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We present a detailed investigation of the rich variety of bifurcations and chaos associated with
a very simple nonlinear parallel nonautonomous LCR circuit with Chua’s diode as its only non-
linear element as briefly reported recently [Thamilmaran et al., 2000]. It is proposed as a variant
of the simplest nonlinear nonautonomous circuit introduced by Murali, Lakshmanan and Chua
(MLC) [Murali et al., 1994]. In our study we have constructed two-parameter phase diagrams in
the forcing amplitude-frequency plane, both numerically and experimentally. We point out that
under the influence of a periodic excitation a rich variety of bifurcation phenomena, including
the familiar period-doubling sequence, intermittent and quasiperiodic routes to chaos as well
as period-adding sequences, occur. In addition, we have also observed that the periods of many
windows satisfy the familiar Farey sequence. Further, reverse bifurcations, antimonotonicity,
remerging chaotic band attractors, and so on, also occur in this system. Numerical simulation
results using Poincaré section, Lyapunov exponents, bifurcation diagrams and phase trajecto-
ries are found to be in agreement with experimental observations. The chaotic dynamics of
this circuit is observed experimentally and confirmed both by numerical and analytical studies
as well PSPICE simulation results. The results are also compared with the dynamics of the
original MLC circuit with reference to the two-parameter space to show the richness of the
present circuit.
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1. Introduction

Nonlinear electronic circuits are turning out to be
extremely convenient tools to understand the var-
ious phenomena underlying nonlinear dynamical
systems through experimental, numerical and an-
alytical studies [Chua et al., 1987; Lakshmanan &
Murali, 1996; Madan et al., 1993]. Chua’s circuit is
the most standing example in this regard, which
has stimulated investigations along several direc-
tions on chaos, controlling, synchronization, and
so on [Madan et al., 1993]. The most important
characteristics of the Chua’s circuit family is the
piecewise-linear nature of the nonlinear element,

which is a nonlinear resistor called Chua’s diode.
Very often such a piecewise-linear system can also
model real physical devices like varactor diode, neon
bulb, Josephson junction, etc. to yield quantitative
results [Madan et al., 1993] and therefore the study
of such systems is also of practical importance.
Most of the above type of circuits are au-

tonomous and three-dimensional, represented by
sets of three coupled first-order differential equa-
tions. However, it will be advantageous to con-
sider even simpler nonlinear electronic circuits
involving piecewise-linear elements and driven by
periodic signals, as such systems are relatively easy
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to construct and to study both numerically and
analytically. From this point of view Murali,
Lakshmanan and Chua have introduced the sim-
plest nonlinear nonautonomous circuit consisting of
the familiar forced series LCR circuit to which the
Chua’s diode is connected in parallel [Murali et al.,
1994]. The resultant dynamical equations are a
set of two first-order coupled nonlinear differential
equations with a forcing term included. The cir-
cuit exhibits several interesting dynamical phenom-
ena including period-doubling bifurcations, chaos
and periodic windows. However, in the parame-
ter regimes investigated, it does not exhibit other
important phenomena such as quasiperiodicity, in-
termittency, period-adding sequences, and so on. It
will be quite valuable from the nonlinear dynamics
point of view to construct a simple electronic circuit
which exhibits a wide spectrum of dynamical phe-
nomena. In this paper, we wish to point out that
a rich variety of phenomena can be realized with a
simple variant of the above MLC circuit, by con-
necting the Chua’s diode to a forced parallel LCR
circuit instead of the forced series LCR circuit. Just
as the series and parallel LCR circuits are paradig-
mic second-order linear systems so also the MLC
circuit and its variant may be considered as the
second-order nonlinear systems which can capture a
rich variety of dynamical phenomena. In particular,
it turns out that the MLC variant circuit can exhibit
not only the familiar period-doubling route to chaos
and windows but also intermittent and quasiperi-
odic routes to chaos as well as period-adding
sequences and Farey sequences, crisis, chaotic band
mergings and so on.
Very recently, we have briefly discussed

[Thamilmaran et al., 2000] the observation of a rich
variety of bifurcations and chaos in the variant of
the MLC circuit, for certain parametric choices. In
the present paper we carry out a detailed exper-
imental investigation of the circuit and obtain a
two-parameter phase diagram, where the control
parameters are the drive amplitude and frequency
of the impressed periodic signal. The results are
confirmed by means of an exhaustive numerical
analysis supported by studies involving Poincaré
surface of section, Lyapunov exponents, bifurca-
tion diagrams and phase diagram. We also confirm
some of our results by PSPICE simulation. In or-
der to appreciate the richness of the dynamics of
the present variant circuit, we compare its phase
diagrams (both experimental and numerical) with
the two-parameter phase diagrams of the original

MLC circuit (which was not obtained in the ear-
lier studies). Finally we also point out that due to
the piecewise-linear nature of the Chua’s diode, the
dynamical equations can be explicitly “integrated”
in terms of elementary functions from which the
numerical results can be further confirmed.
We have organized the paper as follows.

Section 2 presents a brief introduction to the origi-
nal MLC circuit and two-parameter phase diagrams
are constructed corresponding to experimental and
numerical results, so as to elucidate the dynamical
behavior of this circuit. In Sec. 3, we introduce the
experimental realization of a simple variant of the
MLC circuit and demonstrate experimentally sev-
eral bifurcations and chaos phenomena occurring in
the system. We also present an experimental phase
diagram in the drive amplitude–drive frequency
parameter plane using observed data from the
laboratory. Section 4 is devoted to the numerical
simulation studies of the variant MLC circuit and
the underlying chaotic dynamics and a correspond-
ing phase diagram is obtained. A brief mention of
the PSPICE simulation results is made in Sec. 5.
Next, in Sec. 6, a study of fixed points, their linear
stability and the explicit analytical solution of the
dynamical equations of the variant MLC circuit
are reported and the earlier results are confirmed.
Finally, in Sec. 7, we summarize our results and
indicate further directions.

2. Dynamics of the MLC Circuit

In order to appreciate the nature and importance
of the variant MLC circuit, we first describe briefly
the circuit realization of the original MLC cir-
cuit itself [Murali et al., 1994] and present two-
parameter phase diagrams (not presented in the
literature earlier) in order to bring out the dynami-
cal properties of this circuit. We will also make use
of this study to compare the dynamics of the pro-
posed variant of the MLC circuit in the following
sections.

2.1. Realization of the MLC
circuit and experimental
phase diagram

The MLC circuit is the simplest nonlinear dissipa-
tive nonautonomous electronic circuit consisting of
a forced series LCR circuit to which the Chua’s
diode, which is a nonlinear resistor, is connected
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Fig. 1. Circuit realization of the simplest nonautonomous
MLC circuit. HereN is the nonlinear resistor (Chua’s diode).

parallely. The circuit was originally introduced by
Murali, Lakshmanan and Chua (MLC) [1994]. The
circuit realization is given in Fig. 1. It is a classic
configuration of a forced negative resistance oscilla-

tor, where N denotes a voltage-controlled nonlinear
resistor described by the relation i = g(v), which in
this case is a Chua’s diode [Cruz & Chua, 1992].
Here C is the capacitor, R is a linear resistor, L is
an inductor while Rs is a current sensing resistor
and f(t)(= f sin Ωt) is the external periodic forc-
ing. Then the governing equations of this circuit for
the voltage v across the capacitor C and the current
iL through the inductor L are given by the follow-
ing set of two first-order coupled nonautonomous
differential equations:

C
dv

dt
= iL − g(v) , (1a)

L
diL
dt
= −RiL −RsiL − v + f sin(Ωt) . (1b)

Here the characteristic function g(v) is given by

g(v) = Gbv + 0.5(Ga −Gb)[|v +Bp| − |v −Bp|]

(1c)

Fig. 2. Experimentally measured two-parameter bifurcation diagram of the dynamical behavior of the MLC circuit of Fig. 1
in the (f−ν) plane. Different attractors are color-coded as follows: light yellow, period-1; magneta, period-2; yellow, period-4;
light green, period-8; blue, period-3 window; green, period-5 window; violet, period-6 window; red, chaos.
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The experimental design of the Chua’s diode is
well described by Kennedy [1992]. In Eqs. (1), f is
the amplitude and Ω is the angular frequency of the
external periodic signal.

Now the behavior of the above circuit depends
on five control parameters, namely the inductance
L, the capacitance C, the linear resistance R, the
amplitude f and the frequency ν(= Ω/2π) of the

Fig. 3. Period-doubling scenario in the MLC circuit of Fig. 1: Phase portraits in the (v − sin Ωt) plane, projected on the
oscilloscope for fixed values of the circuit elements chosen as C = 10 nf, L = 18 mH, R = 1340 Ω, Rs = 20 Ω and frequency
ν = 8.8 kHz for increasing amplitude, f : (a) period-1; f = 0.052 V, (b) period-2; f = 0.087 V, (c) period-4; f = 0.092 V,
(d) one-band chaos; f = 0.105 V, (ei) double-band chaos; f = 0.138 V, (eii) the strobed Poincaré map in the (v − iL) plane
of (i), (f) period-3 window; f = 0.25 V and (g) period-1 boundary; f = 0.55 V.



Classification of Bifurcations and Routes to Chaos 787

Fig. 3. (Continued )

Fig. 4. (i) Time series plot for a stable period-3 window for f = 0.117 V and ν = 5.689 kHz and (ii) the waveform v(t) for
type I intermittency near the period-3 window for f = 0.117 V and ν = 5.697 kHz.

external periodic signal, besides the parameters
associated with Chua’s diode (which we usually fix
at definite values). The values of the linear circuit
elements are fixed as R = 1340 Ω, Rs = 20 Ω,
L = 18 mH, C = 10 nf and the parameters of
the Chua’s diode are chosen as Ga = −0.76 mS,
Gb = −0.41 mS and Bp = 1.0 V. In their orig-
inal work, Murali et al. [1994] have studied the
dynamics of the circuit given by Eq. (1) by fixing
the frequency, ν(= Ω/2π), at 8.89 kHz and vary-
ing the amplitude f in the range (0.05 V, 0.7 V).
In our present experimental study, both the ampli-
tude f and the frequency ν(= Ω/2π) of the forc-
ing source are used as the control parameters. By
scanning both f and ν, one can identify various
attractors, starting from the d.c. equilibrium, then
Hopf bifurcation to a limit cycle, and then

period-doubling sequences to a spiral type chaotic
attractor, a double-scroll type attractor, periodic-
windows, and so on. In addition, a few other inter-
esting dynamical phenomena can also be identified
by a careful study through combined amplitude and
frequency scanning procedures.
Based on our detailed experimental observa-

tions of the voltage v across the capacitor C and
the current iL through the inductor L and the
associated transitions as the amplitude (f) and fre-
quency (ν) are varied, a profile of the attractors
in the form of a two-parameter bifurcation dia-
gram in the f–ν (drive amplitude–drive frequency)
parameter plane has been constructed as shown
in Fig. 2.
The chosen range for our experimental study

is limited to 0.05 V ≤ f ≤ 0.7 V and 2.4 kHz ≤
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ν ≤ 14.4 kHz. In Fig. 2 each colored region denotes
a particular type of steady state behavior: for ex-
ample, light yellow, period-1 attractor; magneta,
period-2 attractor; yellow, period-4 attractor; light
green, period-8 attractor; blue, period-3 window;
green, period-5 window; violet, period-6 window;
and red, chaotic attractor. Particularly, the stan-
dard period-doubling bifurcation sequence, inter-
mittency route to chaos and chaos-periodic window-
chaos type of transitions have been observed in
different regions of the drive amplitude and fre-
quency. For example, typical period-doubling bi-
furcation sequence occurs in the frequency range
ν = (8.30 kHz, 8.95 kHz) and amplitude range
f = (0.05 V, 0.15 V). More specifically, by in-
creasing the amplitude f from zero upwards, at
fixed frequency 8.8 kHz, the circuit in Fig. 1 is
found to exhibit a sequence of bifurcations. Start-
ing from d.c. equilibrium, the solution bifurcates
through a Hopf bifurcation to a limit cycle, and
then by period-doubling sequence to a spiral Chua’s
attractor, a double-scroll Chua’s chaotic attractor,
periodic-windows, boundary crisis, etc., as illus-

trated in Fig. 3 in terms of (v−sin Ωt) plots and the
corresponding Poincaré map in the (v − iL) plane
for double band chaotic attractor as observed in the
laboratory.
Further, the occurrence of type I intermittency

near a period-3 window is shown in Fig. 4. A por-
tion of the time dependence of the waveform v for
a period-3 window for the parameters f = 0.117 V
and ν = 5.689 kHz is shown in Fig. 4(i). With fur-
ther increase of frequency to ν = 5.697 kHz, one
finds that the periodic oscillations are interrupted
by intermittent voltage bursts as shown in Fig. 4(ii),
giving rise to type I intermittency route to chaos.
Finally, a series of appearance and disappear-

ance of chaos followed by periodic-windows exists in
the range ν = (4.7 kHz, 8.9 kHz) and f = (0.15 V,
0.32 V).

2.2. Computer confirmation

Rescaling Eq. (1) as v = xBp, iL = yGBp, G = 1/R,
ω = (ΩC/G) and t = τ C/G and then redefining
τ as t, the following set of normalized equations

Fig. 5. Computer generated phase diagram in the (F − ω) plane for the MLC circuit, Eqs. (2). Each colored region denotes
a particular type of steady-state behavior as in Fig. 2.
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Fig. 6. MLC circuit (numerical) (ai) Amplitude scanning: one-parameter bifurcation diagram in the (F − x) plane and
(ii) maximal Lyapunov exponent in the (F − λmax) plane. The value of the frequency has been fixed at ω = 0.72.
(bi) Frequency scanning: one-parameter bifurcation diagram in the (ω − x) plane and (ii) maximal Lyapunov exponent
in the (ω − λmax) plane. The value of the amplitude has been fixed at F = 0.063.

are obtained,

ẋ = y − g(x) , (2a)

ẏ = −βy − νβy − βx+ F sin(ωt),

(

· =
d

dt

)

(2b)

where

g(x) = bx+ 0.5(a − b)(|x+ 1| − |x− 1|) (2c)

and β = (C/LG2), ν = GRs, F = fβ/Bp, a =
Ga/G, and b = Gb/G.
The dynamics of (2) now depends on the pa-

rameters β, ν, a, b, ω and F . In the original simu-
lations, Murali et al. [1994] have used the rescaled

circuit parameters corresponding to the previous
experimental parameters at the values β = 1.0,
ν = 0.015, a = −1.02 and b = −0.55 and ana-
lyzed numerically the dynamics for increasing val-
ues of the driving amplitude F for fixed ω(= 0.75)
only. In this case the system has been found to ex-
hibit the familiar period-doubling bifurcation route
to chaos, followed by periodic windows, etc. as
already observed from the experimental circuit. In
order to compare the dynamics of the MLC circuit
with that of the variant circuit, we have now worked
out a two-parameter phase diagram (Fig. 5) in
the (F, ω) plane by numerically integrating Eq. (2)
using a fourth-order Runge–Kutta algorithm with
parameters β, ν, a and b fixed as above, while vary-
ing the drive amplitude F in the range 0.0 ≤ F
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Fig. 7. Antimonotonicity in the MLC circuit: (a) One parameter bifurcation diagram in the (F −x) plane showing an infinite
period bubble and chaotic structure at fixed frequency ω = 1.01, through forward and reverse period-doubling bifurcations.
(b) Bifurcation diagram in the (F − x) plane for band merging at ω = 0.975. The merging point is F = 0.195. (c) Bifurcation
diagram in the range 0.37 ≤ ω ≤ 0.44 of the parameter ω for a reverse period-3 bubble at fixed F = 0.075. (d) Bifurcation
diagram in the (F − x) plane showing a period-8 bubble for 0.205 ≤ F ≤ 0.265 at fixed ω = 0.998.

≤ 0.7 and frequency ω in the range 0.2 ≤ ω ≤
1.2. In this diagram, again each colored region
denotes a particular type of steady-state behav-
ior as in the case of Fig. 2. The transitions are
characterized by tracing the time evolutions, phase
portrait, Poincaré map, and Lyapunov exponents
[Murali et al., 1994]. Various dynamical phenomena
are traced out by two different scanning procedures:
(i) varying ω at a fixed F (frequency scanning) and
(ii) varying F at a fixed ω (amplitude scanning).
We also note that the phase diagram (Fig. 5) con-
structed from the present numerical analysis closely
resembles the one constructed from experimental
studies (Fig. 2), though Fig. 5 has much more finer
details due to obvious reasons.
To start with, in Fig. 5, we observe that for

F = 0 and ω = 0 the system asymptotically

approaches a stable fixed point (see Sec. 6 below).
Then for low F values and all ω values in the range
of study, a stable period T (= 2π/ω) limit cycle
occurs, which persists upto F = 0.047 and ω = 1.2
(see Fig. 5). By increasing both F and ω, we have
observed a series of appearance and disappearance
of periodic (phase-locking) and chaotic attractors in
the amplitude and frequency scanning. In particu-
lar, the following phenomena are found:

(i) The standard period-doubling bifurcation se-
quences and chaotic attractors have been observed
in the regions of lower drive amplitude (F ) and
certain regions of low and middle frequency (ω)
values. For example, at fixed frequency ω = 0.72
on increasing the amplitude F in the range F =
(0.05, 0.15) along the upward direction, chaos via
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Fig. 8. Type I intermittency in the MLC circuit: Poincaré plot for F = 0.117 and (i) ω = 0.48675 for a stable period-3
window, (ii) ω = 0.486748 and (iii) ω = 0.486746 for intermittent behavior.

period-doubling bifurcations occurs — see the phase
diagram (Fig. 5) and the one-parameter bifurca-
tion diagram [Fig. 6(ai)] in the F–x plane, which
clearly indicate the familiar period-doubling bifur-
cation sequence, chaos, windows, etc. In Fig. 6(aii)
the corresponding maximal Lyapunov exponent is
plotted as a function of F . Similarly, as an exam-
ple, by making an ω-scanning for fixed F = 0.063,
in the range ω = (0.4, 0.7), one can observe the
period-doubling route to chaos in the reverse sense
[Fig. 6b)].

(ii) Next, we come across the phenomenon of an-
timonotonicity (see e.g. [Lakshmanan & Murali,
1996]), wherein the periodic orbits can be created
as well destroyed via reverse bifurcation sequences
in different ways (see also Sec. 4.3.5 below). They
are as follows.

(a) Moving upward along ω = 1.01 in Fig. 5, one
can identify a sequence of periodic orbits 1, 2, 4,
8, etc., then a chaotic region with considerable fine
structure, followed by reverse period-doubled orbits
8, 4, 2, 1 in the region F = (0.07, 0.5) as shown in
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Fig. 9. MLC Circuit (numerical analysis): Phase portraits in the (x − sin ωt) plane of Eq. (2) for the parameters β = 1.0,
ν = 0.015, a = −1.02, b = −0.55 and ω = 0.72. (a) period-1; F = 0.059, (b) period-2; F = 0.075, (c) period-4; F = 0.082,
(d) one-band chaos; F = 0.098, (e) double-band chaos; F = 0.128, (f) Poincaré map in the (x− y) plane of (e), (g) period-3
window; F = 0.28, and (h) period-1 boundary; F = 0.56.

Fig. 7(a), having an infinite period bubble struc-
ture. Considering a higher value of ω, during F
scanning [F = (0.07, 0.5)], one comes across various
finite period-m bubbles. For example at ω = 1.025,
a period-8 bubble, at ω = 1.05, a period-4 bubble
and at ω = 1.1, a primary period-2 bubble occur.

(b) It is known that two or more chaotic band
attractors of a system with symmetries can merge
to form a single chaotic band attractor as the con-
trol parameter ω is varied through a critical value.
This phenomenon is called band merging crisis [Ott,
1993]. In this case, the new chaotic band attractor
can be larger in size than the union of the chaotic
attractors before the period-doubling. Such band
merging attractors also exist in the present case as
well. For example, at fixed frequency ω = 0.975,
as the amplitude F is increased in the range F =

(0.1, 0.55), we observe merging of chaotic regions,
between the forward and reverse period-doubling
sequences [Fig. 7(b)].

(c) In addition, we come across reverse period-m
bubbles also in the present system, both during ω
scanning and F scanning. For example, as ω is in-
creased in the range ω = (0.37, 0.44), at the fixed
amplitude F = 0.075, chaotic behavior is followed
by a complete sequence of reverse period-doubling
cascades of period-3 oribit; then a complete period-
doubling sequence of period-3 orbit is followed by
chaotic oscillations. The pattern may be called a
reverse period-3 bubble — see Fig. 7(c). In additon,
period-m bubbles also occur between two chaotic
regions in this circuit. For example, as F is in-
creased in the range F = (0.205, 0.265), at the
fixed frequency ω = 0.998, a tangent bifurcation of
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periodic orbit with period-8 is followed by a
complete sequence of period-doubling bifurcations;
then, after an interval with chaotic behavior, there
is a reverse period-doubling sequence, ending in a
periodic orbit with period-8 which then again un-
dergoes a tangent bifurcation to chaos. This pattern
obviously corresponds to a period-8 bubble — see
Fig. 7(d).

(iii) Finally, we have also confirmed the existence
of type I intermittency route as in the case of
experimental observations. At fixed amplitude,
F = 0.117, and with a decrease of frequency in the
range ω = (0.48675, 0.486746), one observes type I
intermittency as shown in Fig. 8. At ω = 0.48675,
the system has a period-3T attractor. The corre-
sponding Poincare points in the state x are shown
in Fig. 8(i). As ω is gradually decreased, finite
intervals of regular oscillations are interupted by in-
termittent bursts of irregular oscillations Fig. 8(ii).
The bursts are more prominent in Fig. 8(iii), with
the duration of regular oscillations decreasing in size
and the bursts becoming more frequent. Finally, at
ω = 0.48674 a fully chaotic state is attained. The
average laminar length (〈l〉) of this type of intermit-
tency is found to comply with the law (〈l〉) ∼ ε−α,
with α = 0.473, where ε = (ωc − ω) and ωc is the
bifurcation threshold.

Finally, in order to compare the experimen-
tal results with the numerical analysis explicitly,
we present in Fig. 9 the counterparts of the at-
tractors obtained experimentally in Fig. 3. In the
(x − sin ωt) plane, these are obtained numerically
by increasing the frequency (F ) from zero upwards
at the fixed frequency ω = 0.72.

3. A Variant of the MLC Circuit
and Its Dynamics: Experimental
Study

The simplest dissipative nonautonomous nonlinear
circuit discussed in the previous section admits
a number of interesting bifurcations and chaotic
behavior in the parameter regions considered.
However, the phase diagram does not contain other
interesting attractors such as the quasiperiodic
(torus) attractor and bifurcation routes like period-
adding sequences, Farey sequences, torus break-
down, etc. at least for the parameteric choices we

have made and in the region of the phase diagrams
considered. It will be valuable to identify and to
construct a very simple nonlinear electronic circuit
which admits as many interesting attractors and bi-
furcations as possible for chosen parameteric values
and in the region of interest in the control parame-
ters. We now present such a circuit which is nothing
but a simple variant of the MLC circuit presented
earlier.

3.1. Circuit realization of the
variant of MLC circuit

The present set up consists of a forced parallel LCR
circuit, instead of the series LCR circuit considered
in the earlier section, to which the Chua’s diode
is again connected parallely. The circuit realiza-
tion of the proposed simple nonautonomous circuit
is shown in Fig. 10. It again consists1 of a capac-
itor (C), an inductor (L), a resistor (R), an ex-
ternal periodic-forcing voltage source and only one
nonlinear element (N), namely, the Chua’s diode
(discussed in the previous section). The result-
ing circuit can be considered as another important
and very simple dissipative second-order nonau-
tonomous nonlinear circuit. By applying the Kirch-
hoff’s laws to this circuit (Fig. 10), the governing
equations for the voltage v across the capacitor C
and the current iL through the inductor L are repre-
sented by the following set of two first-order coupled
nonautonomous differential equations,

C
dv

dt
=
1

R
(f sin(Ωt)− v)− iL − g(v) , (3a)

L
diL
dt
= v , (3b)

where g(·) is the piecewise-linear function given by
Eq. (1c) representing the Chua’s diode as discussed
under Eq. (1). In Eq. (3), as before, f is the ampli-
tude and Ω is the angular frequency of the external
periodic signal.
We have performed our experimental study by

fixing the three parameters L, C and R as in Fig. 10
at L = 445 mH, C = 10.15 nf, R = 1475 Ω and
varying the driving amplitude (f) and frequency
(ν) = Ω/2π of the external periodic signal which are
used as the control parameters. The parameters of

1Note that we have not included a current sensing resistor, Rs, here as all our studies in the following is made in the (v−sin Ωt)
plane; if needed, it can always be included.
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Fig. 10. Circuit realization of the variant of the MLC circuit
(N: Chua’s diode).

the Chua’s diode are also fixed here at the same
values as in the case of Eq. (1). We vary the am-
plitude f in the range (0.15 V ≤ f ≤ 0.5 V) and
the frequency (ν) in the range (0.95 kHz ≤ ν ≤
1.65 kHz).

We begin our experimental study of the cir-
cuit in Fig. 10 by choosing the driving amplitude
at f = 0 and frequency ν = 0 (corresponding to the
autonomous case), where now a limit cycle attrac-
tor is observed, in contrast to the case of Eq. (1),
where only a stable fixed point exists for the cho-
sen parametric values. By increasing the control
parameters from zero upwards, the circuit behav-
ior of Fig. 10 is found to transit from a limit cycle
attractor to a quasiperiodic (torus) attractor which
then transits to chaos via torus breakdown, followed
by periodic windows, period-adding, Farey and
period-doubling sequences, boundary crisis, etc.
These results are summarized in the constructed
phase diagram (Fig. 11) in the (f -ν) plane.

3.2. Bifurcation diagram in the
(f, ν) plane

In Fig. 11, again each colored region denotes a par-
ticular type of steady-state behavior as in the case

Fig. 11. Experimental phase diagram of the dynamical behavior of the circuit of Fig. 10 in the (f − ν) plane. Each colored
region denotes a particular type of steady-state behavior as in Figs. 2 and 5. Additionally, gray color denotes quasiperiodic
attractor. Numbers indicate the periods of windows.
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of Figs. 2 and 5. Additionally, gray color cor-
responds to quasiperiodic orbits and some other
periodic windows are indicated by the correspond-
ing periods. Specifically from our experimental
studies we have observed the following properties:
(a) quasiperiodic (torus) route and torus breakdown
to chaos (b) period-adding scenario (c) period-
doubling bifurcations and (d) intermittency route
to chaos, when both the driving amplitude (f) and
frequency (ν) of external periodic signal are varied,
as discussed below.

3.2.1. Quasiperiodic and torus breakdown
to chaos

Quasiperiodic attractors have been observed in
several nonlinear dynamical systems and circuits
[Kaneko, 1986; Matsumoto et al., 1987; Thompson
& Stewart, 1988; Inaba & Mori, 1991; Murali &
Lakshmanan, 1992]. Generally, if the ratio of the
two frequencies (driving frequency and circuit signal
frequency) are irrational then the circuit can exhibit
quasiperiodic motion. Such a behavior has been ob-
served in the present variant MLC circuit (Fig. 10)
for all values of ν in the range of study (Fig. 11),
while confining the driving amplitude (f) to the
range f = (0.15 V, 0.225 V). Figure 12(a) shows the
time series plot of the limit cycle for f = 0, while
Fig. 12(bi) shows a typical quasiperiodic attractor
for f = 0.22 V and ν = 1.116 kHz in the (v−sin Ωt)
plane whose orbit in the associated Poincaré map is
a closed curve [see Fig. 12(bii)]. Beyond the above
mentioned region, we have observed a series of ap-
pearance and disappearance of the quasiperiodic
(torus) and periodic (phase-locked) attractors al-
ternately while varying both the amplitude f and
frequency ν of the external periodic signal, as seen
in the phase diagram, Fig. 11. Except for the diag-
onal island structure with dentritic fine structures,
the parametric space is occupied by quasiperiodic
orbits below the island and period 1T orbit above
the island. The island and the dentrites themselves
are associated with very many bifurcation phe-
nomena, including period-doubling, period-adding
and Farey sequences, and chaos, as described
below.
Besides, in our experiments, we have also

observed the breaking up of the quasiperiodic mo-
tion leading to chaos, followed by periodic windows
both during driving amplitude (f) scanning and
frequency (ν) scanning. For example, we have
observed this behavior at fixed f = 0.385 V on in-

creasing the frequency, ν, in the range (1.025 kHz,
1.09 kHz) along the horizontal direction. Similarly,
at fixed ν = 1.36 kHz an increase in the amplitude
in the range (0.26 V, 0.33 V) along the upward
direction leads to a torus breakdown and then to
chaos for f ≥ 0.268 V, finally ending up in period-1
orbit.

3.2.2. Period-adding and Farey sequences

Next, we observe the phenomenon of period-adding
sequences as in the case of some negative resis-
tance oscillators [Chua et al., 1986; Kaneko, 1986;
Kennedy et al., 1989]. As noted above, at the lower
end of the island structure in Fig. 11, windows of
consecutive periods are separated by quasiperiodic
attractors such that for a fixed f we obtain a sta-
ble period-n attractor (n = 1, 2, 3, . . .) followed
by a quasiperiodic attractor, and then a stable
period-(n+1) orbit and so on. During experiments
with the present circuit, we observed many period-
adding sequences of periodic windows of consecu-
tively increasing periods. In particular, a period-
adding sequence exists for higher drive amplitudes,
f = (0.35 V, 0.375 V), and lower frequency val-
ues, ν = (1.025 kHz, 1.15 kHz). If we look at
Fig. 11, a succession of periodic windows, whose
periods increase exactly by one, appears when the
external frequency is decreased along the horizon-
tal direction at fixed amplitude. For example, at
fixed f = (0.37 V) we have observed the peri-
odic windows of all orders starting from period-3 to
period-9 as the frequency is decreased in the range
ν = (1.03 kHz, 1.1 kHz) along the horizontal di-
rection. The transition from one periodic window
to another is initiated by a quasiperiodic oscillation
followed by a recovery to the next periodic state
and so on as shown in Fig. 11.
In addition, we have found that the periods

of some of the windows at the lower half of the
island satisfy the Farey sequence [Kaneko, 1986;
Murali & Lakshmanan, 1991] in the quasiperiodic
regions. For instance, we find that in the quasiperi-
odic region in Fig. 11, when f = (0.28 V, 0.3 V)
and ν = (1.15 kHz, 1.26 kHz), between 3T and 2T
windows there is a 5T (= 3 + 2) window; and in
the region f = (0.25 V, 0.27 V), ν = (1.35 kHz,
1.41 kHz), between 5T and 3T windows there is a
8T (= 5 + 3) window. One can observe a few other
such sequences with some effort in the dentritic
region.



796 K. Thamilmaran & M. Lakshmanan

Fig. 12. MLC variant circuit (experimental): (a) Time series plot for voltage v(t) of the limit cycle for f = 0.
(b)–(g) Experimentally observed (i) phase portraits in the (v− sin(Ωt)) plane and (ii) Poincaré maps in the (v− iL) plane: —
(b) quasiperiodic attractor, f = 0.22 V, (c) period-3 window, f = 0.39 V, (d) chaos, f = 0.398 V (e) period-4, f = 0.405 V,
(f) period-2, f = 0.415 V and (g) period-1, f = 0.421 V. The circuit parameters have been chosen as C = 10.15 nf, L = 445 mH,
R = 1475 Ω and ν = 1.116 kHz.
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Fig. 12. (Continued )

3.2.3. Period-doubling scenario

Next, we have observed the ubiquitous period-
doubling and also period-halving or reverse period-
doubling bifurcations in different regions of the
(f−ν) plane. During the f scanning, when the am-
plitude f is increased from below (for lower values
of frequency ν), the system (3) exhibits quasiperi-
odic motion upto 0.35 V and beyond 0.35 V
(particularly beyond 0.38 V) the system exhibits
a cascade of period-doubling (reverse) bifurcations
of Feigenbaum type in the low frequency range
ν = (1.08 kHz, 1.12 kHz) (see Fig. 11). Simi-
larly during frequency scanning, for example, at
f = 0.4 V, the period-doubling phenomenon

occurs in between the two regular periodic motions
in the frequency range ν = (1.06 kHz, 1.15 kHz)
along the horizontal direction. Figure 12 shows
several of the observed attractors as discussed above
with respect to the phase diagram (Fig. 11), pro-
jected onto the (v − sin Ωt) plane along with the
Poincaré map of attractors in the order of increas-
ing amplitude f at fixed frequency ν = (1.116 kHz).
To start with for f = 0, a period-1 limit cycle
[Fig. 12(a)] is observed. As already mentioned at
f = 0.22 V, we obtain a quasiperiodic (torus)
attractor [Fig. 12(b)]. Then at f = 0.391 V, we
have a period-3 window [Fig. 12(c)]. If we in-
crease the amplitude f further to f = 0.398 V,
we observe a chaotic attractor [Fig. 12(d)]. On
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further increasing f , we encounter a reverse period-
doubling sequence: a stable period-4 limit cycle for
f = 0.405 V [Fig. 12(e)], a stable period-2 limit
cycle for f = 0.415 V [Fig. 12(f)], and a period-1
limit cycle for f = 0.421 V [Fig. 12(g)]. Beyond
the period-doubling scenario, boundary crisis is
observed for higher driving amplitudes (Fig. 11).

3.2.4. Intermittency route to chaos

The phenomenon of intermittency, often ob-
served experimentally [Manneville & Pomeau,
1980; Schuster, 1988], is characterized by regular
(laminar) phases alternating with irregular bursts.

In the present circuit, starting from a fixed
amplitude f = 0.32 V for the frequency in the
range ν = (1.176 kHz, 1.182 kHz), one finds that a
stable period-3 limit cycle disappears through a
tangent bifurcation, leading to chaos. However,
a section of the period-3 cycle still remains, and
the trajectory behaves for most of the time as if it
was approaching a period-3 limit cycle, and inter-
mittent behavior is observed when the frequency,
ν, is decreased. This is referred to as intermit-
tency of type I. In Fig. 13(ai) the waveform v(t)
of a stable period-3 limit cycle for ν = 1.181 kHz
and in Fig. 13(aii) the waveform v(t) of a type I

Fig. 13. (a) Type I intermittency near a period-3 window for f = 0.32 V: (i) the waveform v(t) for a period-3 limit cycle
for ν = 1.181 kHz (ii) the waveform v(t) for an intermittent behavior for ν = 1.175 kHz. (b) Type III intermittency near the
boundary crisis regime for f = 0.41 V and (i) for ν = 1.101 kHz, the waveform v(t) for a period-3 limit cycle and (ii) for
ν = 0.989 kHz, intermittent behavior.
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intermittency for ν = 1.175 kHz, with fixed ampli-
tude f = 0.32 V, are shown.
Finally, we have observed type III intermit-

tency route also near the period-doubling bifurca-
tion region beyond the quasiperiodic regime. One
such intermittent motion is shown in Fig. 13(b), for
a fixed amplitude, f = 0.41 V, for two values of
frequency, (i) ν = 1.101 kHz and (ii) ν = 989 Hz,
showing a transition from period-3 orbit to inter-
mittent behavior, where chaotic bursts appear at
a particular subharmonic amplitude together with
a decrease (or increase) of the fundamental ampli-
tude. Immediately after this there is a reappear-
ance of the regular (laminar) behavior. This is the
characteristic of type III intermittency.

4. Numerical Analysis of the
Variant MLC Circuit

4.1. Computer confirmation

For computer simulation study, we normalize the
state equations of the variant of the MLC circuit
given in Eq. (3) as in the case of the MLC circuit
by appropriate rescaling, v = xBp, iL = yGBp,
ω = ΩC/G, G = 1/R and t = τ C/G and then
redefining τ as t. Consequently, the following set of
normalized equations are obtained,

ẋ = F sin(ωt)− x− y − g(x) , (4a)

ẏ = βx,

(

· =
d

dt

)

(4b)

where β = C/LG2, F = f/Bp. Obviously g(x) is
the same piecewise-linear function given in Eq. (2c),
namely

g(x) =















bx+ (a− b), x ≥ 1

ax, |x| ≤ 1

bx− (a− b), x ≤ −1

(4c)

Here a = Ga/G, b = Gb/G. Note that the set of
two coupled first-order ordinary differential equa-
tions given by Eq. (4) can also be written as a single
second-order differential equation of the Lienard’s
type in the form

ÿ + ẏ + βg(ẏ/β) + βy = βF sin(ωt) . (5)

We note at this point that chaos via torus break-
down generated in a piecewise-linear forced van
der Pol equation of the form(5) with asymmetric

nonlinearity has been studied by Inaba and Mori
[1991, 1992] sometime ago. However the corre-
sponding circuit uses more nonlinear elements than
the present circuit.
Now the dynamics of Eq. (4) or equivalently

(5) depends on the parameters a, b, β, F , and ω.
Then for the chosen experimental circuit parame-
ter values as given in Sec. 3, we have β = 0.05,
a = −1.121, and b = −0.6047. Once again we con-
sider the dynamics in the (F − ω) plane either by
integrating Eq. (4) or by solving Eq. (5) analytically
(see Sec. 4) and numerically.

4.2. Phase diagram for the MLC
variant circuit in the (F − ω)
plane

In this subsection we will concentrate on a detailed
numerical study of Eq. (4) or (5) and confirma-
tion of the experimental results of the variant MLC
circuit discussed in Sec. 3. Figure 14 shows the
resulting phase diagram in the (F − ω) plane with
fixed values of β, a and b. The diagram covers
the transitions in the region of the external forc-
ing frequency, 0.09 ≤ ω ≤ 0.16, and the forcing
amplitude, 0.15 ≤ F ≤ 0.5. In this phase diagram
also again each colored region denotes a particular
type of steady-state behavior, identical to Figs. 2,
5 and 11. Other periodic windows are indicated by
the corresponding number (such as 5T , 6T , etc.).
One may note that the numerical results are not
only in confirmity with the experimental results
contained in Fig. 11 but they also correspond to
much intricate details.
One observes that Eq. (4) admits a free-running

solution when the external periodic signal is absent
(corresponding to the autonomous case), see Sec. 5.
When it is present and for low F values and all ω
values in the range of study, the frequency of the
system becomes incommensurate with the external
frequency. Consequently, the system exhibits two
frequency quasiperiodic oscillations in the lower tri-
angular part of the phase diagram, Fig. 14, below
the island structure, which extends all the way upto
ω = 0.16 for low F values. Within the dentritic
and island structures, we have observed a series of
appearance and disappearance of quasiperiodic,
periodic and chaotic attractors involving several
interesting bifurcations during the amplitude and
frequency scannings. Above the island, in the upper
triangular part, we have mostly period-1 attractors.
The details are as follows.
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4.3. Classification of bifurcations
and different type of route
to chaos

From the dynamical theory point of view, the
phase diagram (Fig. 14) represents several types
of bifurcations and routes to chaos: quasiperi-
odic (torus) route and torus breakdown to chaos,
period-adding sequences, Farey sequences, stan-
dard period-doubling bifurcations and intermittent
routes to chaos, reverse bifurcations, antimono-
tonicity including remerging Feigenbaum trees and
band mergings, to name a few, which we have en-
countered in our study. These are discussed in the
following subsections with the help of suitable one-
parameter bifurcation diagrams for either F or ω
scanning along with maximal Lyapunov exponents
and phase portraits in the (x− sin ωt) plane.

4.3.1. Quasiperiodic and torus
breakdown to chaos

As was observed in our experimental study, there

exists a large portion of the phase space in its lower
triangular part where quasiperiodic orbits dominate
below the diagonal island with its fine dentrite-
like structures corresponding to phase-locked os-
cillations. A typical large region of quasiperiodic
oscillations occurs for amplitude range F = (0.15,
0.185) and frequency range ω = (0.09, 0.16), just
below the diagonal island structure. Slightly above
this range of F , for example at F = 0.225, one
observes a large region of quasiperiodicity inter-
rupted by different phase-locked states before the
onset of chaos and then transition to period-1 or-
bit, during the ω-scanning. This is depicted in
Figs. 15(a) and 15(b). Note the extremely rich
fine structure before the onset of chaos and tran-
sition to period-1 orbit [Fig. 15(a)]. Similarly at
fixed frequency, ω = 0.145, as the amplitude F in-
creases (F ≥ 0.15) along the upward direction in the
amplitude scanning, the quasiperiodic oscillation
breaks up and chaotic attractor is obtained at F ≥
0.234 as shown in Fig. 15(b), before period-1 orbit
sets in.

Fig. 14. Computer generated phase diagram in the (F −ω) plane for the MLC variant circuit, Eqs. (4). Each colored region
denotes a particular type of steady-state behavior as in Figs. 2, 5 and 11.
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Fig. 15. The transition from quasiperiodic attractor to chaos: (ai) Frequency scanning in Fig. 14 — one-parameter bifurcation
diagram in the (ω − x) plane for fixed F = 0.225 and (aii) maximal Lyapunov exponent of (i). (bi) Amplitude scanning in
Fig. 14 — one-parameter bifurcation diagram in the (F − x) plane for fixed ω = 0.145 and (bii) maximal Lyapunov exponent
of (i).

4.3.2. Period-adding sequences

Corroborating our experimental study of the
present circuit, our numerical analysis confirms
the phenomenon of period-adding sequences, where
windows of consecutive periods are separated by
regions of quasiperiodicity, particularly in the
dentritic regions and during torus breakdown to
chaos. In other words, for a fixed value of F , we
obtain a stable period-n orbit, n = 1, 2, 3, . . . ,
followed by a region of quasiperiodicity (torus),
then a stable period −(n + 1) orbit and so on. In
the computer generated phase diagram, we have
identified a large sequence of periodic windows of
several different orders, starting from period-3 to
period-9 in the middle amplitude and low frequency
region in Fig. 14. For example, at higher drive
amplitude F = 0.352 and narrow lower frequency
range ω = (0.101, 0.1095), we have observed win-

dows of periods 3, 4, 5, 6, 7, 8, 9 with intervening
quasiperiodic and other orbits as ω decreases along
the horizontal direction [see Fig. 16(a)]. Here, the
transition from one quasiperiodic state to another is
initiated by a period-adding bifurcation followed by
recovery to the next periodic state and so on before
entering into the chaotic region. We have identified
many other period-adding sequences during both F
and ω scannings.

4.3.3. Farey sequences

Within the period-adding sequences, if we look at
Fig. 16(a) carefully, we also find that periods of
some of the windows satisfy the familiar Farey
sequence: For example, between period-6 and
period-5 windows there exists a period-11 (= 6+5)
window in the region ω = (0.104, 0.105) and be-
tween period-9 and period-4 windows there is a
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Fig. 16. Bifurcation diagram for frequency scanning in the (ω − x) plane illustrating period-adding sequences at fixed
(a) F = 0.352 and Farey sequences, (b) F = 0.23, (c) F = 0.265, and (d) F = 0.28.

period-13 (= 9+4) window in the region ω = (0.106,
0.1075), and between period-4 and period-7 window
there is a period-11 (= 4 + 7) window in the region
ω = (0.1075, 0.1085) and so on.
In addition to the above, there are several other

prominent regions exhibiting Farey sequences in the
phase diagram, Fig. 14. Some of them are listed
below.

(i) As the forcing parameter ω increases in the range
ω = (0.11, 0.145) and at different fixed ampli-
tude (F ) values, there are several situations where
we find that in between period −(n) window and
−(n+1) window, there is a phase-locked window of
period (2n + 1). In the phase diagram, Fig. 14, in
the region F = (0.23, 0.24), and ω = (0.13, 0.145),
between 3T and 4T window regimes, there is a 7T
window (= 3 + 4). On a finer scale, as may be
seen from the one-parameter bifurcation diagram
in Fig. 16(b) for a fixed F = 0.23, between 3T and
4T there is a 7T (= 3+ 4) window, between 4T and

5T there is a 9T (= 4 + 5) window and between
5T and 6T there is a 11T (= 5 + 6) periodic orbit.
Also, a period 13T window (= 6+7) appears before
the chaos region between 6T and 7T windows [see
Fig. 16(b)].

(ii) Further at the amplitude F = 0.265 within the
narrow frequency range ω = (0.130, 0.135) in the
quasiperiodic region between 5T and 3T windows,
there is a 8T window (= 5+3) and between 8T and
3T there is a 11T window (= 8+3) [see Fig. 16(c)],
and so on.

(iii) Also, at F = 0.28 within the frequency region
ω = (0.11, 0.13) in between 3T and 2T window re-
gions there is a 5T window (= 3+2) and on a finer
scale between the 3T and 5T window regions, there
is an 8T window (= 3+5) and so on [see Fig. 16(d)].

4.3.4. Period-doubling and reverse
period-doubling bifurcations

Besides the cascade of period-adding and Farey
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sequences, the standard period-doubling bifurca-
tion sequences and chaotic attractors followed
by periodic windows have been observed in the
regions of higher drive amplitude (F ) and certain
regions of low frequency (ω) values. For example,
at fixed frequency ω = 0.105 on decreasing the
amplitude F in the range F = (0.4, 0.43) along
the downward direction in the amplitude scan-
ning, period-doubling bifurcations via chaos occur
— see the phase diagram (Fig. 14). Figure 17(ai)
shows the one-parameter bifurcation diagram in
the F − x plane, which clearly indicates the fa-
miliar period-doubling bifurcation sequence, chaos,
windows, etc. as F is decreased. In Fig. 17(aii)
the corresponding maximal Lyapunov exponent is
plotted. Similarly, as an example, by making an
ω-scanning for fixed F = 0.388, in the range

ω = (0.105, 0.106), one can observe the period-
doubling route to chaos [Fig. 17(b)] as ω is
increased.
In addition, beyond the period-doubling cas-

cades, we observe reverse period-doubling bifurca-
tions at higher drive amplitude, F , and at lower
frequency, ω, upon increasing or decreasing F
and ω values as the case may be (see the phase
diagram (Fig. 14)). For example at fixed ampli-
tude F =0.395, on increasing the frequency ω in
the range ω = (0.104, 0.1105) along the horizon-
tal direction [Fig. 17(c)] and at fixed frequency
ω = 0.1043, on increasing the amplitude, F in the
range F = (0.388, 0.43) along the vertical direc-
tion [Fig. 17(d)] one can identify period-doubling
sequences leading to chaos, window, chaos, and then
reverse period-doubled orbits.

Fig. 17. Period-doubling bifurcations: (ai) one-parameter bifurcation diagram in the (F − x) plane and (aii) maximal
Lyapunov exponent in the (F − λmax) plane. The value of frequency has been fixed at ω = 0.105 in the amplitude scan-
ning. (bi) One-parameter bifurcation diagram in the (ω − x) plane and (bii) maximal Lyapunov exponent in the (ω − λmax)
plane. The value of frequency has been fixed at F = 0.388 in the frequency scanning. Combined period-doubling and reverse
period-doubling phenomenon: (ci) one-parameter bifurcation diagram — frequency scanning in the (ω − x) plane for fixed
F = 0.395 and (aii) maximal Lyapunov exponent of (i). (di) Amplitude scanning in the (F − x) plane for fixed ω = 0.1043
and (dii) maximal Lyapunov exponent of (i).
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Fig. 17. (Continued )

In the earlier section, we have displayed typi-
cal phase portraits of some of the basic attractors
obtained through period-doubling bifurcations and
quasiperiodicity [Fig. 12]. Figure 18 is the coun-
terpart of Fig. 12 by computer generated phase
portrait in the (x − sin ωt) plane along with the
corresponding Poincaré maps. We have also calcu-
lated the Lyapunov exponents for various values of
F to confirm the nature of the attractors.

4.3.5. Remerging Feigenbaum trees, bubbling,
band merging and antimonotonicity

As pointed out in Sec. 2, finite period-doubling
sequences [Bier & Bountis, 1984; Kypriandis et al.,
2000] “merging” as it were with inversely ad-
vancing ones can arise to form a finite number
of “bubbles” on some cross-sections of the full
parameter space, leading to the property of anti-
monotonicity. An important consequence of such a

remerging is that low-order periodic orbits become
again stable and relatively large regions reappear
around them, where the motion is regular and pre-
dictable [Bier & Bountis, 1984]. Such remerging
period-doubling sequences (or Feigenbaum trees)
commonly arise in some of the simplest nonlinear
dynamical systems involving the variation of more
than one parameter. In the present study, we find
that remerging Feigenbaum trees exist at higher
drive amplitude and low frequency values in the
ranges F = (0.4, 0.43) and ω = (0.1, 0.107) in the
parameteric space. For example, for F = 0.425 in
the frequency range ω = (0.1, 0.106) a period-2 bub-
ble is present [Fig. 19(a)] and the branch develops
a stable period-4 bubble at F = 0.422 [Fig. 19(b)].
On the other hand at F = 0.4205 in the same fre-
quency range, we have period-8 bubble [Fig. 19(c)].
Similarly at F = 0.42033, we have a period-16 bub-
ble [Fig. 19(d)]. As F is decreased further, more
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bubbles are created until an infinitely branched tree
(like chaos) finally appears at F = 0.4198 as in
Fig. 19(e).
Interestingly, as the frequency ω is increased

in the range ω = (0.101, 0.107) [Figs. 19(f)–19(i)]
we also observe that the two bands of the chaotic
attractor merge into a single band when the ampli-
tude, F , is gradually decreased beyond F = 0.4198.
In Fig. 20(a), we can see that for fixed F = 0.413
when ω is increased through ω = 0.10328, chaotic
bands start to merge into a larger one.

Another interesting example of antimonotonic-
ity has been observed by looking at the phase
diagram at the fixed amplitude F = 0.4085 and
varying the frequency in the range ω = (0.1035,
0.1055). Here a tangent bifurcation of the peri-
odic orbit with period-5 is followed by a complete
sequence of period-doubling bifurcations; then
after an interval with chaotic behavior, there is a re-
verse period-doubling sequence, ending in a periodic
orbit with period-5 which ultimately undergoes
another tangent bifurcation to chaos. This pattern

Fig. 18. Computer generated (i) phase portraits in the (x− sin ωt) plane of Eq. (4) and (ii) Poincaré map plots in the (x−y)
plane corresponding to the parameters β = 0.05, ω = 0.105, a = −1.121 and b = −0.6047. (a) F = 0.25, quasiperiodic motion
(b) F = 0.394, period-3 window (c) F = 0.400, chaotic attractor (d) F = 0.415, period-4 limit cycle (e) F = 0.417, period-2
limit cycle (f) F = 0.431, period-1 limit cycle.
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Fig. 18. (Continued )

is obviously a period-5 bubble and it is shown in
Fig. 20(b).

4.3.6. Intermittency routes to chaos

We have observed that the system (4) or (5) also
admits the intermittency routes to chaos for suit-
able ranges of parameters, as expected from experi-
mental results. For example, we have observed that
for F = 0.32 and ω in the range ω = (0.11125,
0.11128) type I intermittency occurs through a
transition from period-3 window to chaos via in-
termittency (type I) across the saddle-node bound-
ary (ω = 0.11125). The intermittency signature is

shown in Fig. 21(a), where the periodic oscillations
are interrupted by intermittent amplitude bursts in
the range ω = (0.11125, 0.11128) as ω is decreased.
With further decrease in the frequency ω, the
system gives birth to fully developed chaos. The
average laminar length (〈l〉) during this transition
is found to comply with the law (〈l〉) ∼ ε−α, with
α = 0.6, where ε = (ωc−ω) and ωc is the bifurcation
threshold.
In addition, we have also confirmed the ex-

istence of type III intermittency in this sys-
tem when subcritical period-doubling bifurcation
occurs. In the present case, at fixed amplitude, F ,
the transition from period-8 attractor to period-4
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Fig. 19. Bifurcation diagram for frequency scanning in the (ω − x) plane for remerging Feigenbaum tree (bubbling) (a) The
primary bubble at F = 0.425, (b) period-4 bubble at F = 0.422, (c) period-8 bubble at F = 0.4205, (d) period-16 bubble at
F = 0.42033 (e) infinite period bubble at F = 0.4198 and full Feigenbaum remerging tree at (f) F = 0.4185, (g) F = 0.4175,
(h) F = 0.4165 and (i) F = 0.4155.

Fig. 20. Bifurcation diagram in the (ω−x) plane corresponding (a) band merging at fixed F = 0.413 and ω = (0.1055, 0.107),
(b) period-5 bubble at fixed F = 0.4085 and ω = (0.1035, 0.1055).
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(a)

(b)

Fig. 21. (a) Signature of type I intermittency: Poincaré plot for F = 0.32 and (i) ω = 0.11128, and (ii) ω = 0.11125.
(b) Signature of type III intermittency: Poincaré plot for F = 0.414 and (i) ω = 0.104825 and (ii) ω = 0.10482.
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attractor occurs through subcritical period-halving
bifurcation when the frequency, ω, decreases in the
range ω = (0.1052, 0.10482). The predominant
signature in this transition is emerging through
intermittency. One such intermittency motion is
shown in Fig. 21(b) which are the Poincaré plots
for F = 0.414 and ω = 0.104825 [Fig. 21(bi)]
and ω = 0.10482 [Fig. 21(bii)]. To confirm fur-
ther whether the intermittency nature is of type
III, we have calculated the average length (〈l〉)
of the laminar phase of this intermittency which
complies with the following scaling law predicted
by Pomeau and Manneville: 〈l〉 ∼ (1/ε)β , with
β = 0.93 where ε = ωc−ω and ωc is the bifurcation
threshold.

4.3.7. Neimark bifurcations

When the value of the external periodic signal F
exceeds a certain critical value during the ampli-
tude scanning for fixed low values of ω, in the region
ω = (0.09, 0.1), a transition from periodic motion to
quasiperiodic occurs essentially due to supercritical

Neimark bifurcation [Venkatesan & Lakshmanan,
1997] when F is decreased. This phenomenon also
occurs in the region of ω exceeding the value 0.1545
for low values of F (F < 0.215).

5. SPICE Simulation

In recent years, circuit simulations such as SPICE
[Roberts & Sedra, 1997] have been used for the sim-
ulation of the dynamics of nonlinear circuits. We
have simulated the behavior of the MLC and vari-
ant MLC circuits for specific circuit parameters.
In Fig. 22, we have presented the chaotic attrac-
tors evaluated through PSPICE corresponding to
f = 0.138 V in Fig. 3(ei) of the MLC circuit and
f = 0.398 V in Fig. 12(di) of the MLC variant
experimental circuit. The corresponding numeri-
cal simulation for amplitude F = 0.128 in Eq. (2)
and F = 0.4 V in Eq. (4) have already been given
in Figs. 9(e) and 18(ci), respectively. Similarly we
have verified the dynamical behavior for several
other values of ν and f of the MLC and variant
MLC circuits given in Figs. 1 and 10.

Fig. 22. PSPICE simulation for confirmation of the chaotic attractor (a) the MLC circuit given in Figs. 3(ei) and 9(e), and
(b) the MLC variant circuit given in Figs. 12(di) and Fig. 18(ci).
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Fig. 22. (Continued )

6. Analytical Studies of the MLC
Variant Circuit: Linear Stability
of Fixed Points, Bifurcations
and Exact Solutions

In this section we will briefly investigate the ana-
lytical aspects of the MLC variant circuit equation
(4) along the lines of the MLC circuit equation (2)
[Lakshmanan & Murali, 1996]. To start with we
note that in the autonomous case (F = 0), Eq. (4)
is symmetric with respect to the origin so that it is
invariant under the transformation

(x, y)→ (X, Y ) = (−x, −y) . (6)

In this case, the equilibrium points can be obtained
from the conditions,

−x− y − g(x) = 0 , (7a)

βx = 0 . (7b)

It follows from the form of g(x), Eq. (4c), that (4)
has a unique equilibrium in each of the following

three regions

D1 = {(x, y)| x ≥ 1} , (8a)

D0 = {(x, y)| |x| ≤ 1} , (8b)

D−1 = {(x, y)| x ≤ −1} . (8c)

The equilibria (x0, y0) are explicitly given by

(i) P+ = (0, b− a) ∈ D1 , (9a)

(ii) O = (0, 0) ∈ D0 , (9b)

(iii) P− = (0, a− b) ∈ D−1 . (9c)

In each of the regions D1, D0 and D−1 , Eq. (4) is
linear when F = 0. In fact, letting

X = (x0, y0) , (10)

for the region D0 the stability determining eigen-
values are calculated from the stability matrix

A0 = A(β, a) =

(

−1− a −1

β 0

)

(11)
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as (with a = −1.127, β = 0.05)

λ1 = 0.0635 + i(0.21440) , (12a)

λ2 = 0.0635 − i(0.21440) . (12b)

This indicates that (x0, y0) = O ∈ D0 is an unsta-
ble spiral fixed point.
Similarly, from the stability matrix

A± = A(β, b) =

(

−1− b −1

β 0

)

(13)

(with b = −0.6047, β = 0.05) associated with
the regions D1 and D−1, one can check that the
system has a pair of complex-conjugate eigenval-
ues (λ1, λ2 = λ

∗
1) with negative real parts: λ1 =

−0.197625 + i(0.1046) and λ2 = −0.197625 −
i(0.1046). So both P+ and P− are stable spiral
fixed points.
Thus one finds that as long as the initial con-

ditions are confined to the region D0, due to the
unstable spiral nature of the fixed point O, a stable
limit cycle results. However, if the initial conditions
are chosen in the regionsD±, the system will end up
in one of the fixed points P+ or P− as the case may
be, since they correspond to stable spirals. When
the forcing periodic signal is included (F > 0) in the
variant MLC circuit equation (4), there is an inter-
action between the limit cycle motion of the system
and the external periodic signal, resulting in a Hopf
bifurcation which gives rise to a quasiperiodic solu-
tion as observed in the experimental and numerical
studies. It may be noted that in contrast to the
above that in the case of the MLC circuit equation
(2), for the chosen parameter values, the fixed point
O is a hyperbolic fixed point, while P+ and P− are
stable spiral fixed points. So no limit cycle mo-
tion occurs in the MLC circuit case (see [Murali &
Lakshmanan, 1996]).
Actually, Eq. (4) can be explicitly integrated in

terms of elementary functions in each of the three
regions D0, D1 and D−1 and matched across the
boundaries to obtain the full solution. The details
are as follows.
Let [x(t; t0, x0, y0), y(t; t0, x0, y0)] be the so-

lution to Eq. (4) of which the initial condition is
given by (t, x, y) = (t0, x0, y0). Since Eq. (4) is
piecewise-linear, the solution in each of the regions
can be obtained explicitly as follows:

(i) Region D0(|x| ≤ 1):
Here, g(x) = ax and Eq. (4) or (5) becomes

ÿ + (1 + a)ẏ + βy = βF sin(ωt) , (14)

The general solution to (14) is

y(t) = eut[A cos vt+B sin vt] + C sin ωt

+D cos ωt , (15)

where A and B are integration constants and

u =
(−k +

√

k2 − 4β)

2
,

v =
(−k −

√

k2 − 4β)

2
,

C =
(βF (β − ω2))

(k2ω2 + (β − ω2)2)
,

D =
−βFωk

(k2ω2 + (β − ω2)2)
,

k = 1+ a .

(16)

Then, x(t) is obtained from (4) as

x(t) =
1

β
{ueut(A cos vt+B sin vt)

+ eut(Bv cos vt−Av sin vt) + Cω cos ωt

−Dω sin ωt} . (17)

The constants A and B in (15) can be fixed from
the initial condition (x0, y0), provided it is in D0.

(ii) Region D1(|x| ≥ 1):
Here, g(x) = bx+ a− b. Then Eq. (5) becomes

ÿ + (1 + b)ẏ + βy = β(b− a) + βF sin(ωt) , (18)

The general solution to (18) is

y(t) = eut[A1 cos vt+B1 sin vt] + C sin ωt

+D cos ωt+ (b− a) , (19)

and x(t) is obtained from Eq. (4). In Eq. (19), A1
and B1 are arbitrary constants while u, v, C and D
are as defined in Eq. (16), except now we have the
parameter k defined as k = 1 + b.

(iii) Region D−1(x ≤ −1) :
Here, g(x) = bx−a+ b. Then Eq. (4) can be solved
again by carrying out a similar analysis as above,
and the general solution y(t) becomes

y(t) = eut[A2 cos vt+B2 sin vt] + C sin ωt

+D cos ωt+ (a− b) , (20)
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where again A2 and B2 are arbitrary constants and
x(t) is obtained from Eq. (4) as before.
Thus, for example if we start with the initial

condition in D0, the arbitrary constants A and B
in Eq. (15) get fixed. Then x(t) evolves as given
by Eq. (17) up to either t = T1, when x(T 1) = 1
and ẋ(T1) > 0 or t = T

′
1 when x(T

′
1) = −1 and

ẋ(T ′1) < 0. The value of T 1 and T
′
1 are obtained

numerically. Knowing whether T1 > T
′
1 or T1 < T

′
1

we can determine the next region of interest (D1
or D−1) and the arbitrary constants of the solu-
tions of that region can be fixed by matching the
solutions across the boundary. This procedure can
be continued for each successive crossing. In this
way, explicit solutions can be obtained in each of
the regions D0, D1 and D−1. A similar procedure
can be followed if the initial condition is either in
D1 or D−1 by making use of the solution (19) or
(20), respectively. However, it is clear that sensi-
tive dependence on initial conditions is introduced
in each of these crossings at appropriate parame-
ter regimes during the inversion procedure of find-
ing T 1, T

′
1, T 2, T

′
2, . . . , etc. from the solutions. We

have verified that all the numerical results reported
earlier in the paper for various parametric regimes
also follow from the explicit solutions reported in
this section.

7. Conclusions

In this paper, we have shown by a detailed ex-
perimental, numerical and analytical investigation
that the familiar parallel LCR circuit to which the
Chua’s diode is connected parallely can exhibit a
surprisingly wide range of bifurcation and chaos
phenomena associated with several nonlinear dy-
namical systems. Particularly it exhibits quasiperi-
odic attractors, torus breakdown route to chaos,
period-adding and Farey sequences, antimonotonic-
ity and bubbling, intermittency route to chaos
and so on, besides the familiar period-doubling
route. The underlying dynamical phenomena cov-
ered seems to be much wider than the standard
MLC circuit, where the series LCR circuit and the
Chua’s diode are connected in parallel.
The existence of such simple nonautonomous

nonlinear electronic circuits exhibiting rich varieties
of bifurcation phenomena can be profitably used in
areas where nonlinear electronic circuits are used
in applications such as controlling, synchronization,
secure communication, cryptography, and so on.

Further, the study of the dynamics of arrays of such
circuits will be very valuable to understand the spa-
tiotemporal patterns arising from the interaction of
such diverse dynamical states. Work is in progress
along these lines.
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