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Abstract: Hypertension is a severe public health issue worldwide that significantly increases the risk
of cardiac vascular disease, stroke, brain hemorrhage, and renal dysfunction. Early screening of blood
pressure (BP) levels is essential to prevent the dangerous complication associated with hypertension
as the leading cause of death. Recent studies have focused on employing photoplethysmograms
(PPG) with machine learning to classify BP levels. However, several studies claimed that electrocar-
diograms (ECG) also strongly correlate with blood pressure. Therefore, we proposed a concatenated
convolutional neural network which integrated the features extracted from PPG and ECG signals.
This study used the MIMIC III dataset, which provided PPG, ECG, and arterial blood pressure (ABP)
signals. A total of 14,298 signal segments were obtained from 221 patients, which were divided into
9150 signals of train data, 2288 signals of validation data, and 2860 signals of test data. In the training
process, five-fold cross-validation was applied to select the best model with the highest classification
performance. The proposed concatenated CNN architecture using PPG and ECG obtained the highest
test accuracy of 94.56–95.15% with a 95% confidence interval in classifying BP levels into hypotension,
normotension, prehypertension, hypertension stage 1, and hypertension stage 2. The result shows
that the proposed method is a promising solution to categorize BP levels effectively, assisting medical
personnel in making a clinical diagnosis.

Keywords: blood pressure levels; hypertension; PPG signal; ECG signal; convolutional neural network

1. Introduction

Hypertension is the most significant reversible risk factor for cardiovascular heart
disease, stroke, brain hemorrhage, chronic kidney, and other severe illnesses, which are
responsible for causing 8.5 million mortalities worldwide [1–3]. According to the American
heart society report, 1.56 billion people globally will suffer from hypertension by 2025,
with more than half living in developing countries with insufficient healthcare services
to manage hypertension [4]. The high prevalence of hypertension as a silent killer is
due to hypertension not showing symptoms in the early stages, only emerging after the
severe stage has been reached [5]. Hypertension occurs when the blood pressure (BP)
in the arteries rises and forces the heart to pump harder to deliver oxygenated blood to
other parts of the body [6]. Therefore, screening of blood pressure levels is essential for
early diagnosis of hypertension to prevent severe complications and to provide the proper
medical treatment for the patient [7].

A sphygmomanometer (cuff-based monitoring) is frequently used to measure blood
pressure and is essential in monitoring hypertension [8]. However, cuff-based monitoring
causes artery compression and requires the proper procedures while measuring BP [9].
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Furthermore, if the user misuses a cuff-based device, an incorrect diagnosis will be obtained.
As a result, a new cuff-less BP screening and hypertension detection method is being
developed [10–13].

Photoplethysmography waveform is commonly used to develop a cuff-less methodol-
ogy for BP prediction [14–17] or high BP risk categorization. The acquisition process of PPG
can operate in transmission or reflection modes depending on the transmitter (light source)
and receiver (photodetector) position. The transmission mode arranges the light source
and photodetector position opposite each other, with layers of skin tissues in between [18].
The photodetector detects the residual light from the source after the tissue has absorbed it.
Typically, this PPG sensor is mainly employed for measuring PPG at the distal body area,
including fingers, toes, and earlobes. The finger versions are extensively utilized in medical
applications such as pulse oximeters. Meanwhile, the earlobe version is frequently utilized
for vitality monitoring [19].

Furthermore, the photodetector is positioned next to the light source for the PPG sensor
that operates based on the reflecting principle. The photodetector detects the reflected light
on the same body surface. Therefore, the reflecting principle provides higher flexibility for
measuring PPG signals in different body areas, such as the wrist, forehead, esophagus, and
carotid, where the transmission principle cannot measure well. As a result, they are ideal
to be implemented in noninvasive wearable technologies for long-term monitoring.

The fundamental hardware components of the PPG measurement system are a light
emitting diode (LED) and a photosensitive diode that extract the PPG signal. The LED emits
light red or infrared to illuminate the skin on the wrist, fingertip, earlobe, or forehead [20].
Meanwhile, the photosensitive diode monitors the tissue’s shifting light absorption over
time and can detect variations in blood volume. The PPG signal records the signal produced
by blood flow fluctuation in the blood vessels. Variations in heart rate cause variations
in intravascular blood flow (per unit). The inductive voltage recorded by light sensors
varies in response to fluctuations in blood flow. During systole, light sensors absorb the
maximum light. The PPG signal amplitude is proportional to the tissue’s blood flow and
outflow variation. Therefore, the PPG signal provides physiological information related to
the cardiovascular circulation system, systolic and diastolic heart activity, the peripheral
microcirculation system’s network, and hemorheological and hemodynamic data [21].

Several studies have observed that PPG waveforms correlate with cardiovascular
pathology [22]. Pulse rate variability (PRV), which is measured from peak to peak of PPG
signals, is considered a surrogate method for heart rate variability assessed from ECG
signals under resting conditions [23]. A study proposed by Mejía et al. analyzed the reliable
duration of the PPG segment to extract pulse rate variability (PRV) from PPG signals [24].
Their study reported that 120 s PPG segment duration could be used to determine PRV
accurately. However, PRV and HRV could differ under dynamic circumstances, such as
exercise and mental stress [25].

In addition, researchers are interested in the arterial wave propagation theory based
on ECG and PPG signals for estimating BP. The theory generates pulse arrival time (PAT),
pulse transit time (PTT), and pulse wave velocity (PWV) as robust surrogate features to
measure the conditions of the heart’s physiological systems, including blood pressure,
arterial stiffness, and arterial compliance [26].

The other potential factors which attract researchers are the derivative features of PPG
signals. Takazawa et al. claimed that PPG’s first and second derivatives are useful for
representing spatiotemporal variations in PPG, including peak position, inflection point,
number of peaks, and ascending and descending slope [27]. These features can be used as
a substitute technique to find dicrotic and diastolic peaks that are challenging to determine
in the original PPG waveforms. Liu et al. extracted 35 features from the PPG signal and its
second derivative for BP estimation using support vector regression [28].

Meanwhile, Gupta et al. proposed PPG’s holistic nonlinear dynamics and moving
slope features extracted from the third and fourth derivatives of PPG signals. They per-
formed optimization of several machine learning algorithms, including random forest (RF),
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extreme gradient boosting (XGBoost), and support vector regression (SVR) to estimate the
BP values. Their study successfully obtained Grade A on the British Hypertension Society
(BHS) standard, which confirmed the robustness of the proposed study to estimate BP [29].

Previous studies used handcrafted features from the PPG as input to the traditional
machine learning algorithm, which potentially does not represent the whole physiolog-
ical characteristics of PPG signals. Therefore, Khodabakhshi et al. used the whole PPG
sequence and nonlinear handcrafted features as input to the parallel convolutional neural
network [30]. The combination of the chaotic features and the machine-learned features
from PPG signals can be effectively applied to improve the performance of monitoring BP.

In recent studies, several researchers used machine learning with PPG features to
automatically predict or categorize blood pressure levels. Wu et al. proposed continuous
wavelet transforms to transform PPG signals into 224× 224× 3 scalogram images [31]. The
scalogram images of the PPG signals are be used as input to the 2D CNN, which consists of
two convolutional layers followed by pooling layers in the feature extraction layers and
two hidden layers in the classification layers. Their study reported the highest classification
accuracy of 90% in classifying normal and abnormal conditions of blood pressure levels.

Moreover, Sun et al. proposed a 2D convolutional neural network based on the
Hilbert Huang Transform (HHT) method using a 10 s segment of PPG signal [32]. They
considered the first and second derivatives of the PPG signal related to atherosclerosis
and vascular elasticity. Furthermore, the PPG signal and its derivative were transformed
into 224 × 224 × 3 spectrogram images using the HHT method and used as input to the
Alexnet architecture. Their study successfully obtained a classification accuracy of 98.90% in
classifying normotension vs. hypertension, an accuracy of 85.80% in classifying normoten-
sion vs. prehypertension, and 93.54% in classifying normotension vs. prehypertension
vs. hypertension.

Yen et al. used the PPG signal as input to the deep residual network convolutional
neural network (ResNetCNN) and bidirectional long short-term memory (BILSTM) [33].
Their study reported a classification accuracy of 76% in classifying hypertension into four
classes: normotension, prehypertension, hypertension stage 1, and hypertension stage
2. Their proposed method expanded the classification of blood pressure levels into four
classes: normotension, prehypertension, hypertension stage 1, and hypertension stage
2. However, the model is still overfitting and only performs well on the training set by
obtaining a training accuracy of 100% but still lacks generalization ability for the unseen
dataset by achieving a test accuracy of 76%.

While the previous studies focused on employing the PPG signal to categorize blood
pressure levels, several researchers reported that electrocardiogram (ECG) signals strongly
correlate with arterial blood pressure [34]. ECG signals represent the heart’s electrical
activity [35,36]. The electrical impulse causes the rhythmic contraction of the heart [35–37].
Blood is discharged from the atrium and ventricle during heart contraction or systole.
Meanwhile, the diastole or relaxation condition is when the atrium and ventricle fill with
blood. Regarding ECG signal morphology, systole conditions can be identified from the R
peak wave to the T peak wave. In contrast, diastole conditions can be identified from the T
peak wave to the R peak wave [38]. Hypertension causes anatomical and functional changes
in the heart, which leads to left ventricular hypertrophy (LVH), diastolic dysfunction, and
heart failure [39]. Meanwhile, several studies showed that ECG also correlated with
hypotension conditions. Yeon Jo et al. reported an AUC score of 0.957 (0.954–0.960) using
ABP, ECG, and electroencephalogram (EEG) signals as input to deep learning models using
ResNet architecture, which contains 12 residual blocks and one linear layer. [40] Moreover,
Bae et al. used heart rate information corresponding to time series data and patient baseline
information as input to a multilayer perceptron [41]. Their study aim was to validate heart
rate difference and heart rate slope features correlated with hypotension conditions. Their
findings reported the highest accuracy of 81.5% in predicting hypotension conditions.

Soh et al. proposed a deep-learning model coupled with an ECG signal to detect
hypertension [42]. They developed four convolutional layers followed by a max pooling
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layer with fully connected layers. Their study reported a high classification accuracy of
99.99% in classifying normotension and hypertension of ECG signals. Jain et al. proposed a
two-stage deep CNN architecture to classify low-risk and high-risk hypertension based on
ECG signals [43]. The first stage configuration of the CNN model consists of two convolu-
tion layers followed by two pooling layers with two fully connected layers. Meanwhile, the
second stage configuration of CNN consists of four convolution layers followed by four
pooling layers with three fully connected layers. The first and second stages of the CNN
model obtained classification accuracy of 96.68% and 90.08%, respectively. Rajput et al.
proposed an optimal wavelet filter bank to classify low-risk and high-risk hypertension.
Their study reported a classification accuracy of 99.95% [44]. Sharma et al. reported 98.05%
test accuracy in classifying normotension and hypertension using a support vector machine
(SVM) classifier [45].

Instead of using physiological information from single-wave PPG or ECG, several
studies extracted the features from PPG and ECG. Liang et al. used arterial propagation the-
ory, which generated features from PPG and ECG signals [46]. Furthermore, these features
were classified using several classifier models, including logistic regression, AdaBoost tree,
bagged tree, and k-nearest neighbor (K-NN). The highest classification performance was
obtained using K-NN by obtaining the F1-scores of 84.34% in classifying normotension and
prehypertension, 94.84% for classifying normotension versus hypertension, and 88.49% in
classifying three classes including normotension, prehypertension, and hypertension. The
simultaneous collection of PPG and ECG signals provided good performance in detecting
hypertension [26]. However, the study proposed by Liang et al. still used handcrafted
features and traditional machine learning. Kuzmanov et al. proposed a CNN and long
short-term memory networks (LSTM) model with PPG and ECG signals. Their study
reported an AUC score of 0.74 in classifying two conditions of blood pressure, including
hypotension and not hypotension [47]. In addition, Kuzmanov et al. reported an AUC
score of 0.76 in classifying normotension, prehypertension, and hypertension using CNN
and the gated recurrent unit (GRU) model with PPG and ECG [48]. According to the
results, the performance still needs to be improved by expanding the dataset and trying
different models.

The aforementioned studies showed that PPG and ECG are heavily reliant on blood
pressure and can potentially be used to employ the classification model of BP levels.
Moreover, the classification performance in classifying BP levels obtained high accuracy,
especially for binary classification. However, the performance needs to be improved for the
multi-classification of BP levels. Therefore, this study proposes a concatenated CNN model
using PPG and ECG signals as inputs to the classifier model. In order to assess the suitable
input and evaluate the performance of the concatenated CNN, we compare it with a single
1D-CNN using PPG or ECG signals only. The main contributions of this study are providing
a parallel convolutional layer to extract the critical features from PPG and ECG signals
and combining the physiological information of these signals using concatenated CNN
to generate detailed features representing the characteristics of each blood pressure level.
These findings provide a promising solution to improve the classification performance of
blood pressure levels into five categories: hypotension, normotension, prehypertension,
hypertension stage 1, and hypertension stage 2.

2. Materials and Methods
2.1. Dataset and Preprocessing

The PPG, ECG, and ABP signals of 221 patients were selected from Multiparameter
Intelligent Monitoring in Intensive Care (MIMIC III) dataset, which can be accessed on the
Physionet website [49]. The dataset was collected from patients in the Critical Unit of Beth
Israel Deaconess Medical Center. Preprocessing consisted of several steps, as shown in
Figure 1. At first, we handled some missing data and checked the signal quality that was
used as a dataset for further processing. The segmentation process was performed based
on R-R peak detection of the ECG signal to generate one cycle of PPG and ABP signals.
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Figure 1. (a) The proposed preprocessing steps. (b) Preprocessing results.

Furthermore, a bandpass filter (BPF) with cut-offs at 0.5–10 Hz and 0.5–40 Hz was
applied to remove noises in PPG and ECG signals, respectively [26]. Since the length of
PPG and ECG segment signals varies, we interpolated the signals to possess the same
sizes. Therefore, all signals had the same number of samples (150 samples) as input to the
CNN model. The label for each segment was assigned based on the systole and diastole
value extracted from ABP signals. The American Heart Association standard divides blood
pressure values into several categories: hypotension, normotension, prehypertension,
hypertension stage 1, and hypertension stage 2, as shown in Table 1. A total number
of 14,298 signal segments were generated and divided into 9150 signals of train data,
2288 signals of validation data, and 2860 signals of test data.

Table 1. The American Heart Association standard for blood pressure levels.

BP Levels Systolic (mmHg) Diastolic (mmHg)

Hypotension <90 And <60
Normotension <120 And <80

Prehypertension 120–129 And <80
Hypertension Stage 1 130–139 Or 80–89
Hypertension Stage 2 140–180 Or 90–120

2.2. Concatenated 1D CNN Architecture

This study used PPG and ECG signals as input to the concatenated 1-D CNN architec-
tures, as shown in Figure 2. In the feature extraction layer, the computing output map of
one layer becomes the input of the subsequent layer during forwarding propagation. This
input is then convolved with specific kernels, as shown in Equation (1) [50].

xh
k =

Nh−1

∑
i=1

conv1D (wh−1
ik . sh−1

i ) + bh
k , (1)
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where xh
k is the input of layer h, and wh−1

ik and sh−1
i stand for the kernel and output of the

ith neuron at layer h− 1, respectively. Meanwhile, bh
k is the bias of the kth neuron at layer

h. Furthermore, the activation function computes the output yh
k of the input xh

k for each
neuron in a middle layer, as shown in Equation (2) [49].

yh
k = f

(
xh

k

)
and sh

k = yh
k ↓ ss, (2)

where sh
k is the output of the kth neuron of layer h, and ↓ ss is the downsampling operation

of scalar factor (ss).

Figure 2. The proposed concatenated 1D CNN architecture.

This study designed CNN architectures with different convolutional depth layers. The
CNN architectures consist of one convolutional layer with 8 filters; two convolutional layers
with 8 and 16 filters; three convolutional layers with 8, 16, and 32 filters; four convolutional
layers with 8, 16, 32, and 64 filters; five convolutional layers, with the number of filters
from layers one through five being 8, 16, 32, 64, and 128, respectively. We applied a small
kernel size with stride one and applied the rectified linear unit activation function (Rel-U)
in the convolutional layer to extract the essential characteristics of ECG and PPG signals in
more detail. Furthermore, max pooling was applied following each convolutional layer to
downsample the features.

The PPG and ECG signal feature maps were concatenated as input to the fully con-
nected classification layer. The formulation of concatenation fusion is shown in Equation (3),
which concatenates the two inputs of the extracted feature maps from PPG and ECG signals
at the same location, as shown in Equation (4) [50].

ycat = f cat
(

xa, xb
)

, (3)

ysum
i.j.1:n = Xa

i.j.n, ysum
i.j.n+1:2n = Xb

i.j.n, (4)

where 1 ≤ i ≤ H, 1 ≤ j ≤W, 1 ≤ n ≤ N, and yε RH×W×2N .
xa and xb are the fusion function input, and y is the output. Meanwhile, H, W, and

N stand for height, weight, and the number of channels of the feature maps, respectively.
After concatenating the feature maps, we applied batch normalization, a hidden layer, and
the output layer with a SoftMax activation function, which was classified into five groups:
hypotension, normotension, prehypertension, hypertension stage 1, and hypertension
stage 2.

In order to assess deep neural networks for generalization ability in classifying the
unseen data, we applied 5-fold cross-validation. As for the regularization technique, we
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applied callback to monitor the particular metric, including validation accuracy and loss.
The model checkpoint automatically saved the network weight when the loss in validation
decreased. We used Adam as an optimizer method and categorical cross-entropy as a loss
function to reduce error during training with a learning rate of 0.001.

2.3. Evaluation Matrix

We used a confusion matrix to measure the system performance, including accuracy
precision, recall, and f1-score, as shown in Equations (5)–(8), respectively [51]. A result is
considered true positive (TP) if the model accurately predicts the positive class. Contrarily,
a true negative (TN) is a result in which the model accurately predicts the negative class. A
false positive (FP) results when negative data is incorrectly categorized as positive. False
negative (FN) results, on the other hand, are when positive data is incorrectly categorized
as negative.

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
, (5)

Precision =
(TP)

(TP + FP)
, (6)

Recall =
(TP)

(TP + FN)
, (7)

F1 score = 2· Recall · Precision
Recall + Precision

. (8)

3. Results

A total of 2860 test data signals were employed, including 407 data on hypotension,
1200 data on normotension, 182 data on prehypertension, 540 data on hypertension stage
1, and 531 data on hypertension stage 2. We used test data signals to validate the models
produced by the training process using five-fold cross-validation. Table 2 presents the
classification accuracy results with a 95% confidence interval that used the PPG signal, ECG
signal, or both PPG and ECG signals as inputs to the CNN architecture.

Table 2. Classification accuracy performance with 95% confidence interval and p-value for each
input signal.

Input Number of
Convolutional Layers

Train
Accuracy

Validation
Accuracy

Test
Accuracy p-Value

PPG

1 layer 47.70–49.10% 47.51–49.29% 47.94–49.66%

5.55× 10−8
2 layers 49.45–50.55% 49.45–50.15% 49.45–50.15%
3 layers 53.56–57.64% 53.58–58.42% 53.43–56.57%
4 layers 54.39–60.42% 54.39–60.42% 53.82–58.58%
5 layers 59.50–62.90% 59.63–63.57% 57.97–61.23%

ECG

1 layer 68.89–71.11% 68.89–71.10% 63.44–69.36%

1.25× 10−5
2 layers 71.94–73.66% 71.94–73.66% 69.64–71.96%
3 layers 69.33–73.07% 69.62–73.98% 67.87–70.93%
4 layers 70.63–74.57% 70.71–75.29% 69.40–72.20%
5 layers 76.16–79.84% 76.16–79.84% 75.63–79.57%

PPG and ECG

1 layer 92.34–94.06% 92.34–94.06% 88.76–86.04%

4.72× 10−12
2 layers 99.45–99.82% 99.45–99.82% 93.55–94.23%
3 layers 100% 100% 94.05–94.64%
4 layers 100% 100% 94.37–94.97%
5 layers 100% 100% 94.56–95.15%

As shown in Table 1, the PPG signal as input to the 1D CNN architecture with five
convolutional layers obtained the highest classification test accuracy of 57.97–61.23%. Fur-
thermore, the highest classification test accuracy for the ECG signal as input is 75.63–79.57%.
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The performance significantly improved using PPG and ECG signals as input to the con-
catenated CNN compared to using PPG or ECG only as input to the CNN architecture.
Moreover, we used the ANOVA test for statistical analysis with statistical significance at
p < 0.05. The features combined of PPG and ECG showed the most statistical significance
with a p-value of 4.72 ×10−12 in differentiating five blood pressure categories. Therefore,
PPG and ECG signals as input to the proposed concatenated CNN architecture with five
convolutional layers provided the highest classification accuracy compared to the single
wave of PPG or ECG signals as input to the CNN architecture. The highest performance
obtained was 100% for the training and validation data. Meanwhile, the performance for
the test data achieved classification accuracy of 94.56–95.15% with 95% confidence intervals
after evaluation using five selected models generated by five-fold cross-validation. There
was a difference in accuracy performance between training and testing accuracy due to the
imbalanced dataset.

For further analysis using PPG and ECG signals as input, we tested five architectures
based on the number of filters and the depth of the convolutional layer to determine
the optimal configuration of concatenated CNN. Architectures 1–5 consisted of 1, 2, 3, 4,
and 5 convolutional layers, respectively, for both PPG and ECG, which were designed
in parallel. Table 3 presents the detailed performance for classifying each blood pressure
level using five architectures. The best architecture was selected based on the performance
of precision, recall, F1 score, and AUC score after evaluation using models generated by
five-fold cross-validation. As shown in Table 3, architecture 5 achieved the highest results
of test data compared with the other architectures by obtaining 0.93–0.95 of precision, recall,
and F1-score, respectively with an AUC score of 0.98–0.99. Architecture 5 was followed by
architecture 4, 3, and 2, which obtained a similar performance. Meanwhile, architecture 1,
consisting of 1 convolutional layer, obtained the lowest performance.

Table 3. The performance results for classifying each blood pressure level of test data using the
proposed concatenated CNN architecture.

CNN Architectures Configuration (Parallel) Precision Recall F1-Score AUC

Architecture 1 1 layer (number of filters 8) 0.86–0.88 0.85–0.87 0.86–0.87 0.96–0.97
Architecture 2 2 layers (number of filters 8 and 16) 0.92–0.93 0.92–0.93 0.92–0.93 0.97–0.98
Architecture 3 3 layers (number of filters 8, 16, and 32) 0.93–0.94 0.93–0.94 0.93–0.94 0.98–0.99
Architecture 4 4 layers (number of filters 8, 16, 32, and 64) 0.93–0.94 0.93–0.94 0.93–0.94 0.98–0.99
Architecture 5 5 layers (number of filters 8, 16, 32, 64, and 128) 0.93–0.95 0.93–0.95 0.93–0.95 0.98–0.99

The results showed that the number of convolutional layers substantially affects
the classification performance of the feature maps generated by the feature extraction
layers. The appropriate number of convolutional layers was determined by simulating and
evaluating the system’s classification performance. If the model is too simplistic, it cannot
extract the unique characteristics. In contrast, a deep model will increase model complexity
and computational time.

The confusion matrix of architecture 5 showed that the model successfully classified
these blood pressure levels of test data as mostly accurate according to their class, as shown
in Figure 3a. The receiver operating characteristics (ROC) curve consisted of the y-axis
as true positive rates (TPR) and the x-axis as the false positive rates (FPR), as shown in
Figure 3b. The area under curve (AUC) score showed the classifier’s ability to classify
between classes. The model’s ability to differentiate between blood level categories of
test data improved with the AUC scores of 0.98–0.99. Therefore, we can conclude that the
suggested model effectively generalizes the test datasets.
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Figure 3. The performance results of test data. (a) Confusion matrix. (b) AUC score.

4. Discussion

Physiological information from PPG and ECG signals is used by researchers to develop
computer-aided diagnostic tools that can automatically classify blood pressure levels.
Table 4 presents several previous studies related to hypertension classification, which used
features from a single wave of PPG or ECG signals and used both signals as input to
machine learning and deep learning models. Several advantages and disadvantages of
each model proposed in the previous studies related to blood pressure level classification
will be discussed in this section.

Table 4. The performance comparison with previous studies.

Authors Dataset No of Classes Method Performance

Wu et al. [31] PPG signal 2 classes (normal and
abnormal) CWT and 2D CNN Accuracy of 90%

Sun et al. [32] PPG signal
3 classes (normotension,

prehypertension, and
hypertension)

HHT and 2D CNN Accuracy of 93.54%

Yen et al. [33] PPG signal

4 classes (normotension,
prehypertension,

hypertension stage 1, and
hypertension stage 2)

BILSTM and ResNet Accuracy of 76%

Soh et al. [42] ECG signal 2 classes (normotension
and hypertension) CNN Accuracy of 99.99%

Jain et al. [43] ECG signal 2 classes (normotension
and hypertension) CNN Accuracy of 99.68%

Rajput et al. [44] ECG signal 2 classes (normotension
and hypertension) OWFB Accuracy of 99.95%

Sharma et al. [45] ECG signal 2 classes (normotension
and hypertension) SVM Accuracy of 98.05%

Liang et al. [46] PPG and ECG signal
3 classes (normotension,

prehypertension, and
hypertension)

K-NN F1 score of 88.49%

Kuzmanov et al. [47] PPG and ECG signal 2 classes (hypotension
and not hypotension) LSTM and CNN Accuracy of 76%
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Table 4. Cont.

Authors Dataset No of Classes Method Performance

Kuzmanov et al. [48] PPG and ECG signal
3 classes (normotension,

prehypertension, and
hypertension)

GRU and CNN Accuracy of 78%

Our study PPG and ECG signal

5 classes (hypotension,
normotension,

prehypertension,
hypertension stage 1, and

hypertension stage 2)

Concatenated 1D CNN Accuracy of 95%

The studies which transformed the PPG signal into 224 × 224 × 3 2D scalogram
images, such as the study proposed by Wu et al. and Sun et al., obtained an accuracy
of 90% in classifying blood pressure into two categories and an accuracy of 93.54% in
classifying three categories of blood pressure levels, respectively, using a 2D CNN model.
Wu et al. transformed the PPG signals using continuous wavelet transforms into scalogram
images and used a simple 2D CNN model using two convolutional layers [31]. Meanwhile,
Sun et al. transformed the first derivative of the PPG signal into a scalogram image using
the the Hilbert Huang transform and used Alexnet architecture, which consists of eight
layers [32]. The results show that a higher number of layers extract the features in more
detail and can improve the classification performance. However, converting the PPG signal
into 2D images requires more computational time than directly using the PPG signal’s time
series data.

The study proposed by Yen et al. used PPG signal time series data as input to the
BILSTM and ResNet [33]. Moreover, they expanded the classification of blood pressure
levels into four categories: normotension, prehypertension, hypertension stage 1, and
hypertension stage 2. However, the performance indicated overfitting by providing 100%
accuracy for train data and 76% for test data. There is a huge difference between the train
and test accuracy due to the imbalanced dataset of four blood pressure levels.

In addition, several researchers approved the accuracy improvement for blood pres-
sure classification, which extracted physiological information from ECG signals. The study
proposed by Soh et al. used the time series data of ECG signals as input to the CNN model,
which consists of four convolutional layers followed by a max pooling layer [42]. In evalu-
ating the model performance, they applied 10-fold cross-validation (CV) and left out one
validation technique. Their study reported 99.99% accuracy in classifying normotension
and hypertension for both validation techniques. The results showed that the proposed
model has high robustness in diagnosing hypertension.

A study proposed by Rajput et al. used a two-stage deep CNN architecture to classify
low-risk and high-risk hypertension using multi-lead ECG signals [44]. Their study claimed
that features extracted from ECG signals are clinically significant at p < 0.001. Moreover,
the study achieved a robust model after evaluation using three types of cross-validation
models, including random hold-out cross CV, five-fold CV, and LOOCV. The first stage of
deep CNN, which consists of two convolutional layers, two pooling layers, and two fully
connected layers, obtained an accuracy of 99.68% in detecting hypertension. Furthermore,
the second stage of deep CNN consists of four convolutional layers, four pooling layers, and
three-fully connected layers categorized low-risk and high-risk hypertension conditions
with 90.98% accuracy. Their study’s limitation is only considered three-lead ECG signals
from 221 subjects. Therefore, for future works, they will expand the number of channels
from more subjects and extend for classification of prehypertension, moderate hypertension,
and severe hypertension classes.

Sharma et al. evaluated 23 studies related to hypertension detection using physi-
ological signals, including ECG, HRV, PPG, and ballistocardiograph signals (BCG) [45].
According to their findings, ECG signals and HRV features provided the best performance
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compared with the other features. They tested several supervised machine learning algo-
rithms, including ensemble begged tress (EBT), k-nearest neighbor (K-NN), and support
vector machine (SVM). The highest classification performance obtained 98.05% accuracy
with an AUC score of 1. For further research, deep learning architecture with a large
database will be used to classify normotension, high-risk, and low-risk hypertension.

The result showed that physiological information from PPG and ECG signals strongly
correlates with blood pressure measurement. Therefore, several studies used PPG and ECG
signals to classify blood pressure levels. A study proposed by Liang et al. provided an F1-
score of 88.49% in classifying normotension, prehypertension, and hypertension [46]. How-
ever, there are several limitations due to the handcrafted features extracted not representing
the critical information of the whole signals and still using traditional machine learning
algorithms to classify the features. Furthermore, a study proposed by Kuzmanov et al.
extracted the features directly from the PPG and ECG with a duration of 8 s using a deep
learning model. The proposed study provided 76% accuracy using LSTM and CNN in
classifying hypotension and not hypotension [47]. Furthermore, Kuzmanov et al. extended
the classification system for three blood pressure level categories and obtained 78% accu-
racy using GRU and CNN models [48]. According to the results, the performance is still
affected by false detection and needs to be improved. For further research, they will adjust
the segment size for all datasets and develop regression models for BP estimation using
Big Data with a deep learning approach.

To address several limitations in previous studies, which still used handcrafted features
and traditional machine learning algorithms, This study extracted the features directly from
time series data of PPG and ECG signals and combined the features using a concatenated
CNN model. Furthermore, the classification system extends to classify blood pressure
levels into five categories based on the American Heart Society standard: hypotension,
normotension, prehypertension, hypertension stage 1, and hypertension stage 2. Based on
the ANOVA test, features from PPG and ECG signals show the most statistical significance
with the p-value of 4.72 ×10−12 (p < 0.05) compared to a single wave of PPG or ECG signals.

In designing the configuration of the CNN architecture, the depth of layers and the
number of filters should be considered. These variables affect both model complexity
and feature maps. The model cannot extract the significant features if the configuration
is too simple. On the other side, if the model is too deep, the computational time for
training will be prolonged and increase the model’s complexity. As a result, we assessed
five configurations using varied convolutional layer depths. As shown in Table 2, the CNN
architecture which consists of five convolutional layers showed the highest performance
in classifying blood pressure levels by obtaining 100% training accuracy, 100% validation
accuracy, and 94.56–95.15% test accuracy with a 95% confidence interval. There was a 5%
difference between training and testing, which indicated that it was still affected by false
detection. However, the proposed model showed a promising solution in classifying five
categories of BP levels. As a novel approach, our proposed concatenated CNN architecture
uses PPG and ECG as input to the model.

Indeed, the five convolutional layers with 8, 16, 32, 64, and 128 filters for layers one
through five, respectively, using a small filter size for each layer, produced feature maps by
extracting the physiological information from PPG and ECG signals. The number of filters,
which gradually increased with small filter size, extracted the comprehensive features and
started to identify the low features that combine to generate more complex features. The
concatenated layers fused previous models’ feature maps in more detail as input to the fully
connected layers. Therefore, the proposed concatenated CNN architecture outperformed
the previous studies that used PPG and ECG. Moreover, this study successfully expanded
the classification system’s ability to classify five blood pressure levels.

Cuff-based monitoring is not a suitable option for long-term blood pressure monitoring
due to inconvenience associated with blood pressure measurements. Meanwhile, catheteri-
zation is required for invasive blood pressure measurement, which is not commonly used
for ambulatory disorders. Therefore, computer-aided diagnostic tools for monitoring and
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classifying blood pressure levels were developed using a deep neural network to extract the
physiological characteristic from PPG and ECG signals. The performance of our proposed
method showed a promising solution to be used as an assisting tool in diagnosing blood
pressure levels. However, our study had several limitations: first, due to the imbalanced
dataset, our result is affected by false detection. As a solution, for further research, we must
expand the number of datasets. Second, our study required a clinical experiment with
primary datasets that included comprehensive medical information related to diagnosing
blood pressure levels, such as age, BMI, and medical history, to approach clinical viability.

5. Conclusions

This paper discussed the diagnostic system for blood pressure level classification based
on physiological information extracted from PPG and ECG signals using concatenated
CNN. By analyzing the statistical significance of each signal, the features from PPG and
ECG were associated with the blood pressure levels by obtaining a higher classification
accuracy compared with the single wave of PPG or ECG as input to the CNN model.
Furthermore, five architectures of CNN models based on the depth of layers were observed
to determine the optimal configuration of the proposed model. The concatenated CNN
models, which consist of five convolutional layers, provided the highest performance in
classifying blood pressure levels. The proposed model successfully extracted the PPG
and ECG features directly and combined these signals’ essential information. Moreover,
this study expanded the classification problem of blood levels from binary classification
(normotension and hypertension) into five categories: hypotension, normotension, pre-
hypertension, hypertension stage 1, and hypertension stage 2. According to the results,
the system can be used as an additional tool to diagnose blood pressure levels. However,
the proposed model still needs to be validated with a large number of data to confirm our
proposed model’s clinical feasibility.
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