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Abstract: This paper presents a novel computational algorithm to estimate blood volume decompensa-
tion state based on machine learning (ML) analysis of multi-modal wearable-compatible physiological
signals. To the best of our knowledge, our algorithm may be the first of its kind which can not only dis-
criminate normovolemia from hypovolemia but also classify hypovolemia into absolute hypovolemia
and relative hypovolemia. We realized our blood volume classification algorithm by (i) extracting a
multitude of features from multi-modal physiological signals including the electrocardiogram (ECG),
the seismocardiogram (SCG), the ballistocardiogram (BCG), and the photoplethysmogram (PPG),
(ii) constructing two ML classifiers using the features, one to classify normovolemia vs. hypovolemia
and the other to classify hypovolemia into absolute hypovolemia and relative hypovolemia, and
(iii) sequentially integrating the two to enable multi-class classification (normovolemia, absolute
hypovolemia, and relative hypovolemia). We developed the blood volume decompensation state
classification algorithm using the experimental data collected from six animals undergoing normov-
olemia, relative hypovolemia, and absolute hypovolemia challenges. Leave-one-subject-out analysis
showed that our classification algorithm achieved an F1 score and accuracy of (i) 0.93 and 0.89 in
classifying normovolemia vs. hypovolemia, (ii) 0.88 and 0.89 in classifying hypovolemia into absolute
hypovolemia and relative hypovolemia, and (iii) 0.77 and 0.81 in classifying the overall blood volume
decompensation state. The analysis of the features embedded in the ML classifiers indicated that
many features are physiologically plausible, and that multi-modal SCG-BCG fusion may play an
important role in achieving good blood volume classification efficacy. Our work may complement
existing computational algorithms to estimate blood volume compensatory reserve as a potential
decision-support tool to provide guidance on context-sensitive hypovolemia therapeutic strategy.

Keywords: hypovolemia; blood volume; machine learning; seismocardiogram; ballistocardio-
gram; wearables

1. Introduction

Hypovolemia is a state of low blood volume and can be classified into absolute hypov-
olemia and relative hypovolemia [1]. Absolute hypovolemia is associated with the absolute
deficit in circulating blood volume for normal blood vessel capacitance (e.g., hemorrhage,
dehydration, and vomiting), while relative hypovolemia is associated with abnormally
large vessel capacitance for normal blood volume (e.g., sepsis, vasoplegia, and heat stress).
Hypovolemia is responsible for the majority of shock etiology and shock-induced mortality
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in the Emergency Department: in a study, absolute hypovolemia and relative hypov-
olemia combined accounted for 82% of shock (absolute hypovolemia 31% and relative
hypovolemia 51%) and >73% of 7-day shock-induced mortality [2]. In general, absolute
hypovolemia and relative hypovolemia are associated with distinct treatment strategies:
absolute hypovolemia can be treated primarily by volume replenishment whereas relative
hypovolemia is treated primarily by vasoactive drugs (although in practice both treatments
may often be used together to maximize treatment efficacy). Hence, there is a clear need
for early diagnosis of hypovolemia and its classification into absolute hypovolemia and
relative hypovolemia in order to provide context-sensitive treatments.

Traditionally, vital signs such as blood pressure, urinary output, and heart rate have
been employed as indicators of hypovolemia. To list a few, postural hypotension with
the resulting dizziness and tachycardia were shown to be useful diagnostics of blood loss,
whereas supine hypotension and tachycardia had no diagnostic value [3,4]. Urinary output
is widely used as a therapeutic endpoint for diagnosing and resuscitating low blood volume
states in burn injury patients [5]. However, overall sensitivity of these vital signs is low [3,4].
In addition, postural challenges may not be well suited to critically ill hypovolemia patients,
which further weakens the utility of the vital sign-based hypovolemia indicators.

With the increasing body of work suggesting that vital signs alone are not effective
in diagnosing hypovolemia [6], novel surrogate measures of hypovolemia have been
investigated. These include serum lactate level and its clearance [4,7], dynamic indices
such as systolic pressure variability and pulse pressure variability [8], and peripheral tissue
perfusion parameters [9] to list a few. In some studies, vital signs and laboratory values
were integrated into a hypovolemia screening tool [10–12]. More recently, notable advances
in signal processing and machine learning (ML) have fostered the application of these
techniques in hypovolemia diagnosis. Representative examples include discrete Fourier
transform-based analysis of arterial blood pressure waveform [13], fast Fourier transform-
based analysis of central venous blood pressure waveform [14], ML analysis of arterial
blood pressure waveform in its entirety (known as “Compensatory Reserve Index”) [15],
support vector machine analysis of compressed arterial blood pressure waveform via
principal components analysis [16], ML analysis of photoplethysmogram (PPG) signal
features derived from time-frequency analysis [17], deep learning analysis of electronic
medical records, vital signs, and laboratory values [18,19], and natural language processing-
aided voting ensemble ML analysis of pulse pressure and unstructured clinical notes [20].

Despite the long-standing effort, existing hypovolemia diagnosis measures and tech-
niques have a few practical limitations. First, gold standard vital signs measurements
(e.g., catheter-based arterial and venous blood pressure) and laboratory values for accurate
computation of vital signs and dynamic indices are not always available, especially in
austere environments and low-resource settings, presenting significant challenges in the
continuous assessment of hypovolemia based on rudimentary vital signs and dynamic
indices. Second, dynamic indices are effective only in mechanically ventilated patients but
not in spontaneously breathing patients [21], which limits their applicability outside the
intensive care settings. Third, prior effort to exploit multi-modal physiological signals in
the context of hypovolemia diagnosis appears to be very much limited, despite the ongoing
success in the development of various medical devices that can acquire multi-modal physi-
ological signals [22,23]. Fourth, and perhaps most importantly, the vast majority of existing
work has focused predominantly on the discrimination of either absolute hypovolemia
(specifically, hemorrhage) or relative hypovolemia (specifically, sepsis) aspect of hypov-
olemia from normovolemia, while the capability for classifying hypovolemia into absolute
hypovolemia and relative hypovolemia (which is important in making appropriate treat-
ment decisions) has been largely neglected. Accordingly, the efficacy of existing methods
in breaking hypovolemia down into absolute hypovolemia and relative hypovolemia is
not known.

This paper intends to bridge the above gaps in hypovolemia diagnosis by (i) exploiting
multi-modal wearable-compatible physiological signals to enable ubiquitous assessment of
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blood volume decompensation state even outside of intensive care settings and (ii) devel-
oping a novel computational algorithm to discriminate both absolute hypovolemia and
relative hypovolemia from normovolemia. To the best of our knowledge, our algorithm
is the first of its kind capable of discriminating normovolemia from hypovolemia as well
as classifying hypovolemia into absolute hypovolemia and relative hypovolemia. In this
way, it has the potential to help clinicians deliver context-sensitive treatments to hypov-
olemic patients. We realized our blood volume classification algorithm by (i) extracting a
multitude of features indicative of blood volume decompensation state from multi-modal
physiological signals including the electrocardiogram (ECG), the seismocardiogram (SCG),
the ballistocardiogram (BCG), and the PPG, (ii) constructing two ML classifiers using the
features, one based on random forest to classify normovolemia vs. hypovolemia and
the other based on logistic regression to classify hypovolemia into absolute hypovolemia
and relative hypovolemia, and (iii) sequentially integrating the two to enable multi-class
classification (normovolemia, absolute hypovolemia, and relative hypovolemia). We de-
veloped and validated the blood volume decompensation state classification algorithm
using the experimental data collected from six animals undergoing normovolemia, relative
hypovolemia, and absolute hypovolemia challenges.

This paper is organized as follows. Section 2 presents a brief description of experi-
mental data and details of the blood volume decompensation state classifier development.
Section 3 presents results, which are discussed and interpreted in Section 4. Section 5
summarizes the paper with conclusions and lessons learned.

2. Materials and Methods
2.1. Experimental Data

Experiments were performed in six Yorkshire swine (age: 114–150 days, weight:
52–71 kg) under the approval of the IACUC at the Georgia Institute of Technology (A100276),
Translational Testing and Training Labs, Inc. (GT48P), and the Department of Navy Bureau
of Medicine and Surgery. Full details of the experimental protocol are described in our prior
work [24,25]. In brief, each animal was anesthetized and subject to a baseline period. Then,
the animals underwent a relative hypovolemia period and then an absolute hypovolemia
period (Figure 1). In relative hypovolemia, the animals received increasing doses of nitro-
glycerin until reaching one of two safety thresholds: (i) cardiovascular collapse defined as
a 20% sustained drop in mean blood pressure or (ii) the maximum dosage of nitroglycerin,
500 mcg/min. In absolute hypovolemia, the animals were hemorrhaged through an arterial
line at increments of 7% total blood volume (estimated by the Evans Blue dye technique)
until reaching cardiovascular collapse. Each hemorrhage was paused for 5–10 min to allow
the animals’ cardiovascular responses to stabilize. After the protocol, the animals were
euthanized either by lethal injection of potassium chloride or exsanguination.
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During the experiment, physiological signals including the ECG, the SCG, the BCG,
and the PPG were measured at a 2 kHz sampling rate. These physiological signals can be
measured simultaneously to yield features indicative of blood volume state (see Sections 2.2
and 4.2 for details). The ECG was measured using electrodes placed in Lead II configuration
and interfaced to a wired amplifier module (ECG100C, Biopac Systems, Goleta, CA, USA;
±10 V analog output with 0.1 µV rms noise in 0.5 Hz–35 Hz range). The SCG (anterior-
posterior direction) and the BCG (superior-inferior direction) were measured using a 3-axis
accelerometer (ADXL354, Analog Devices, Norwood, MA, USA;±4 g range with 200 mV/g
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sensitivity, 20 µg/
√

Hz noise density, and 0.15 mg/◦C temperature offset) placed on the
mid-sternum and interfaced to a wired transducer interface module (HLT100C, Biopac
Systems, Goleta, CA, USA). The PPG was measured using a trans-reflectance PPG sensor
(TSD270A, Biopac Systems, Goleta, CA, USA) placed over a femoral artery and interfaced
to a veterinary pulse oximeter module (OXY200, Biopac Systems, Goleta, CA, USA; 10 V
analog output with 660 nm (red) and 910 nm (infrared) wavelengths). All the modules
were interfaced with a data acquisition system (MP160, Biopac Systems, Goleta, CA, USA)
with dedicated software (AcqKnowledge, Biopac Systems, Goleta, CA, USA). Note that
all the physiological signals employed in this work are highly compatible with wearable
sensing, as demonstrated in our prior work on patch [26] and wristwatch [27] devices.

2.2. Data Processing and Feature Extraction

The physiological signals were filtered using a finite impulse response zero-phase
digital band-pass filter with a Kaiser window. The cut-off frequencies used were 0.5–40 Hz
for the ECG, 1.0–40 Hz for the SCG and the BCG, and 0.5–10 Hz for the PPG, which were
chosen based on the best practices reported in the literature [28,29]. Then, the R waves in
the ECG were detected as local peaks. Subsequently, the signals were gated into individual
cardiac beats using the ECG R wave as reference. Finally, the BCG was rotated to be
perfectly perpendicular to the gravitational direction so that it maximally aligned with the
superior-inferior direction.

A total of 46 features were extracted from the fiducial points derived from multiple
physiological signals considered in this work [24,30] (Figure 2):

(1) Heart rate and heart rate variability based on three different methods [31] were
calculated, including (i) time-domain method HRVT, (ii) Poincare method HRVP, and
(iii) frequency-domain method HRVF. These constituted 4 features (HRVT, HRVP,
HRVF, and heart rate).

(2) Cardiac timing intervals including pre-ejection period (PEP, as the time interval
between the R wave in the ECG and (i) the AO [32] point in the SCG as well as (ii) the
H, I, J, K, and L waves in the BCG; thus 6 in total) and left ventricular ejection time
(LVET, as the time interval between the AO point and the AC point [32] in the SCG) as
well as their ratios (PEP/LVET; 6 based on 6 PEPs) were calculated. These constituted
13 features.

(3) PPG amplitude (APPG, as the vertical difference between the diastolic trough and
systolic peak) was calculated as a measure of peripheral vasoconstriction/vasodilation.
This constituted one feature.

(4) Various time intervals and amplitudes based on the fiducial points in the BCG were
calculated: H, I, J, K, and L wave amplitudes, a total of 10 wave-to-wave time intervals
and amplitudes (H-I, I-J, J-K, I-K, and K-L), and the variability associated with all
these time intervals and amplitudes (as the standard deviation of the 100 causal beats
preceding the cardiac beat of interest) were calculated (except the I-K interval and
amplitude since I-K amplitude showed a very large coefficient of variation). These
constituted 28 features.

All the features were normalized by their respective average values in the baseline
state (i.e., normovolemia in Figure 1) on an individual basis. Then, all the normalized
features were scaled using a standard scaler before developing and evaluating the blood
volume decompensation state classifiers. Note that the scaler was determined solely based
on the training dataset and then employed to transform the test dataset.
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2.3. Classification of Blood Volume Decompensation State

To realize a multi-class classifier that can discriminate normovolemia and hypovolemia
as well as classify hypovolemia into absolute hypovolemia and relative hypovolemia, two
binary ML classifiers were developed based on the features extracted in Section 2.2 and
then combined. The 1st-stage classifier determines if a subject is in normovolemia or
hypovolemia state, while the 2nd-stage classifier determines if the subject is in absolute
hypovolemia or relative hypovolemia in case the outcome of the 1st-stage classifier is
hypovolemia (Figure 3). A post-processing step based on moving-average smoothing was
employed in both stages to ensure robust classification by eliminating isolated misclassifi-
cation instances (Figure 3). To make an efficient use of the limited data with a relatively
small sample size (N = 6), we used the leave-one-subject-out cross-validation analysis in
developing and validating the blood volume decompensation state classifiers.
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Figure 3. Machine learning (ML)-based multi-class blood volume decompensation state classification
to discriminate normovolemia (NV) and hypovolemia (HV) as well as to classify hypovolemia into
absolute hypovolemia (AH) and relative hypovolemia (RH).

2.3.1. ML-Based Blood Volume Decompensation State Classifier: Development

Using the features described in Section 2.2, we performed preliminary feature selection
using the wrapper method [33]. We selected optimal sets of features associated with the
three ML classifiers considered in this work: (i) logistic regression, (ii) random forest, and
(iii) support vector machine. In our experimental data, the number of hypovolemia samples
was approximately 10 times larger than the number of normovolemia samples due to
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the much longer duration associated with hypovolemia than normovolemia (Figure 1),
while hypovolemia consisted of absolute hypovolemia samples and relative hypovolemia
samples at an approximate ratio of 3:1. To minimize the adverse impact of imbalance
in classes on optimal feature selection, we used two remedies: (i) we applied resampled
data to the wrapper method, and (ii) we used and optimized performance metric suited
to the data characteristics associated with each classification stage in leave-one-subject-
out cross-validation analysis, namely, F1 score for 1st -stage classifier and accuracy for
2nd-stage classifier. In selecting features to classify normovolemia and hypovolemia, we
down-sampled hypovolemia samples because normovolemia samples from the baseline
period were associated with stable and homogeneous physiological states (Figure 1) and
over-sampling them may not provide rich data for feature selection. In selecting features to
classify absolute hypovolemia and relative hypovolemia, we did not perform resampling
because all the animals underwent heterogeneous physiological changes during both abso-
lute hypovolemia and relative hypovolemia periods and the samples were just modestly
imbalanced (Figure 1).

We optimized the features and hyper-parameters associated with each of the three ML
classifiers sequentially as follows. First, we optimized the features for each ML classifier
with an initial set of hyper-parameters using the wrapper method. In the case of the logistic
regression classifier, we employed the L2 regularization to effectively minimize the requisite
features for classification during its training. In the case of the random forest classifier, we
built a random forest consisting of 100 estimators. We selected the maximum tree depth
of 12 and the minimum requisite samples of 2 at the split nodes and 1 at the leaf nodes
by minimizing the Gini impurity. During its training, we generated decision trees in the
random forest by bagging and maximized the aggregated vote from multiple decision
trees in the random forest. In the case of the support vector machine, we used a support
vector machine with radial basis functions as kernels. During its training, we used the
unity regularization parameter and the inverse of the product of the number of features
and the variance of the training dataset as the kernel coefficient. Second, we optimized the
hyper-parameters of the three ML classifiers, each equipped with its respective optimal
features, using the random search hyper-parameter optimization method [34] via leave-
one-subject-out cross-validation analysis.

The final multi-class classifier was realized by combining the best 1st-stage and 2nd-
stage classifiers in cascade (Figure 3). The 1st-stage and 2nd-stage classifiers were followed
by a 500-point moving average smoother and a 50-point moving average smoother, re-
spectively, that filters the time series sequence of classification outcomes and removes
isolated misclassification instances as outliers. For the 1st-stage classifier, normovolemia
samples were labeled as “0” and hypovolemia samples were labeled as “1”. Hence, a
sample input to the 1st-stage classifier was classified as normovolemia if the classifier out-
put after smoothing was <0.5 and as hypovolemia otherwise. For the 2nd-stage classifier,
relative hypovolemia samples were labeled as “0” and absolute hypovolemia samples
were labeled as “1”. Hence, a sample inputted to the 2nd-stage classifier was classified
as relative hypovolemia if the classifier output after smoothing was <0.5 and as absolute
hypovolemia otherwise. Note that the classification threshold of 0.5 is a naïve choice and
may be optimized to maximize the classifier performance, although such a refinement
was not considered in this work given its primary interest in demonstrating the initial
proof-of-concept of the proposed approach.

2.3.2. ML-Based Blood Volume Decompensation State Classifier: Evaluation

The efficacy of the multi-class blood volume decompensation state classifier developed
in Section 2.3.1 was evaluated using the leave-one-subject-out cross-validation analysis.
For each animal, we developed a final multi-class classifier as described in Section 2.3.1
using the data pertaining to the remaining five animals. Then, the entire time series data
of the animal was inputted to the final multi-class classifier on a beat-by-beat basis for
classification into normovolemia vs. hypovolemia and then hypovolemia into absolute
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hypovolemia vs. relative hypovolemia. The classification efficacy was evaluated in terms
of (i) accuracy, precision, recall, and F1 score pertaining to the 1st-stage classifier and the
2nd-stage classifier, respectively, and (ii) overall accuracy and F1 macro score pertaining to
the multi-class classifier.

We had a particular interest in demonstrating (i) the superiority of our ML classifier
to conventional vital sign-based techniques and (ii) the advantages associated with the
use of multi-modal SCG-BCG fusion in blood volume decompensation state classification.
Hence, we developed three multi-class ML classifiers for comparison purposes: (i) a
classifier solely based on vital signs (heart rate, three heart rate variability measures, and
blood pressure (systolic, diastolic, and mean)), (ii) a classifier incorporating the features
based on the fiducial points in ECG, SCG, and PPG (but not BCG), and (iii) a classifier
incorporating the features based on the fiducial points in ECG, BCG, and PPG (but not
SCG). We developed and evaluated these competing classifiers exactly in the same way as
our final multi-class classifier.

We performed feature importance analysis on our final multi-class classifier to interpret
and gauge the relevance of the features selected to classify normovolemia vs. hypovolemia
as well as to classify hypovolemia into absolute hypovolemia vs. relative hypovolemia.
We in particular leveraged our prior work on a mathematical model-based analysis of the
BCG [35–37] as well as work of others [38,39] to garner useful insights on the relevance of
the selected features in classifying the blood volume decompensation state.

3. Results

Tables 1 and 2 present animal-by-animal and aggregated (in terms of mean and stan-
dard deviation) 1st-stage (normovolemia vs. hypovolemia) classification performance and
2nd-stage (hypovolemia into absolute hypovolemia vs. relative hypovolemia) classifica-
tion performance associated with all the three candidate ML classifiers considered in this
work (each pertaining to the optimal sets of features and hyper-parameters selected as
described in Section 2.3.1). Table 3 shows animal-by-animal and aggregated (in terms
of mean and standard deviation) multi-class classification performance associated with
the best multi-class classifier (constructed by combining the best 1st-stage and 2nd-stage
classifiers with a post-classification moving-average smoother in both stages as described
in Section 2.3.1), while Table 4 shows the corresponding confusion matrix. Figure 4 shows
the time series sequences of multi-class blood volume decompensation state classification
outcomes associated with all the animals in conjunction with the ground truth. Table 5
compares (a) accuracy and (b) F1 macro scores associated with our final multi-class classifier
and three competing ML classifiers (vital signs only, SCG-based features excluded, and
BCG-based features excluded; see Section 2.3.2 for details). Figure 5 shows the feature
importance associated with the best 1st-stage and 2nd-stage classifiers: Figure 5a shows the
feature importance associated with the best 1st-stage classifier (i.e., random forest) in terms
of minimum decrease in impurity, while Figure 5b shows the feature importance associated
with the best 2nd-stage classifier (i.e., logistic regression) in terms of its coefficients.

Table 1. Performance of 1st-stage classifier based on leave-one-subject-out analysis. Aggregated
performance is shown in terms of mean and standard deviation.

(a) Logistic Regression
Animal Accuracy Precision Recall F1 Score

1 0.77 0.94 0.78 0.85
2 0.93 0.93 1.00 0.96
3 0.64 1.00 0.52 0.68
4 0.74 0.71 1.00 0.83
5 0.79 0.97 0.77 0.86
6 0.83 0.97 0.82 0.89

Aggregated 0.78 ± 0.09 0.92 ± 0.10 0.81 ± 0.16 0.85 ± 0.08
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Table 1. Cont.

(b) Random Forest
Animal Accuracy Precision Recall F1 Score

1 0.88 1.00 0.86 0.92
2 0.85 1.00 0.84 0.91
3 0.97 0.99 0.97 0.98
4 0.93 1.00 0.89 0.94
5 0.89 0.92 0.96 0.94
6 0.84 1.00 0.81 0.89

Aggregated 0.89 ± 0.04 0.98 ± 0.03 0.89 ± 0.06 0.93 ± 0.03

(c) Support Vector Machine
Animal Accuracy Precision Recall F1 Score

1 0.80 1.00 0.76 0.86
2 0.88 1.00 0.86 0.93
3 0.78 0.86 0.83 0.85
4 0.86 1.00 0.79 0.88
5 0.96 0.98 0.97 0.97
6 0.73 1.00 0.67 0.80

Aggregated 0.83 ± 0.07 0.97 ± 0.05 0.81 ± 0.09 0.88 ± 0.05

Table 2. Performance of 2nd-stage classifier based on leave-one-subject-out analysis. Aggregated
performance is shown in terms of mean and standard deviation.

(a) Logistic Regression
Animal Accuracy Precision Recall F1 Score

1 0.69 1.00 0.47 0.64
2 0.98 0.96 0.99 0.97
3 0.99 1.00 0.99 0.99
4 0.89 1.00 0.80 0.89
5 0.93 0.79 0.99 0.88
6 0.86 0.82 1.00 0.90

Aggregated 0.89 ± 0.10 0.93 ± 0.09 0.87 ± 0.19 0.88 ± 0.11

(b) Random Forest
Animal Accuracy Precision Recall F1 Score

1 0.52 0.55 0.89 0.68
2 0.98 0.99 0.96 0.98
3 0.98 0.95 0.99 0.97
4 0.95 1.00 0.92 0.96
5 0.99 1.00 0.99 0.99
6 0.85 0.93 0.84 0.88

Aggregated 0.88 ± 0.16 0.90 ± 0.16 0.93 ± 0.05 0.91 ± 0.10

(c) Support Vector Machine
Animal Accuracy Precision Recall F1 Score

1 0.49 0.53 0.83 0.66
2 0.99 0.97 1.00 0.99
3 0.92 0.85 0.99 0.91
4 0.86 1.00 0.75 0.85
5 0.99 1.00 0.99 0.99
6 0.77 0.97 0.66 0.78

Aggregated 0.84 ± 0.17 0.89 ± 0.17 0.87 ± 0.13 0.86 ± 0.11
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Table 3. Performance of multi-class classifier based on leave-one-subject-out analysis (1st-stage
random forest and 2nd-stage logistic regression). Aggregated performance is shown in terms of mean
and standard deviation. NV: normovolemia. HV: hypovolemia. AH: absolute hypovolemia. RH:
relative hypovolemia.

Animal Accuracy Precision Recall F1 Macro Score

1 0.68 0.70 0.77 0.68
2 0.83 0.78 0.88 0.78
3 0.97 0.96 0.97 0.97
4 0.82 0.85 0.84 0.81
5 0.83 0.79 0.76 0.77
6 0.73 0.58 0.66 0.59

Aggregated 0.81 ± 0.09 0.78 ± 0.11 0.81 ± 0.09 0.77 ± 0.11

Table 4. Confusion matrix associated with the multi-class classifier (1st-stage random forest and
2nd-stage logistic regression). Green cells indicate correct classification. Pink cells indicate incor-
rect classification.

NV (ML) HV-RH (ML) HV-AH (ML)

NV 13,205
(15.8%)

913
(1.0%)

385
(0.4%)

HV-RH 7595
(9.1%)

27,319
(32.6%)

3965
(4.7%)

HV-AH 950
(1.1%)

2345
(2.8%)

27,005
(32.2%)
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Table 5. Comparison of final multi-class classifier and three competing ML classifiers (vital signs
only, SCG-based features excluded, and BCG-based features excluded).

Final Classifier No SCG No BCG Vital Signs

Accuracy 0.81 ± 0.09 0.77 ± 0.08 0.69 ± 0.21 0.47 ± 0.12 †

F1 Macro 0.77 ± 0.11 0.75 ± 0.09 0.68 ± 0.21 0.41 ± 0.17 †

†: p < 0.01 (paired t-test).
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4. Discussion

Detecting hypovolemia and classifying it into absolute hypovolemia and relative hypo-
volemia is important to enabling context-sensitive treatment of hypovolemia. However, the
existing body of work has predominantly focused on the discrimination of either absolute
hypovolemia or relative hypovolemia from normovolemia. The specificity of existing abso-
lute hypovolemia detection methods against relative hypovolemia as well as the specificity
of existing relative hypovolemia detection methods against absolute hypovolemia are not
known. In addition, many existing methods rely on measurements that are not readily
available in austere environments. Hence, there is a clear clinical need in enhancing the
ability to classify hypovolemia into absolute hypovolemia and relative hypovolemia based
on ubiquitously accessible measurements. This work intends to bridge these gaps, perhaps
for the first time, by developing an ML-based hypovolemia classification algorithm based
on multiple wearable-compatible physiological signals.

4.1. Blood Volume Decompensation State Classification Performance

The ML-based classifiers exhibited adequate performance in discriminating normo-
volemia vs. hypovolemia (Table 1) as well as in classifying hypovolemia into absolute
hypovolemia and relative hypovolemia (Table 2). For 1st-stage classification, random
forest exhibited the best performance in terms of both the mean and spread (i.e., standard
deviation) associated with all the metrics (Table 1). For 2nd-stage classification, logistic
regression exhibited the best performance in terms of both the mean and spread associ-
ated with accuracy (which is the metric optimized for 2nd-stage classification) (Table 2).
Hence, we used random forest and logistic regression as 1st-stage and 2nd-stage classi-
fiers, respectively. After conducting hyper-parameter optimization, the 2nd-stage logistic
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regression hyper-parameters did not change. In contrast, the 1st-stage random forest hyper-
parameters changed as follows: (i) the number of estimators were chosen to be 672; (ii) the
maximum tree depth decreased to 10; (iii) the minimum requisite samples at the split nodes
increased to 10; and (iv) the minimum requisite samples at the leaf nodes increased to 2. It is
worth noting that both 1st-stage and 2nd-stage classifiers were superior to naïve classifiers
that always classify blood volume state to hypovolemia (accuracy: 0.89 vs. 0.80, F1 score:
0.93 vs. 0.89) and classify hypovolemia to absolute hypovolemia (accuracy: 0.89 vs. 0.48,
F1 score: 0.88 vs. 0.64), respectively (note that the performance gap associated with 1st-
stage classifier is small due to the large bias in the dataset). It is also worth noting that
while the separation of normovolemia and hypovolemia required random forest-based
nonlinear analysis of features, absolute hypovolemia and relative hypovolemia could be
separated both by random forest and logistic regression, suggesting that a reasonably
linear hyperplane that separates absolute hypovolemia and relative hypovolemia may be
created using the wearable-compatible physiological signals. Remarkably, the features
selected by logistic regression and random forest for classifying absolute hypovolemia and
relative hypovolemia were quite similar (random forest selected PEPH/LVET, PEPI/LVET,
and PEPJ). The results are also consistent with the confusion matrix, which indicates that
separating normovolemia and hypovolemia may be more challenging than separating
absolute hypovolemia and relative hypovolemia (Table 4).

The multi-class classifier obtained by integrating the best 1st-stage and 2nd-stage
classifiers along with a moving-average smoother at the end of both stages showed 81%
accuracy and 77% F1 macro score on the average (Table 3 and Figure 4), which outperformed
all the three competing ML classifiers (Table 5). In particular, our multi-class classifier
was significantly superior to the one based only on the vital signs (average performance
improved by 34% in accuracy and 36% in F1 macro score, p < 0.01; Table 5). In addition,
it provided a large improvement in average performance relative to the classifier without
the BCG-based features (accuracy by 12% and F1 macro score by 9%; Table 5) as well as a
small improvement in average performance relative to the classifier without the SCG-based
features (accuracy by 4% and F1 macro score by 2%; Table 5). A possible interpretation
of these results is that (i) vital signs alone (even with invasive BP) are not sufficient to
determine BV decompensation state; (ii) including only the SCG-based features as in
our prior work [21,22] may not be not good enough to achieve good performance; and
(iii) including both SCG-based and BCG-based features makes it possible to improve the
overall performance. Hence, the results clearly demonstrate that ML analysis of multi-
modal wearable-compatible physiological signals is a promising approach to continuous
BV decompensation state classification, and that SCG-BCG fusion is advantageous in
maximizing the classification efficacy.

Although rigorous analysis may not be feasible, we speculate that the results presented
in this work are robust against metrological (especially noise) characteristics of the sensors
used in this work. In particular, features most susceptible to measurement noise are the
amplitudes (and time intervals to a lesser extent) derived from the BCG. Our calculation
suggests that the average magnitudes of the BCG amplitude features are >100 times larger
than the peak noise anticipated from the accelerometer.

4.2. Feature Importance and Interpretation

Although complete interpretation and verification of the features selected to develop
the ML-based blood volume decompensation state classifier was far from trivial, it appeared
that many of the important selected features were relevant and adequate according to the
existing physical knowledge and prior findings.

Features that played an important role in the 1st-stage classifier included: (i) PEPAO,
(ii) BCG K-L and K wave amplitudes, (iii) BCG H-I and K-L wave time intervals, (iv) vari-
ability in the BCG H, I, and K-L wave amplitudes as well as I-J time interval, and (v) all the
heart rate variability measures (Figure 5a). First, the relevance of PEPAO may be supported
by the physics of cardiac function, which suggests that PEP may increase with hypovolemia
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due to the reduction in the cardiac preload [40,41]. Second, the relevance of BCG K-L and
K wave amplitudes may be supported by the physical mechanism underlying the genesis
of the BCG [35,36]. More specifically, our prior mathematical model-based analysis shows
that (i) the J and J-K waves in the conventional displacement BCG are approximately pro-
portional to central aortic pulse pressure and distal aortic pulse pressure, respectively [35]
and that (ii) the K and L waves in the acceleration BCG (i.e., the acceleration associated
with body movement due to heartbeat, as the one measured in our work) approximately
correspond to the J and K waves in the displacement BCG [36]. Assuming that central
aortic pulse pressure is approximately proportional to cardiac SV and that distal aortic
pulse pressure is in general proportional to its central aortic counterpart, the BCG K and
K-L wave amplitudes are likely surrogates of cardiac SV. Hence, the BCG K and K-L wave
amplitudes may manifest the influence of hypovolemia on preload. Third, our prior mathe-
matical model-based analysis also shows that the BCG K-L wave interval exhibits inversely
proportional relationship to pulse wave velocity [36], despite to a modest extent. Hence, it
is speculated that hypovolemia is accompanied by low blood pressure, which in general
decreases pulse wave velocity and increases the BCG K-L wave interval. On the other
hand, the relationship between hypovolemia and the BCG H-I wave interval is not clear.
Fourth, we do not know the exact physical mechanism between hypovolemia and the
variability in the BCG features. However, our data analysis shows that the variability in
the BCG features appear to increase during hypovolemia. Hence, the selection of the BCG
feature variability as meaningful signatures of hypovolemia is not surprising, although
deeper mechanistic understanding of how the variability in the BCG features is influenced
by hypovolemia remains an open question. Fifth, the relevance of heart rate variability
measures may be supported by the extensive body of existing literature reporting that
(i) HRVT and HRVF are surrogates of sympathetic activity during hemorrhage and may be
inversely related to central blood volume [42–44] (supporting its relationship to absolute
hypovolemia), and that (ii) heart rate variability is correlated with the severity of systemic
infection (e.g., sepsis) and may have diagnostic and prognostic value [45,46] (supporting
its relationship to relative hypovolemia).

Features that played an important role in the 2nd-stage classifier included: (i) multiple
PEP/LVET metrics (PEPAO/LVET, PEPH/LVET, and PEPJ/LVET) and (ii) HRVT (Figure 5b).
On the one hand, the relevance of PEP/LVET metrics may be supported by the physics
of cardiac function, which suggests that LVET may decrease with absolute hypovolemia
due to the reduction in the cardiac stroke volume (SV) [40,41]. Hence, PEP/LVET increases
as cardiac SV decreases, suggesting that an increase in PEP/LVET can be an indicator of
absolute hypovolemia (in fact, we experimentally demonstrated the value of PEP/LVET
in quantifying absolute hypovolemia in our prior work [24,25]). From this standpoint,
the positive regression coefficients between absolute hypovolemia and PEPAO/LVET and
PEPH/LVET are plausible. In contrast, the negative regression coefficient between absolute
hypovolemia and PEPJ/LVET is counterintuitive. We speculate that it may be the conse-
quence of multi-collinearity, considering that PEPAO/LVET, PEPH/LVET, and PEPJ/LVET
in our data were highly correlated (PEPAO/LVET vs. PEPH/LVET: 0.82; PEPAO/LVET vs.
PEPI/LVET: 0.75; PEPH/LVET vs. PEPI/LVET: 0.93). Not surprisingly, simply removing
PEPJ/LVET from the logistic regression classifier in the final classifier did not make any
notable impact on the classification performance (accuracy: 0.78 +/− 0.11; F1 macro score:
0.74 +/− 0.12). On the other hand, the relevance of HRVT may require further investigation.
A prior work observed that HRVT increases in absolute hypovolemia [44]. Yet, to our
knowledge, there is no prior work investigating how HRVT is influenced by relative hypo-
volemia. Our data analysis shows that HRVT lacks consistency in terms of its changes due
to absolute hypovolemia and relative hypovolemia. Hence, the role of HRVT in separating
absolute hypovolemia and relative hypovolemia must be scrutinized in follow-up work.
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4.3. Study Limitations and Future Opportunities

This study has a few limitations and implications for future opportunities. First, the
sample size was small (N = 6). Hence, despite the promising results obtained in this
paper, future work is needed to ascertain the efficacy of the blood volume decompensation
state classifier and the robustness of the selected features in larger datasets. Second, the
computations for blood volume decompensation state classification were performed offline
using reasonably high-quality data obtained from anesthetized animals associated with
minimal motion artifacts and sensor noises. To enable its real-world use, online signal
processing methods for assessment of physiological signal quality, elimination of motion
artifacts and sensor noises (including the variability originating from body postures [47]
and measurement instruments [48]), robust detection of fiducial points in the physiological
signals, and computation of features must be developed. Third, more extensive effort
must be invested before the promise demonstrated in healthy animals in this work can be
translated to humans who are possibly associated with diseases and comorbidities.

5. Conclusions

This paper presented a novel ML-based blood volume decompensation state classifica-
tion algorithm that has the potential for implementation using ultra-convenient wearable
devices. We demonstrated that multi-modal physiological signals can be analyzed using
ML to yield adequate classification of blood volume decompensation state, that SCG and
BCG signals can play meaningful and complementary roles in blood volume decompen-
sation state classification, and that multi-modal physiological signal analysis has clear
advantages over conventional vital signs-based techniques to blood volume decompensa-
tion state classification. Future work must conduct an extensive evaluation of the blood
volume decompensation state classification algorithm in larger datasets as well as research
on its real-time implementation.
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