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Abstract

The ability to determine the biodegradability of chemicals without resorting to expensive tests is 

ecologically and economically desirable. Models based on quantitative structure-activity relations 

(QSAR) provide some promise in this direction. However, QSAR models in the literature rarely 

provide uncertainty estimates in more detail than aggregated statistics such as the sensitivity and 

specificity of the model’s predictions. Almost never is there a means of assessing the uncertainty 

in an individual prediction. Without an uncertainty estimate, it is impossible to assess the 

trustworthiness of any particular prediction, which leaves the model with a low utility for 

regulatory purposes. In the present work, a QSAR model with uncertainty estimates is used to 

predict biodegradability for a set of substances from a publicly available data set. Separation was 

performed using a partial least squares discriminant analysis model, and the uncertainty was 

estimated using bootstrapping. The uncertainty prediction allows for confidence intervals to be 

assigned to any of the model’s predictions, allowing for a more complete assessment of the model 

that would be possible through a traditional statistical analysis. The results presented here are 

broadly applicable to other areas of modeling as well, because the calculation of the uncertainty 

will clearly demonstrate where additional tests are needed.
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1 Introduction

In recent years, several countries around the world have recognized the need to reduce the 

amount of non-biodegradable materials used to intensify measures for the environment and 
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encourage the recycling of materials. An example was the signing of the Treaty of Paris by 

175 countries in April 2016 for the reduction of carbon dioxide emissions and other 

greenhouse gases. By this initiative, countries compromise to establish their own targets for 

the reduction of greenhouse gases which implies indirectly the reduction of the consumption 

of non-biodegradable materials. This is because the decrease provides a smaller amount of 

material sent to landfills, which reduces the production of greenhouse gases [1–5]. Another 

factor that contributes to it is the increasing use of biodegradable materials due to the results 

of research related to discovery and production of new materials [1, 6–11], as well as the use 

of alternative non-toxic and biodegradable source of energy as biodiesel [12–15].

Several countries in the world have agencies and regulations responsible for the use of 

chemical substances and evaluation of their potential impacts on both human health and the 

environment, including the Environmental Protection Agency (EPA), National Health 

Surveillance Agency (ANVISA), and the Registration, Evaluation, Authorisation and 

Restriction of Chemicals (REACH). REACH, a regulation of the European Chemicals 

Agency of the European Union, is particularly notable because it promotes alternative 

methods for the hazard assessment of substances in order to reduce the number of tests on 

animals. Such alternative methods include the biodegradability predictions of chemicals 

from quantitative structure-activity relationship (QSAR) models.

Biodegradability is fundamental to the assessment of environmental exposure and risk from 

chemical products. QSAR models can be used to pursue both regulatory and chemical 

design goals. In the literature, various QSAR models have been investigated that are 

intended to predict the ready biodegradability of different substances [16–22]. Other authors 

have examined different methods of selecting molecular descriptors [23, 24] and the use of 

different machine learning algorithms [22, 25]. In all cases, the model’s performance was 

quantified using aggregate statistics such as sensitivity, specificity, and correlation 

coefficients [26]. However, it is rarely reported by what method, if indeed at all, uncertainty 

in an individual model output is quantified. Uncertainty in this context means the range of 

values that can be reasonably attributed to an analytical result, considering the level of 

confidence [27–30]. Without an estimate of the individual prediction uncertainty, the results 

of these models are not complete.

The objective of this work is to calculate the uncertainty of the predictions of the 

classification of a QSAR model using the residual bootstrap method to predict the ready 

biodegradability of chemicals using literature data [31]. The uncertainty then provides an 

estimate of the reliability of the PLS model’s predictions.

2 Theoretical Background

2.1 Partial least squares discriminant analysis estimation of a QSAR model

Partial least squares regression discriminant (PLS-DA) is a classification method in 

multivariate analyses that combines the properties of partial least squares regression with the 

discrimination power of classification techniques [32]. This method searches for latent 

variables that are a linear combination of the independent variables X which have the 

maximum covariance with the dependent variables Y [33–37].
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The general underlying PLS-DA model is given by

X = TPT + E, (1)

and

Y = UQT + F, (2)

where X is the matrix of independent variables, in this case the molecular descriptors; Y is 

the matrix of dependent variables, which has values of either 0 or 1 to indicate to which 

class the corresponding sample belongs. T and U are orthogonal score matrices of X and Y 
respectively. P and Q are the corresponding loadings matrices that describe the latent 

variables, and E and F are the residual terms.

The T scores are orthogonal and estimated as a linear combination of the X variables [38, 

39] with weighting coefficients W* which are obtained by successive optimizations. Then, 

the T matrix can be determined using

T = XW∗ . (3)

The T scores are then a set of latent variables within X that are good predictors of Y, 

assuming that Y and X are well-described by the same latent variables. Using Equation (3), 

Equation (2) can be rewritten as

Y = XW∗QT + F = Xβ + F . (4)

A full description of the PLS-DA regression is given by Wold et al. [39].

The classification values obtained by the PLS-DA model are real numbers given by Eq. 4, 

not reading exactly 0 or 1. The results are scattered in a range of values for each class. Thus, 

it is necessary to establish a threshold value, ybound, to define the class limits. There are 

several ways to set the threshold, for example, such as Bayes’ theorem [40], receiver-

operating characteristic (ROC) curves [41], threshold-based classification rule [42, 43] or by 

establishing confidence limits for each sample classified. These confidence intervals can be 

calculated by re-sampling techniques, such as bootstrap.

2.2 Bootstrap-based uncertainty estimation

Bootstrap is a test based random sampling with replacement [44, 45] which allows 

confidence intervals to be placed on a model’s predictions based on uncertainties in the input 

data. In this case, it provides confidence interval of the classification results of substances in 

a given class.

In this paper, residual bootstrap was used to calculate the uncertainties in the 

biodegradability prediction of the PLS-DA model. The procedure was originally presented 

by Almeida et al. [33] and will be briefly described.
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According to Almeida et al., [33] it is necessary to calculate the residuals of the PLS-DA 

model using

F∗ = F
1 − Df /N , (5)

where F* is the weighted residual of the model, F is the residual term from Equation (2) 

given by F = Y − Xβ, Df is the number of pseudo degrees of freedom (see [46]), and N is the 

number of calibration samples (substances, in this case).

Once the residual calculations are complete, the bootstrapping procedure is as follows. First, 

the substance a whose uncertainty is being calculated is removed from the model. A new 

dependent variable matrix Y* is then generated by replacing the remaining Y values with the 

model predicted YPLSDA = Xβ values. The residuals are assumed to be representative of the 

uncertainty in the model, and so a new random residual vector Fboot
∗  is generated by 

bootstrapping. The YPLSDA values are perturbed by adding the bootstrapped residual F*,

Y∗ = YPLSDA + Fboot
∗ . (6)

Then, a new PLS-DA model can be calculated from Y*, with a new corresponding 

regression coefficient (β*) and new predictions Y∗ = Xβ∗. The confidence interval for 

substance a is estimated based on the difference between the bootstrap predicted values for 

substance a, Y a = Xaβ∗, and the PLS predicted value, Ya,PLSDA according to

Fa
∗ = Y a, PLSDA − Y a . (7)

In the case of a 95% confidence interval, the lower bound, denoted clow, is the 2.5 percentile 

of Fa
∗ and the upper bound, cup, is the 97.5 percentile. More details about bootstrap can be 

found in the literature [47].

2.3 Uncertainty application and misclassification probability

Calculating the misclassification probability proceeds as follows. First, the classifications 

Ya,pred are treated as being normally distributed random variables with mean equal to 

Ya,PLSDA and standard deviation σa = 1 4 clow − cup . The confidence intervals here are not 

symmetric but they are close enough for this to be a reasonable approximation. As stated 

earlier, a given sample a is identified as class 0 if its Ya,PLSDA value is less than the 

threshold value ybound. The probability that sample a is class 0, denoted P0, is equivalent to 

the probability that Ya,pred is less than ybound. That probability is then given by the 

cumulative distribution function for the normal distribution, that is,

P0 = P Y a, pred ≤ ybound = 1
2 1 + erf ybound − Y a, PLSDA

2σa
. (8)
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Likewise, the probability that sample a is class 1, denoted P1, is equal to 1 − P0. The 

probability of a misclassification, Pmisclass, can then be determined based on the actual 

classification of the sample, Ya, using

Pmisclass = P1 − Ya . (9)

The misclassification probabilities can then be used to assess the trustworthiness of the 

model. If a model has large Pmisclass for the misidentified samples, then using the model 

would mean that we would likely make incorrect claims with a high degree of false 

assurance. Such a model would not be very useful in a regulatory context. Likewise, if the 

model has large Pmisclass for the correctly-identified samples, our correct claims would be 

assigned a low degree of assurance, which is also undesirable for regulation.

3 Implementation

3.1 Data Sets

In the present work, QSAR models with estimation of uncertainty were explored to 

discriminate chemicals into two classes: RB (readily biodegradable) and NRB (not readily 

biodegradable). The data used in this study can be obtained from the publicly-available 

QSAR biodegradation data set described by Mansouri, et al. [31]. A version of the data set is 

included in the supplementary information.

The data are of three sets of substances: 837 substances used for the calibration stage (284 

RB and 553 NRB), 218 substances for the validation stage (72 RB and 146 NRB) and 670 

substances for the external validation stage (479 RB and 191 NRB). All the data have 41 

molecular descriptors. According to Mansouri, et al. [31], using only 23 descriptors among 

the 41 descriptors it is possible to improve the performance of the model. Thus, only these 

23 recommended molecular descriptors were used to generate the model (Table 1).

3.2 Procedure and Software

The PLS-DA models from PLS Toolbox 8.0 and from scikit-learn 0.17 were used to analyze 

the data. Uncertainty in the PLS model predictions was estimated by the residual bootstrap 

technique. 104 bootstrap evaluations were used and the analysis was repeated 15 times to 

ensure the reliability of the bootstrap results.

A dummy matrix Y was created with 0 for readily biodegradable and 1 for not readily 

biodegradable substances. The optimal number of latent variables for the PLS-DA model 

was determined by cross-validation using the leave-one-out criterion [40] in order to avoid 

overfitting or lack of fit. The threshold for the class was calculated using the plsthres 
function from PLS Toolbox [40] and a similar function in Python. The confidence interval 

estimations for each sample were obtained with residual bootstrap, according Almeida et al. 
[33] and as described in Section 2.

The structural data were preprocessed through autoscaling [40], because the units on each 

descriptor are different and have different ranges of variation. Calculations were performed 

in Anaconda Python 4.0.0 and in Matlab R2015b. The results presented here are from 
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Anaconda, but the Matlab results were largely similar. The Python code to conduct the 

analysis and generate the figures has been included in the supplementary information.

4 Results and Discussion

The performance of the PLS-DA model was rated using the following standard statistical 

parameters (Table 2): root mean squared error (RMSE), Pearson’s correlation coefficient, 

sensitivity (percentage of true positives, i.e., samples were correctly assigned to the RB 

class), specificity (percentage of true negatives, i.e., samples that were correctly assigned to 

the NRB class) and misclassification error, ME, defined as

ME = Y a − Y a, PLSDA
Y a

. (10)

where Ya,PLSDA represents the PLS-DA predicted class observed, and Ya denotes the 

reference class.

The model developed can be said that to be accurate, based on the aggregate statistics (Table 

2). In particular, it has Pearson’s correlation coefficient values considered high for this 

dataset (near 0.65) and low error values (represented by RMSE and ME (%) values). The 

model presented specificity and sensitivity close to 0.8, meaning that the majority of 

substances were classified according to their correct class.

In addition to the global statistics of the model, we examine the scores and loadings of the 

PLS-DA model developed (Figure 1). The scores for the first two latent variables of the 

PLS-DA model show how the calibration and validation sets are separated by the model 

(Figure 1a) and the loadings shows the influence of each descriptor in the separation of 

substances (Figure 1b). Most RB substances are in the region of the scores plot where the 

first and second latent variable are both negative (Figure 1a), while the majority of NRB 

substances are in other regions. Through the analysis of the graph of loadings plot in Figure 

1b, it is possible to explain this separation.

The molecular descriptors related to the presence of oxygen (nO, F03 [C-O], and SDO), 

LOC, and TI2_L have negative loadings with respect to the second latent variable (Figure 

1b), which corresponds to the scores of the RB substances (Figure 1a). These descriptors are 

therefore likely responsible for the separation of RB substances. Descriptors involving 

cycles, halogens, and nitrogen have positive loadings with respect to the second latent 

variable, and the molecular matrix-based descriptors have loadings above a value of about 

0.2 with respect to the first latent variable. These descriptors are therefore likely responsible 

for the separation of the NRB substances, as the NRB substances have scores similar to 

these descriptors’ loadings. The results shown here are consistent with the literature [48, 49], 

where it has been shown that materials which have functional groups with oxygen atoms 

increase biodegradation. On the other hand, the presence of atoms such as nitrogen and 

halogens decrease biodegradation.
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The scores of the external validation set follow the same trend as the separation found for 

the set of calibration and validation substances (Figure 2), i.e. the RB substances are mainly 

located on the negative region of the first and second latent variable.

Through analysis of the detailed results of the PLS-DA model (Figure 1 and Figure 2), it is 

possible to have a general vision of the performance of the model developed according to 

Mansouri [31]; however it is not possible to estimate the uncertainty of the classification of 

each sample individually. That is, most substances were classified according to their 

respective class and some substances were misclassified, but the reliability of that 

classification is not known. This is the motivation behind the use of residual bootstrapping to 

calculate the individual classification uncertainties.

The bootstrapping process allows us to attach classification uncertainties and 

misclassification probabilities to the PLS-DA model results. The PLS-DA-predicted 

classifications, YPLSDA, can be plotted along with the corresponding confidence intervals 

and compared the threshold value, ybound, (Figure 3). In particular, the samples are ordered 

by the probability of classification as NRB, P0, (Equation 8). This information is used to 

calculate the misclassification probabilities Pmisclass (Equation 9), plotted with respect to the 

YPLSDA values and also including ybound (Figure 4). Substances with confidence intervals 

above ybound were classified as RB, which corresponds to P0 << 1. Those substances with 

confidence intervals below ybound were classified as NRB, corresponding to 1 − P0 << 1. 

Likewise, these are the substances that have Pmisclass close to either 0 or 1, because the 

model allows us to make confident assertions about how these substances should be 

classified. Those substances with confidence intervals that include ybound could not be 

confidently classified in either group. Such substances have a P0 and therefore a Pmisclass 

approaching 0.5. In these cases, the model does not permit a confident assertion about the 

classification of the substance. Here we have a new type of results caused by the uncertainty 

of calculation, that is, substances that are not possible to classify into any of the two classes.

Through the uncertainty calculation, it is possible to question the classification of a 

particular substance. An example of this is the classification of the substance 200 belonging 

to the validation set in the NRB class (Figure 3b). If the prediction the uncertainty had not 

been calculated, this substance would be considered to belong to the NRB class, however 

due to the greater rigor imposed by the uncertainty calculation, this substance cannot be 

classified in any of the two classes, because of its uncertainty intersects with limit between 

the classes.

Similar results can also be seen, for example, with the validation substance 190 (Figure 3b) 

and the external validation substances 287, 288, 444, and 451 (Figure 3c), which likewise 

cannot be classified in either of the two classes. This type of result provides a more rigorous 

classification of substances. Indeed, when the uncertainty of the result of classification is not 

calculated, there are only two types of classifications possible: correctly classified 

substances and incorrectly classified substances.
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5 Conclusions

A partial least squares discriminant analysis (PLS-DA) model was used to determine the 

biodegradability of substances based on quantitative structure-activity relations (QSAR). In 

addition, the classification uncertainty for this model was estimated using bootstrapping. 

Traditional modeling allows the substances to be distinguished into two classes (readily and 

not readily biodegradable). Considering the uncertainty in classification allows for a third 

classification, those substances about which no confident statement can be made.

The uncertainty analysis methodology used here permits a more in-depth evaluation of the 

QSAR model that would be possible using the standard statistical parameters. A standard 

analysis would allow some conclusion about the accuracy of the model as a whole, but it 

would not allow any statement about the reliability of any particular prediction. The 

uncertainty analysis, by contrast, allows for an evaluation of the precision of the model’s 

predictions, thereby allowing us to say that the model cannot confidently classify certain 

substances. Estimating the uncertainty makes it possible to obtain a conclusion that is more 

reliable and complete. These results highlight the challenges associated with developing 

reliable and easily applied acceptability criteria for the regulatory use of QSAR models, and 

it is hoped that a more widespread adoption of uncertainty analysis in these models will help 

to address some of these challenges.
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Figure 1. 
Scores plot (A) and loadings plot (B) with respect to the first and second latent variables of 

the PLSDA model. Molecular descriptors refer to symbols listed in Table 1. Descriptors 

responsible for identifying NRB substances are circled with the dashed line and those 

responsible for identifying RB substances are circles with the dash-dot line.
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Figure 2. 
Scores plot with respect to the first and second latent variables of the PLS-DA model for 

external validation substances.
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Figure 3. 
Classes predicted by the PLS-DA model for the calibration, validation, and external 

validation sets, with confidence intervals for all substances as estimated by the residual 

bootstrap method. The class boundary ybound is shown with a dashed line and the probability 

of assignment to the NRB class is shown with dots. Predicted RB substances have 

confidence intervals above ybound and predicted NRB substances have confidence intervals 

below ybound. Substances that are correctly classified are shown with open circles and those 

that are incorrectly classified are shown with filled circles. (A) Calibration substances, (B) 

Validation substances, and (C) External Validation substances.
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Figure 4. 
Misclassification probabilities with respect to classifications predicted by the PLS-DA 

model. The vertical dashed line indicates ybound, with RB substances to the right and NRB 

substances to the left. The horizontal dashed line indicates Pmisclass = 0.5, corresponding to 

the boundary between correctly-classified and misclassified substances.
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Table 1

List of molecular descriptors used for the QSAR PLS-DA Model

Symbol Description DRAGON block

B01[C-Br] presence/absence of C–Br at topological distance 1 2D atom pairs

B03[C-Cl] presence/absence of C–Cl at topological distance 3 2D atom pairs

B04[C-Br] presence/absence of C–Br at topological distance 4 2D atom pairs

C% percentage of C atoms constitutional indices

F03[C-O] frequency of C–O at topological distance 3 2D atom pairs

F04[C-N] frequency of C–N at topological distance 4 2D atom pairs

HyWi_B(m) hyper-Wiener-like index (log function) from Burden matrix weighted by mass 2D matrix-based

LOC lopping centric index topological indices

Me mean atomic Sanderson electronegativity (scaled on Carbon atom) constitutional indices

Mi mean first ionization potential (scaled on carbon atom) constitutional indices

N-073 Ar2NH/Ar3N/Ar2N–Al/R⋯N⋯R atom centered fragments

nArNO2 number of nitro groups (aromatic) functional group counts

nCIR number of circuits ring descriptors

nCRX3 number of CRX3 functional group counts

nN-N number of N hydrazines functional group counts

nO number of oxygen atoms constitutional indices

Psi_i_1d intrinsic state pseudoconnectivity index–type 1d topological indices

SdO sum of dO E-states atom-type E-state indices

SM6_L spectral moment of order 6 from Laplace matrix 2D matrix-based

SpMax_A leading eigenvalue from adjacency matrix (Lovasz–Pelikan index) 2D matrix-based

SpMax_L leading eigenvalue from Laplace matrix 2D matrix-based

SpPosA_B(p) normalized spectral positive sum from Burden matrix weighted by polarizability 2D matrix-based

TI2_L second Mohar index from Laplace matrix 2D matrix-based
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