Our goal is to show that in this case the ancient solution v must be a
family of contracting spheres, as stated in the following theorem.

Theorem 6.1. If the backward limit v = 0, then

1
v(,t) = ma

that is, our ancient solution is a family of contracting spheres.

To prove the theorem, we will use an isoperimetric estimate for the
Ricci flow that was proven by R. Hamilton in [10]. Let M be any
compact surface. Any simple closed curve v on M of length L(~) divides
the compact surface M into two regions with areas A;(y) and Aa(y).
We define the isoperimetric ratio as in [4], namely,

1. ., 1 1
(62) 1= 5w 20) (56 + mm)
It is well known that I < 1 always, and that I = 1 if and only if the
surface M is a sphere.

We will briefly outline the proof of Theorem 6.1 whose steps will
be proven in detail afterwards. We consider our evolving surfaces at
each time ¢ < 0 and define the isoperimetric ratio I(t) as above. Our
goal is to show that our assumption (6.1) implies that I(t) = 1, which
forces (M, g(t)) to be a family of contracting spheres. We will argue by
contradiction and assume that I(tp) < 1, for some ¢y < 0. In that case
we will show that there exists a sequence ¢t — —oo and closed curves
B, on S? so that simultaneously we have

(6.3) Lg2(Bk) >0 >0 and Ly (Br) <C Yk,

where Lg2 and Ly, ) denote the length of a curve in the round metric
on S? and in the metric g(t;), respectively. This clearly contradicts the
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fact that u(-,tz) — oo, uniformly in S? ( implied by (6.1)) and finishes

the proof.

We will now outline how we will find the curves §;. For each t < ¢,
let v; be a curve for which the isoperimetric ratio I(¢) is achieved.

i. If I(tp) < 1, for some tg < 0, we will show that I(t) < %, for t < tp.
We will use that to show Ly (v:) < C, for all t < to.

ii. For any sequence t; — —oo and pp € 74, we will show that
there exists a subsequence such that (M, g(t;),pr) converges to
(Moo, Goos Poo); Where My, = St x R and 7o = limp_so0 Vi, 1S a
closed geodesic on Moo, one of the cross circles of S x R.

iii. Let t; be as above. If Ay (tx), A2(tr) are the areas of the two regions
into which ~y;, divides S2, we show that both of them are comparable
to |ty = —ts.

iv. We show that the maximal distances from ~;, to the points of the
two regions of areas Aj(ty), A2(tx), respectively, are both of length
comparable to [tg].

v. The curves v, do not necessarily satisfy (6.3). However, we use
them and (ii) to define a foliation {8~} of our surfaces (M, g(t)),
and we choose the curve (3, from this foliation that splits S? into
two parts of equal areas with respect to the round metric. We prove
that this is the curve that satisfies (6.3) by using that Ig2 = 1, the
Bishop—Gromov volume comparison principle, (iii) and (iv).

Lemma 6.2. If I(tg) < 1, for some ty < 0, then there exist positive
constants C1,Cy so that
Cy

I(t) < ——
()_|t|+02

Moreover, if v is the curve at which the infimum in (6.2) is attained,
then

for all t < 1.

L(t) == L(yw) <C for all t < to.

Proof. Let t < tg, with ¢ty as in the statement of the lemma. It has
been shown in [10] that

— A1 Ay (A + Ag)

Since A;+ Ay = 8|t| and A% —I—A% > 2A1 As, we conclude the differential
inequality

I(1-1%.

I > %1(1 _12),

Since I(tp) < 1, the above inequality implies the bound

It) < @

—_ f 1t<t
_|t|+C’2 or a <o
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for uniform in time constants C; and Cs. Using that A% + A% > ﬁlt\’

we will conclude that that the length L(t) of a curve 7 at which the
infimum in (6.2) is attained satisfies L(t) < C, for all ¢ < t. q.e.d.

We also have the following estimate from below on the length L(t) of
the curve at which the infimum in (6.2) is attained.

Lemma 6.3. There is a uniform constant ¢ > 0, independent of time
so that

L(t) > ¢ forall t <ty <O.
Proof. Recall that for tg < 0, the scalar curvature R satisfies 0 <

R(-,t) < C, for all t < tg. The Klingenberg injectivity radius estimate
for even-dimensional manifolds implies the bound

(6.4) injrad(g(t)) > >6>0 forall t <ty <0

c
\% Rmax
for a uniform in time constant ¢ > 0. We will prove the lemma by
contradiction. Assume that there is a sequence t; — —oo, so that
L; == L(t;) — 0, as i — oo, and denote by =y, a curve at which the
isoperimetric ratio is attained, i.e., L(t;) = L(7y).

Define a new sequence of re-scaled Ricci flows, g;(t) := L; 2 g(t;+ L2 1),
and take a sequence of points p; € ;. The bound (6.4) implies a lower
bound on the injectivity radius at p; with respect to metric g;, namely,
injrad,,)(pi) 5

> — = 0 as 1 — 00.
2 = 72
L; L;

Also, since R;(+,t) = L? R(-,t; + L?t) < C'L? and L; — 0, we get

(6.5) injrad,, (p;) =

(6.6) max R;(-,t) = 0 as i — oo.

Hamilton’s compactness theorem (c.f. in [11]) implies, passing to a
subsequence, the pointed smooth convergence of (M, g;(0),p;)) to a
complete manifold (My, goo, Poo), Which is, due to (6.5) and (6.6), a
standard plane. Moreover,

[(t')_1L2< Lo, >_L< L, >
Uoodm T \Al(t)  As(t)) 4m \Ai(gi(0))  Aa(9:i(0)) )7
where A;(g;(0)) and Aa(g;(0)) are the areas inside and outside the curve
Y, respectively, both computed with respect to metric g;(0). Since g;(0)
converges to the euclidean metric and 7, converges to a curve of length
1, it follows that lim; o A1(g;(0)) = a > 0 and lim;_, o, A2(g;(0)) = oo,
which implies that

lim I(;)>6>0

1—00

and obviously contradicts Lemma 6.2. q.e.d.



204 P. DASKALOPOULOS, R. HAMILTON & N. SESUM

We recall that at each time ¢, a curve « at which the isoperimetric
ratio is achieved splits the surface into two regions of areas Aj(t) and
As(t). Lemma 6.3 yields to the following conclusion.

Corollary 6.4. There are uniform constants ¢ > 0 and C > 0 so
that
clt] < A1(t) < Ct| and clt| < As(t) < C ¢
for allt <ty <O.

Proof. It is well known that the total area of our evolving surface is
A(t) = 8n |t|. Hence, A;(t) < 8x [t| and Aa(t) < 87 |t|. On the other
hand, by Lemmas 6.2 and 6.3, we have

c L3(t) C

< < < —

40 =40 ="
for all ¢ < ty, which shows that A;(¢t) > c|t|, j = 1,2, for a uniform
constant ¢ > 0, therefore proving the corollary. q.e.d.

j=1,2

We will fix in the sequel a sequence t;, — —oo. Let 74, be, as before,
a curve at which the isoperimetric ratio is achieved. From now on we
will refer to ~;, as an isoperimetric curve at time t;. To simplify the
notation, we will set Ayp := Ay (tx), Aok := As(tg) and Ly = L(tx). It
follows from Corollary 6.4 that

(6.7) lim Ay = +o0 and lim Ag; = +o0.
k—o0 k—o0

Pick a sequence of points p € v, and look at the pointed sequence
of solutions (M, g(tx +1t),pr). Since the curvature is uniformly bounded
and since the injectivity radius at pj is uniformly bounded from be-
low, by Hamilton’s compactness theorem we can find a subsequence
of pointed solutions that converge, in the Cheeger—Gromov sense, to
a complete smooth solution (Meo, goo, Poo). This means that for ev-
ery compact set K C My, there are compact sets K C M and dif-
feomorphisms ¢, : K — Kj, so that ¢;g(ty) converges to go. From
Lemma 6.2, L(t;) < C, for all k, and therefore our curves -, con-
verge to a curve v (this convergence is induced by the manifold con-
vergence) which by (6.7) has the property that it splits My, into two
parts (call them Mjo and M), each of which has infinite area. It
follows that we can choose points z; € Mj and y; € Moy so that
disty (2, Poc) = disty (Poo,Yj) = pj, Where p; is an arbitrary sequence
so that p; — oo. Since (Muo, goo) is complete, there exists a minimal
geodesic 3; from x; to y;. This geodesic 3; intersects v, at some point
;. Since ¢j € Yo and Y is a closed curve of finite length, the set {¢;}
is compact and therefore there is a subsequence so that ¢; — g0 € Voo-
This implies that there is a subsequence of geodesics {f;} so that, as
Jj — 00, it converges to a minimal geodesic S, : (—00,00) = My (min-
imal geodesic means a globally distance minimizing geodesic). It follows
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that our limiting manifold M., contains a straight line. Since the cur-
vature of M, is zero, by the splitting theorem our manifold splits off a
line and therefore is diffeomorphic to the cylinder S x R.

We next observe that the limiting curve 7 is a geodesic, as shown
in the following lemma.

Lemma 6.5. The geodesic curvature k of the curve v 1S zero.

Proof. As in [10], at each time t < ¢ty < 0, we start with the isoperi-
metric curve ¢ and we construct the one-parameter family of parallel
curves 7/ at distance r from 7, on either side. We take r > 0 when the
curve moves from the region of area A;(t) to the region of area As(t),
and r < 0 when it moves the other way. We then regard L, A1, Ao, and

T 1 2/ 1 1
1=100) = 52200 (35057 + )

as functions of r and ¢. By the computation in [10], we have
0A, 0A, dL
or or dr / ras =R
where x is the geodesic curvature of the curve /. By a standard varia-

tional argument, « is constant on ;. If A := Aj + A, is the total surface
area, we have

log I = 2log L + log A —log A1 — log Ay — log(4m).

Since %hzo = 0, we conclude that

20L 10A 1 0A 1 0A 2 1 1
=iz ties ma mo L amltmb
which leads to

L, 1 1
TR T A
By Lemmas 6.2 and 6.3 and (6.7), we conclude that
. . L 1 1
foo = dm w= S (g 3 =
which means the geodesic curvature ko, of the limiting curve v, is zero.

q.e.d.

We have just shown that our limiting manifold is a cylinder My, =
S1 x R and 74 is a closed geodesic on M. Hence, 7o is one of the
cross circles of M.

We have the following picture, assuming that the radius of v, is 1.

Assume that we have a foliation of our limiting cylinder M, by circles
Bw, where |w| is the distance from (3, to 7, taking w > 0 if 5, lies
on the upper side of the cylinder and w < 0 if 3, lies on its lower side.
Denote by 8* the curve on M such that (15255) = Buw-
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Buw
Y

—
N

One of the properties of the cylinder is that for every § > 0 there is
a wo > 0, so that for every |w| > wy we have

|  sup dist(z,y) — inf  dist(z,y)|] < Vw? + 72 — |w|
T€Puw,YETo0 2E€Lw,YEvo0
C c 9
< 2 <2 <2
T |w] T we 2
where the distance is computed in the cylindrical metric on M.

Since for every sequence t, — —oo, there exists a subsequence for
which we have uniform convergence of our metrics {g(tx)} on bounded
sets around the points p, € 74, the previous observation implies the
following claim, which will be used frequently from now on.

Claim 6.6. For every sequence t, — —oo and every & > 0 there
exists ky and w so that for k > kg,
|  sup distyy,y(z,y) —  inf  dist,q (2, y)] < 9.
2B yer, g(tr) 2€BY Yy, g(tr)
The variant of the Bishop—Gromov volume comparison principle (since
R > 0) implies the following area comparison of the annuli, for each
t <0,

area(by < s < by) b% - b%

area(a; < s <ag) — a% — a%

(6.8)

where a1 < ag < b1 < by and s is the distance from a fixed point on
(M, g(t)), computed with respect to the metric g(¢). We are going to
use this fact in the lemma that follows.

For each k, 74, splits our manifold in two parts; call them M;j; and
Moy, with areas Aq, and Ay, respectively. Choose points xj, € M7, and
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Y € Moy, so that
disty(, ) (Tr, v, ) = max disty, ) (e, 2) = pr

ZGMlk
and
dist gz, (Yks 10) = max distg(,) (V> 2) =2 Ok

By the definition of o}, and py and from the convergence of (M, g(tx), px)
to an infinite cylinder, we have

lim o, = +o0 and lim pp = +o0.
k—o0 k—o0
Lemma 6.7. There are uniform constants kg > 0 and ¢ > 0 so that
the
area (B, (z1)) > cpr, and area (B, (yr)) > coy, for all k > ko

where both the distance and the area are computed with respect to the
metric g(ty).

Proof. We take a; =0, ag = by = 0 > 1, and by = o + 1 in (6.8).
Then, if s is the distance from y; computed with respect to g(tx), we
have

area (o < s <op+1) < (op +1)* — 03 < 3
area (0 <s<oy) — o? = ok
Hence,
(6.9) area (By, (yr)) > % area (o < s < o +1).

Having (6.9), the proof of Lemma 6.7 is finished once we show the
following estimate: there are uniform constants ¢ > 0 and k; so that for
k > klu

(6.10) area (o < s<op+1)>ec
To prove the estimate, denote by Uy := {z | op < s < o, + 1}. We

consider the set

Vi o= {z | diste, (2,7,) < =, TeZ Ny, # 0}

where 7z denotes a geodesic connecting the points y, and z. It is
enough to show that Vi, C Uy, for k sufficiently large, and that area (V) >
¢ > 0. To prove that V, C Uy, take z € Vj, and let wy € 74, be such
that dists, (2, w) = disty, (2, 7,) < % If i := v, NZYg, then

N —

O = diSttk (?Jka ’Ytk) S diSttk (y/w Qk) S diSttk (27 yk)a

which implies that o} < disty, (2, y%). On the other hand, by Claim 6.6
we have disty, (wg, yr) < 0% + %, for k sufficiently large. Hence,

1 1
disty, (2, yk) < disty, (Y, wi) + disty, (wg, 2) < o + 3 + 3 <op+1
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for k sufficiently large. This proves that V;, C Uy and hence
area (Uy) > area (V).

To estimate area (V) from below, we recall that for p; € 74, , we have
pointed convergence of (M, g(tx),pr) to a cylinder which is uniform on
compact sets around pi. To use this we need to show there is a constant
C > 0, for which

Vi C By, (px, C) for all &k > ko.

Let z € Vi, and let g, € Yz N ;,.. Then by Claim 6.6 for k sufficiently
large, we have

(6.11) op,—1< distg(tk)(yk, qr) < op + 1.
We also have
disty (s, ) (Pr, 2) < distge, ) (P, qr) + distge,) (qr; 2)-
Since, z € Vj, C Uy and (6.11) holds, we get
disty(s,,) (g, 2) < disty, ) (Yr, 2) — disty,) (Yr, ar) S ok +1—0p+1=2,
which combined with disty, )(px, gr) < L(7z,) < C gives us the bound
diStg(tk)(plmz) < C.

This guarantees that, as k — oo, Vi, converges to a part of the cylinder
St xR, while (M, g(tr), pr) — (S X R, goo, Poo) and guo is the cylindrical
metric. Recall that 7;, — Yoo and oo is one of the cross circles on S xR.
It follows that Vj converges as k — oo to the upper or lower part of the
set {z € ST x R | disty., (2,70) < 3} with respect to ys. This implies
that

(6.12) c<area({op <s<op+1})<C for k > ko,
for some uniform constants ¢, C' > 0, finishing the proof of (6.10) and
therefore Lemma 6.7. q.e.d.

Let us denote briefly by A, := area (By, (yx)) and A,, := area (B, (z)).

Lemma 6.8. There exist a number kg and constants ¢y > 0,co > 0,
so that

cilte] <Ay, < calt] and e |ty < Agy < et for all k > k.
Proof. Notice that

(6.13) A, + Asp < 2A(ty) = 167 [ty

since A(ty) = 8n|tx| is the total surface area. Hence,

(6.14) A, < Oty and A, < Ctyl

To establish the bounds from below, we will use Lemma 6.7 and show
that there is a uniform constant c¢ so that

(6.15) o > cltgl and Pk > ¢ty for all k > k.
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We will first show there are uniform constants ¢ > 0 and C' < o0, so
that

(6.16) cpr < o < Cpy.

Recall that o}, = distyq,)(yk, V1, ). By our choice of points xy,y, and
the figure we have that the diam(M,g(tx)) < or + px + 1 for k > ko,
sufficiently large. We also have that the subset of M that corresponds
to area As(tx) contains a ball By, (y;). By Corollary 6.4 and the com-
parison inequality (6.8), we have

Aq (tk) < area(Bpk-i-ak—i-l (yk)\BUk (yk))

T Ao(ty) T area(By, (y))
area(ox < s < pp+ort+1) _ (ptor+1)’—0f
area(0 < s < o) = o2 .

Using the previous inequality, we obtain the bound
cai —2p — 20, —2ppo —1< pi.

We claim there is a uniform constant ¢ so that o < cpg. If not, then
pr << op for k >> 1, and from the inequality above we get

gaigpi for k >> 1.
In any case, there are k1 and C7 > 0 so that
(6.17) pr < Cioy for k > k.
By a similar analysis, as above, there are ko > ki and Cs > 0 such that
(6.18) or < Copy for k > k.

We will now conclude the proof of Lemma 6.8. By Lemma 6.7 and
(6.13) it follows that

Pk + or < Cltg] for k >> 1.
By (6.17) and (6.18) it follows that
pr < Cltx] and o < C |t for k>> 1.

Moreover, by (6.8), we have

Ai(te) < area(Bp, +o,41(Yk)\Boy (1))
area(op — 1 <s<o) ~ area (o — 1 < s < oy,)
< (Pk+ak+1)2—ai<(Pk+ak+1)2—a,%
-~ ol (op—1)2% ~ 204 — 1
_ (tor+1)?’—ap
B 20, — 1
(6.19) < Cp



210 P. DASKALOPOULOS, R. HAMILTON & N. SESUM

where we have used (6.17) and (6.18). The same analysis that yielded
to (6.12) can be applied again to conclude that

area(op — 1 < s <oy) <C.
This, together with Corollary 6.4 and (6.19), implys
Pk > clti] for k > ky.

Claim 6.16 implies the same conclusion about . This is sufficient to
conclude the proof of Lemma 6.8, as we have explained at the beginning
of it. q.e.d.

We will now finish the proof of Theorem 6.1.

Proof of Theorem 6.1. If the isoperimetric constant I(t) = 1, it fol-
lows by a well-known result that our solution is a family of contracting
spheres. Hence, we will assume that I(ty) < 1, for some ¢y < 0, which
implies all the results in this section are applicable. We will show that
this contradicts the fact that lim;_, o v(-,¢) = 0, uniformly on S2.

As explained at the beginning of this section, it suffices to find positive
constants §,C' and curves [, so that

(6.20) Lg2(Br) >0 >0 and Lp(Br) < C <

where Lg2 denotes the length of a curve computed in the round spherical
metric and Ly denotes the length of a curve computed in the metric
g(tx). If we manage to find those curves [, that would imply

C > Li(Br) = / Vu(ty)dgz > M Lg2(B) > M, for k> ko,
Br

where dg2 is the length element with respect to the standard round
spherical metric, M > 0 is an arbitrary big constant, and kg is suffi-
ciently large so that \/u(ty) > M, for k > kg, uniformly on S? (which
is justified by the fact v(-,t) converges uniformly to zero on S?, in C1
norm). The last estimate is impossible, when M is taken larger than
C'/4, hence finishing the proof of our theorem.

We will now prove (6.20). Our isoperimetric curves 7y, have the
property that Ly(y,) < C for all k, but we do not know whether
Lg2(y4,,) > 0 > 0, uniformly in k. For each k, we will choose the curve
By that will satisfy (6.20) from a constructed family of curves {35} that
foliate our solution (M, g(tx)). Define the foliation of (M, g(tx)) by the
curves {85} so that for every a and every x € BX, disty, (7, y) = a.
Choose a curve S from that foliation so that the corresponding curve
B on S? splits S? in two parts of equal areas, where the area is com-
puted with respect to the round metric.

Since the isperimetric constant for the sphere Ig2 = 1, that is,

1 1 ~ . 4

1 < Lg2(f) (A_1 + A—2) = Lg2(Bk) Ag’




COMPACT SOLUTIONS TO THE RICCI FLOW ON SURFACES 211

we have

Lg2(Bx) >0 >0  for all k.

To finish the proof of the theorem, we will now show that there exists
a uniform constant C so that

Ly(Br) <C  for all k.

To this end, we observe first that the area element of g(¢x), when com-
puted in polar coordinates, is

day, = Jy(r,0)r drdo,

where J(r,0) is the Jacobian and r is the radial distance from yj. The
length of 3¥ is given by

27
2:/ Jx(r,0)r do,
0

which implies that
Lz 2w
—& = Jx(r,0)do.
r 0
By the Jacobian comparison theorem, for each fixed 6, we have
Rr.0) _ Ju(r.9)
Je(r,0) = Ju(r,0)’

where the derivative is in the r direction, J,(r,0) denotes the Jacobian
for the model space, and a refers to a lower bound on Ricci curvature
(the model space is a simply connected space of constant sectional cur-
vature equal to a). In our case a = 0 (since R > 0) and the model space
is the euclidean plane, which implies that the right-hand side of (6.21)
is zero and therefore Jj(r, §) decreases in r. Hence, L) /r decreases in .

In the proof of Lemma 6.8 we showed that there are uniform constants
C4,Cy so that

Crlte] < prx < Calty] and cilty| < o < Colty.

(6.21)

We have shown that v;, — 7Yoo and 7y is a circle in M. Let yg, pr
be the points that we have chosen previously. We may assume that
dists, (yx, px) = ok. Choose a curve ¥y, € M so that p, € 4 and that
for every x € 4, we have the disty, (yx,z) = 0. Observe that, for every
x € 7, by the figure we have

. C
o < disty, (z,yx) < o + U—k,

for sufficiently big k. For x € 4, let z =74, NYrx. Then
C C
disty, (@, ) < disty, (z, z) < disty, (yg, z)—dist(yx, 2) < op+——0p = —.
o oy
This implies that the curves 73 converge to v, as k — o0o. Moreover,
this also implies the curve 7, is at distance o, = O(tg|) from y; and if
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s = disty, (Bk, yx), then sy = O(|tx|) and we also know Ly (5;) < C, for
all k. We may assume s < o, for infinitely many k; otherwise, we can
consider point x; instead of y; and do the same analysis as above but
with respect to k. Since Ji(r,6) decreases in r, we have
L L
S~ Ok ’
that is,
LB =L <2kpov =2k p gy < forall k
K(Br) = Lyt < — LiF = — L) < or all ,

Ok Ok
finishing the proof of (6.20) and the theorem. q.e.d.

Based on the arguments of the proof of Theorem 6.1, we will show
the following lemma, which was used in the proof of Theorem 4.1.

Lemma 6.9. Assuming that our evolving metric g(t) = 4 g., where
ge denotes the standard euclidean metric, it is impossible to have that
the backward limit

Upo 1= t_l}gloo a(-,t) =7

for a constant v > 0.

Proof. We will use the arguments from the proof of Theorem 6.1
presented above. For a given time ¢, which will be chosen sufficiently
close to —oo, we denote by (M, g) our evolving surface at time ¢ (for
simplicity we omit ¢ in all considered quantities below in the proof of
the Lemma) and by ~ the isoperimetric curve that divides M into two
regions M7 and Ms,. We have seen in the proof of Theorem 6.1 that

Ly <C

for a uniform constant C' and that the areas of M7 and M, are compa-
rable to |t|.

Let R > 0 be a large but uniform in time constant, which will be
chosen in the sequel. By our assumption, there exist a ty < 0 and a
point O € M, so that the metric g is very close to the flat metric on the
ball Br(O) that is taken with respect to the metric g, for ¢t < ¢ty < 0.
Notice that since g is very close to the flat metric, B (O) is also close
to the euclidean ball.

We may assume, without loss of generality, that O € Ms. Since M,
and M, have unbounded areas, as |t| — oo, the curve v cannot be
entirely contained in Bg(O). Hence, v N Br(0)¢ # (. By choosing R
larger than 2C, we then have that

v N Br2(0) = 0.

As in the proof of Theorem 6.1, consider the point z € M; that is the
furthest from + and the family of curves 3, of radial distance r from z
which foliate our surface M. Let o = disty(x,~) = disty(z, p), for some
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point p € v. Let 4 be the curve such that p € 4 and such that for all
y € 7 we have disty(p,y) = 0. As in the proof of Theorem 6.1, we have
Lg('_V) S 07

disty(y,7) < g

for all y € v, and o is comparable to |t|. These all together, combined
with the fact that v N Br/2(0) = 0, imply that 4 N Bg/5(0) = 0, for
|t| > |to] and [to| chosen sufficiently large. Let /3, be the curve that
contains the point O. Based on the previous analysis, since all the
curves in the foliation {f,},>0 of our surface M are mutually disjoint,
we conclude r; > o. In the proof of Theorem 6.1 we have argued that
Ly /r decreases in r. This implies
Ly Ly _L(W)

r o o’

finally yielding the bound
Ly(B) <C 7 <C

for a uniform constant C, since ¢ is comparable to [t| and r; < diam(M, g) <
Clt|.

If 8., N OBr/y(0) # 0, then Ly(B,) > R/4, which will lead to a
contradiction if we choose R > 4C. Otherwise, 3, is entirely contained
in Bgr4(0), which means that there exists another curve f3,,, which
encloses (3, and is contained in the closure of Bg/4(O) and touches the
boundary of Bg/4(O). Since our metric on Bg(O) is very close to the
euclidean metric, this would imply that Ly(8,,) > R/8, which would
also lead to a contradiction if we choose R > 8C'. This finishes the proof
of the lemma. q.e.d.
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