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The objective of this study is to investigate the use of pattern
classification methods for distinguishing different types of brain
tumors, such as primary gliomas from metastases, and also for
grading of gliomas. The availability of an automated computer
analysis tool that is more objective than human readers can
potentially lead to more reliable and reproducible brain tumor
diagnostic procedures. A computer-assisted classification
method combining conventional MRI and perfusion MRI is de-
veloped and used for differential diagnosis. The proposed
scheme consists of several steps including region-of-interest
definition, feature extraction, feature selection, and classifica-
tion. The extracted features include tumor shape and intensity
characteristics, as well as rotation invariant texture features.
Feature subset selection is performed using support vector
machines with recursive feature elimination. The method was
applied on a population of 102 brain tumors histologically diag-
nosed as metastasis (24), meningiomas (4), gliomas World
Health Organization grade II (22), gliomas World Health Orga-
nization grade III (18), and glioblastomas (34). The binary sup-
port vector machine classification accuracy, sensitivity, and
specificity, assessed by leave-one-out cross-validation, were,
respectively, 85%, 87%, and 79% for discrimination of metas-
tases from gliomas and 88%, 85%, and 96% for discrimination
of high-grade (grades III and IV) from low-grade (grade II) neo-
plasms. Multiclass classification was also performed via a one-
vs-all voting scheme. Magn Reson Med 62:1609–1618, 2009.
© 2009 Wiley-Liss, Inc.
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Clinical decisions regarding the treatment of brain neo-
plasms rely, in part, on MRI at various stages of the treat-
ment process. Radiologic diagnosis is based on the mul-
tiparametric imaging profile (CT, conventional MRI, ad-
vanced MRI). Tumor characterization is difficult because
neoplastic tissue is often heterogeneous in spatial and
imaging profiles (1), and for some imaging techniques of-
ten overlaps with normal tissue (especially the infiltrating
part) (2,3). Gliomas might show mixed characteristics; for
example, demonstrating both low- and high-grade fea-
tures. The reference standard for characterizing brain neo-
plasms is currently based on histopathologic analysis fol-

lowing surgical biopsy or resection, but this also has lim-
itations, including sampling error and variability in
interpretation (1,4).

The objective of this study is to provide an automated
tool that may assist in the imaging evaluation of brain
neoplasms by determining the glioma grade and differen-
tiating between different tissue types, such as primary
neoplasms (gliomas) from secondary neoplasms (metasta-
ses). These issues are of critical clinical importance in
making decisions regarding initial and evolving treatment
strategies, and conventional MR imaging is often not ade-
quate in providing answers (1,5). Automated tools, if
proven accurate, can ultimately be applied to (i) provide
more reliable differentiation, especially when the neo-
plasm is heterogeneous and therefore cannot be ade-
quately sampled by localized needle biopsy; (ii) avoid
invasive procedures such as biopsy, especially in cases
where the risks outweigh the benefits; and (iii) expedite or
anticipate the diagnosis (histologic examination is usually
time consuming).

Toward a similar goal, researchers used conventional
MR imaging and echo-planar relative cerebral blood vol-
ume (rCBV) maps calculated from perfusion imaging to
differentiate between high-grade and low-grade neoplasms
(6) or assessed the contribution of MR perfusion alone in
differentiating certain tumor types (7,8). Many studies
have used MR spectroscopy for brain tumor classification
(9-11). Specifically, spectroscopic and conventional MR
imaging was used in Wang et al. (9) to differentiate benign
from malignant brain neoplasms, applying a decision tree
algorithm, whereas spectroscopic and perfusion MRI was
used in Weber et al. (10) to evaluate the inherent hetero-
geneity of brain neoplasms by defining four regions of
interest (ROIs) in the tumoral and peritumoral region.
Some studies used apparent diffusion coefficient maps
computed from diffusion tensor imaging data to differen-
tiate metastases from primary cerebral tumors (by measur-
ing diffusion in peritumoral edema) (12) or combined ap-
parent diffusion coefficient with rCBV to differentiate tu-
mefactive demyelinating lesions and primary neoplasms
from abscesses and lymphomas (13).

The previous studies are very useful in determining the
clinical significance of each MR sequence separately; how-
ever, they do not investigate nonlinear relationships be-
tween different variables by pattern analysis. Pattern clas-
sification techniques were applied for differentiating brain
neoplasms based on linear discriminant analysis (LDA)
(14,15), or independent component analysis (16) on spec-
tral intensities. Others applied support vector machines
(SVMs) on perfusion MRI (17) or combined variable selec-
tion and classification using bayesian least squares SVMs
and relevance vector machines on microarray or spectros-
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copy data (18). Textural features from T1 postcontrast im-
ages were employed in (19) to discriminate between met-
astatic and primary brain tumors using a probabilistic
neural network with a nonlinear least squares features
transformation method. Although these studies apply
more advanced machine learning techniques, they use a
single MR sequence and do not investigate the contribu-
tion of multiple imaging parameters. Multiparametric fea-
tures are explored by nonlinear classification techniques
in (20,21). Li et al. (20) classify gliomas according to their
clinical grade using linear SVMs trained on a maximum of
15 descriptive features (such as amount of mass effect or
blood supply), which are estimated quantitatively by do-
main experts. The definition of such features is based on
expert knowledge and therefore is not completely auto-
mated and reproducible. Devos et al. (21) combine stan-
dard MR intensities with spectroscopy imaging to improve
classification performance using three classification tech-
niques.

In this study, we explore the heterogeneous regions of
brain tumors by combining imaging features from several
sequences and extract morphologic and texture character-
istics. Our analysis requires three ROIs, which define the
neoplastic and necrotic region on contrast enhanced T1-
weighted MRI, and edematous region on fluid attenuated
inversion recovery (FLAIR) image. Instead of only measur-
ing mean values in the ROIs, we investigate if conven-
tional MRI has higher potential when complicated features
are extracted, such as rotation invariant texture features
based on Gabor filtering (22). Moreover, since it has been
shown that contrast enhancement in conventional MRI is
not sufficient for glioma grading or differentiating between
metastasis and high grade tumor, we also incorporate
rCBV maps. This approach incorporates imaging data
which are (or can be) acquired in a routine clinical proto-
col, including multiparametric conventional MRI and per-
fusion.

We apply the method for binary classification, but also
investigate the multiclass classification problem for differ-
entiating between the most common brain tumors: metas-
tasis, meningioma (usually grade I), low-grade glioma
(grade II), grade III glioma, and glioblastoma (grade IV)
according to the World Health Organization system. Grade
II and grade III gliomas include astrocytomas (anaplastic or
not), oligodendrogliomas, and oligoastrocytomas. The pro-
posed framework consists of a training step, where the
classifier learns the imaging characteristics of the different
tumor types, and a testing step, where the classifier recog-
nizes the tumor type in a new image. The framework is
general and, if a significant number of observations (train-
ing samples) exist, can be applied to classify any other
neoplasm and also non-neoplastic pathologies, including
lymphoma, abscess, and encephalitis. We differentiate be-
tween tumor types by combining multiparametric MR im-
ages into a single classification rule rather than using sin-
gle modalities independently. We exploit the potential of
features extracted automatically from the images in order
to avoid descriptive criteria, which are rater dependent
and require prior knowledge (the help of experts).

The proposed scheme consists of four parts: ROI defini-
tion, feature extraction, feature selection, and classifica-
tion based on SVMs. Leave-one-out cross-validation is

used to test the robustness and accuracy of the proposed
classification scheme.

MATERIALS AND METHODS

We propose a multiparametric framework for brain tumor
classification and prediction of degree of malignancy. In-
tensity- and texture-based features are integrated via a
pattern classification technique into a multiparametric im-
aging profile. The features are first normalized to have zero
mean and unit variance. A feature selection method is then
used to select a small set of effective features for classifi-
cation in order to improve the generalization ability and
the performance of the classifier.

In this section, the clinical data and the acquisition
protocol are first reviewed. Then, the preprocessing of the
data and the ROIs for feature extraction are described,
followed by the definition of the features. Finally, the
methods for feature selection and classification are pre-
sented.

Data

We examined 98 patients (52 women, 46 men; age 17-83
years) with a diagnosis of brain neoplasm (from September
2006 to December 2007) who had not been treated at the
time of MRI. Four patients had multiple (2), not related to
each other, lesions that were regarded as independent
masses. All patients underwent biopsy or surgical resec-
tion of the tumor with histopathological diagnosis. The
total of 102 brain masses were histologically diagnosed
and graded based on World Health Organization criteria as

● metastasis (24)
● meningiomas (4)
● gliomas grade II (22) including astrocytomas, oligo-

dendrogliomas, oligoastrocytomas, ependymomas,
and gliomatosis cerebri

● gliomas grade III (18) including anaplastic astrocyto-
mas and (anaplastic) oligodendrogliomas

● glioblastomas (GBMs) (34) including 1 giant cell GBM

The primary sites of cancer for patients with metastatic
lesions were lung (14), breast (5), melanoma (3), and
esophagus (1). For one case, the primary tumor type could
not be confirmed but most likely came from breast or lung.
The study was approved by the institutional review board
and was compliant with the Health Insurance Portability
and Accountability Act.

The patients were imaged using a 3.0-T MRI scanner
system (Magnetom Trio Tim System; Siemens Medical
Systems, Erlangen, Germany), with a multichannel
phased-array coil. The imaging acquisition protocol was
the same for all patients and includes the following se-
quences: axial three-dimensional T1-weighted (T1) (mag-
netization prepared rapid acquisition gradient echo pulse
repetition time/echo time/inversion time 1760/3.1/950,
matrix size 192 � 256, pixel spacing 0.9766 � 0.9766 mm,
slice thickness 1 mm), sagittal three-dimensional T2-
weighted (T2) (matrix size 256 � 320, pixel spacing
0.8969 � 0.8969 mm, slice thickness 0.9 mm), FLAIR
(pulse repetition time/echo time/inversion time 9420/141/
2500, matrix size 192 � 256, pixel spacing 0.9375 �
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0.9375 mm, slice thickness 3 mm) and diffusion tensor
imaging. Diffusion tensor imaging was not used as part of
this study but will be incorporated in the future. Axial
three-dimensional contrast-enhanced T1-weighted images
(T1ce) were obtained after administration of a standard
dose (0.1 mmol/kg) of gadodiamide with a power injector
(Medrad, Idianola, PA). Also, after an initial loading dose
of 3 mL gadodiamide and a 5-min delay, T2*-weighted
dynamic susceptibility perfusion MRI was performed us-
ing a gradient echo EPI acquisition during bolus injection
of 12 mL gadodiamide. Twenty slices were acquired with
pulse repetition time/echo time 2000/45 ms, matrix size
128 � 128, pixel spacing 1.7 � 1.7 mm, slice thickness
3.0 mm. rCBV maps were generated off-line by calculating
the change in relaxation rate using the equation �R2*(t) �
�ln(S(t)/S0)/TE, where S(t) is signal intensity at time t and
S0 is baseline signal intensity, and then integrating under
the �R2*(t) curve over time points corresponding to the
first pass of the contrast bolus.

Preprocessing and Definition of ROIs

The images are preprocessed following a number of steps,
including noise reduction, bias-field correction, and rigid
intrasubject registration using the FSL library of analysis
tools (23). The coregistration of all sequences (T1, T1ce, T2,
FLAIR, rCBV) is required in order to extract features from
the ROIs and is performed with the rigid registration algo-
rithm FLIRT (24) from FSL. The intensity levels are made
comparable across subjects by histogram matching. For
this purpose skull stripping is first performed using brain
extraction tool (BET) (25) to generate a brain tissue mask
from the T1 image, which is then used to extract the brain
region from all other coregistered sequences. A linear
transformation of the intensities (translation and scaling)
is applied in order to minimize the L2-norm of the histo-
gram difference between each subject and a template im-
age. Histogram matching is not applied to the rCBV maps,
calculated from the perfusion sequence.

The features were extracted from ROIs manually traced
by two expert neuroradiologists. A maximum of four ROIs
was used:

● ROI1 (neoplastic, enhancing), ROI2 (neoplastic, non-
enhancing): includes all non-necrotic enhancing neo-
plastic tissue, or, if the lesion did not show enhance-
ment, the whole non-necrotic T1-hypointense neo-
plastic tissue, avoiding peritumoral edema by tracing
the FLAIR image.

● ROI3 (necrotic): this ROI is delineated only in cases
including necrotic tumor tissue by tracing the coreg-
istered T1ce, T1, T2, and FLAIR images and by exclud-
ing hemorrhage.

● ROI4 (edematous): FLAIR and T2 images are used to
depict the peritumoral edema (possibly including
neoplastic infiltration), drawing the ROI surrounding
the high signal intensity seen on these sequences.

It should be noted that the ROIs are drawn based on the
signal intensity of different sequences and are not ex-
pected to be highly specific to each tissue type. For exam-
ple, nonenhancing neoplastic tissue and edematous tissue
might overlap and be both present in ROI2 or ROI4.

Feature Description

We chose a large number of features (161) for investiga-
tion, which included age, tumor shape characteristics, im-
age intensity characteristics within some of the ROIs, and
Gabor texture features, as explained next.

Shape and Statistical Characteristics of Tumor (Evaluated
in ROI1 � ROI2 � ROI3)

Five shape features (si, i � 1, . . . , 5) of the total tumor area
are investigated, i.e., the tumor circularity, irregularity,
rectangularity, the entropy of radial length distribution of
the boundary voxels, and the surface-to-volume ratio. Also
three statistical features are calculated, i.e., the ratio of
enhancing (venh), necrotic (vnec), and edematous (vedm) tu-
mor volume vs total (enhancing and nonenhancing) tumor
volume.

Image Intensity Characteristics

The mean (�) and variance (var) of image intensities of T1,
T1ce, T2 are calculated in the central and marginal area of
ROI1, ROI2 and ROI3. For FLAIR images, the same inten-
sity characteristics are extracted from ROI4. For the rCBV
maps, since hyperintense areas are indicative but not spe-
cific to tumor, we first mask out areas that appear hypoin-
tense in FLAIR and then calculate the mean and variance
of rCBV in the central and marginal region of ROI1, ROI2,
and ROI4. More analytically, the voxels with low intensity
on the FLAIR image, such as ventricles or peripheral ves-
sels in the cortical sulci, are excluded from the analysis of
the rCBV maps because they may represent normal vascu-
lature that may be indistinguishable from abnormal neo-
vascularity due to neoplastic infiltration. All intensity-
related features sum up to 52 features in total. These fea-
tures are denoted as �C

R�I�, varC
R�I�, when measured in the

central area and �m
R �I�, varm

R �I�, when measured in the mar-
ginal area, where R � {1, . . . , 4} for ROI1 to ROI4, and I �
{T1, T1ce, T2, FLAIR, rCBV}.

Gabor Texture

The voxel-wise texture features of image I(x,y,z) are ex-
tracted at each tomographic slice of the three-dimensional
ROI by convoluting with 2D Gabor filters (26,27) and av-
eraging inside the ROI. The 2D Gabor filters are mathemat-
ically described at location (x,y) as

g�,	,
,��x,y� � exp� �
x	

2 � �2y	
2

2
2 �cos�2

�
x	 � ��

where

x	 � xcos�	� � ysin�	� and y	 � � xsin�	� � ycos�	�

and � � 1/f is the wavelength, 	 the orientation, � the
spatial aspect ratio that determines the eccentricity of the
convolution kernel and which was taken as � � 1 in this
study, and � the phase offset that determines the symmetry
of the Gabor function. The standard deviation 
 of the
gaussian factor determines the neighborhood of a voxel in
which weighted summation takes place. The ratio 
/�
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determines the spatial frequency bandwidth. We used a
constant ratio 
/� (27), and therefore 
 is not considered as
an independent parameter.

We calculated the texture by combining the output of a
symmetric (� � 0) and antisymmetric (� � /2) Gabor
kernel using the L2-norm (27), as shown below:

G�,	�x,y�

� ��I�x,y� � g�,	,��0�x,y��2 � �I�x,y� � g�,	,��/2�x,y��2

where � denotes 2D linear convolution. Then, in order to
make the average Gabor features rotation invariant, for
each radial frequency f fast Fourier transform is performed
across orientation 	 (22). Suppose we use N	 orientations
within a period of , then N	 magnitudes of Fourier coef-
ficients can be obtained for each frequency f, but only the
first Nc � N	/2 � 1 coefficients for each frequency are
unique.

We extract the texture features from the T1ce in ROI1 �
ROI2 � ROI3 and from FLAIR in ROI4. We use five wave-
lengths, � � �2�2,4,4�2,8,8�2�, and N	 � 8 orientations
in [0, ] which after the fast Fourier transform produce
Nc � N	/2 � 1 � 5 unique coefficients for each frequency.

Therefore for each bandwidth we obtain 25 rotation-in-
variant texture features, gI

c�I�, where l � 1, . . . , 5 is the
wavelength index and c � 1, . . . , 5 is the index on fast
Fourier transform coefficients and I � { T1ce, FLAIR }. We
used two bandwidth values (1 and 1.5) and finally ob-
tained 100 features in total describing texture in T1ce and
FLAIR for tumor classification.

Figure 1 illustrates in the first row the Gabor filter for
a single frequency across the first five (out of eight)
orientations and in the 2nd row the rotation-invariant
filters after fast Fourier transform for the same fre-
quency. Figure 2 illustrates examples of brain tumor
types and the corresponding texture images. The first
row shows one axial slice of the T1ce image with the
tumoral region of interest (ROI1 � ROI2 � ROI3) indi-
cated by a red line. The 2nd row shows the same slice in
FLAIR image zoomed around the tumor region. As an
example of texture, one pattern extracted from FLAIR is
shown over the edematous area (ROI4). The illustration
shows the voxelwise texture without averaging over the
area of interest.

It should be noted that texture features are affected by
the MRI acquisition parameters, especially the spatial res-

FIG. 1. Examples of filters used
to extract texture features. The
1st row shows Gabor filters for
same frequency and different ori-
entations, and the 2nd row, the
rotation-invariant filters.

FIG. 2. MR images of different of brain tumor types and an example of texture images extracted from the edematous area. From left to right:
meningioma, glioma grade II, grade III, grade IV, and metastasis. First row: T1ce image with the tumoral region of interest. Second row:
FLAIR image (zoomed in the tumor region) overlaid with one of the textural patterns (� � 8). This pattern is shown here as voxelwise texture
for illustration purposes and is not equivalent to our calculations. The average texture values (calculated before fast Fourier transform)
(feature g4

5) proved to be significant in discrimination of meningiomas.
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olution (28). Therefore it is important to use the same
acquisition protocol during training of the classifier and
during testing, i.e., when the classifier learns the imaging
characteristics and when the classifier recognizes a new
case, respectively.

Feature Selection

Feature selection methods can be divided into feature
ranking methods and feature subset selection methods
(29). The feature ranking methods compute a ranking score
for each feature according to its discriminative power and
then simply select the top ranked features as final features
for classification. These feature selection methods are pref-
erable for high dimensional problems due to their compu-
tational scalability. However, the subset of features se-
lected by the feature ranking methods might contain a lot
of redundant features since the ranking score is computed
independently for each feature, by completely ignoring its
correlation with others. On the contrary, the feature subset
selection methods focus on selecting a subset of features
that jointly have better discriminative power. In general,
sophisticated subset selection methods have better classi-
fication performance than feature ranking methods, but
their high computational cost usually limits their applica-
tions to the high dimensional problems. Since combinato-
rial search of the optimal combination of features would be
computationally prohibitive, we combine the advantages
of both the feature ranking method and the feature subset
selection method. Specifically, we first reduce the number
of features by eliminating the less relevant features using a
forward selection method based on a ranking criterion and
then apply backward feature elimination using a feature
subset selection method, as explained next.

Ranking-Based Criterion

We use a simple ranking-based feature selection criterion,
a two-tailed t test, which measures the significance of a
difference of means between two distributions (30), and
therefore evaluates the discriminative power of each indi-
vidual feature in separating two classes. If the features are
assumed to come from normal distributions with un-
known but equal variances, the t statistic is defined as:

t �
x� 1 � x� 2

��N1 � 1�v1 � �N2 � 1�v2

N1 � N2 � 2 � 1
N1

�
1

N2
�

where x� 1, v1 and x� 2, v2 are the sample mean and sample
variance of a particular feature in 1st and 2nd class, re-
spectively. N1 and N2 are the number of samples in each
class.

Since the correlation among features has been com-
pletely ignored in this feature ranking method, redundant
features are inevitably selected, which ultimately affects
the classification results. Therefore, we use this feature
ranking method to select the more discriminative features,
e.g., by applying a cutoff ratio (P value � � �, where � �
0.1 is the significance level for rejecting the null hypoth-
esis), and then apply the feature subset selection method
on the reduced feature space, as detailed in the next para-

graph. The remaining features (with P value � �) are
ranked by applying the t test using a bagging strategy (31).
Specifically, the training set is divided in five folds and the
features are ranked at each fold separately. Then the rank-
ings are combined to produce the total rank for each fea-
ture based on forward selection.

Feature Subset Selection Method Based on SVM

SVM-based feature selection methods have been success-
fully applied in a variety of problems. One good example
is the support vector machine recursive feature elimina-
tion (SVM-RFE) algorithm, which was initially proposed
for a cancer classification problem (32) and was later ex-
tended by introducing SVM-based leave-one-out error
bound criteria in (33). The goal of SVM-RFE is to find a
subset of features that optimize the performance of the
classifier. This algorithm determines the ranking of the
features based on a backward sequential selection method
that removes one feature at a time. At each time, the
removed feature makes the variation of SVM-based leave-
one-out error bound smallest, compared to removing other
features.

The training data set �xk,yk� � �n � � � 1,1� consists of
the training patterns xk and the known class labels yk,
where k � 1, . . . , NS (NS � N1 � N2 is the total number of
training samples belonging to both classes). We apply the
zero-order method for identifying the variable that pro-
duces the smallest value of the ranking criterion when
removed, and use the weight magnitude �w�2 as ranking
criterion, defined as

�w�i��2 � �
j�1

Ns �
k�1

Ns

ak
�i�aj

�i�ykyjK�i��xk,xj� [1]

where K(i) is the Gram matrix of the training data (see Eq. 2)
when the variable i is removed and a�i� is the correspond-
ing solution of the SVM classifier.

Constrained LDA

For the purpose of comparison of the previously described
feature selection algorithm with a commonly used dimen-
sionality reduction method, such as LDA, we also investi-
gated the performance of the constrained LDA algorithm
for feature selection (34). Constrained LDA maximizes the
discriminant capability between classes without trans-
forming the original features, as done by traditional LDA
or principal component analysis. This is important be-
cause it allows preservation of the physical meaning of the
input variables and assessment of the contribution of each
original variable in classification.

Calculating Total Rank by Combination

Classification is performed by following a leave-one-out
strategy on the training samples. For each leave-one-out
experiment, feature ranking is performed using data only
from the training samples. The feature selection method is
implemented in each training subset in order to correct for
the selection bias (35). It is important that cross-validation
be external to the feature selection process in order to more
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accurately estimate the prediction error. Evidently, there is
no guarantee that the same subset of features will be se-
lected at each leave-one-out experiment. We combine the
rankings of all leave-one-out experiments and report the
total rank of features (in Table 2) according to the fre-
quency of a feature appearing in a specific rank. For ex-
ample the top-ranked feature is assumed to be the one that
more frequently has the highest ranking score, regardless
of the distribution of the scores it receives across experi-
ments. In order to assess if the features are selected con-
sistently, we use two measures: the entropy (E) to evaluate
the certainty in ranking and the standard deviation (S) to
measure the compactness. These measures are normalized
between 0 (no consistency) and 1 (same rank in all exper-
iments).

Classification

Classification was performed by starting with the more
discriminative features and gradually adding less discrim-
inative features, until classification performance no longer
improved. Three pattern classification methods were in-
vestigated for comparison: LDA with Fisher’s discriminant
rule (36), k-nearest neighbor (k-NN) (37), and nonlinear
SVMs (33). In LDA, a transformation function is sought
that maximizes the ratio of between-class variance to with-
in-class variance. Since usually there is no transformation
that provides complete separation, the goal is to find the
transformation that minimizes the overlap of the trans-
formed distributions. k-NN neighbor classification is per-
formed based on closest training examples in the feature
space. In SVMs, the original input space is mapped into a
higher dimensional feature space in which an optimal
separating hyperplane is constructed such that the dis-
tance from the hyperplane to the nearest data point is
maximized. Due to this property, SVM classifiers tend to
possess good generalization ability.

A critical parameter in SVM is the penalty parameter C.
A larger C corresponds to assigning a higher penalty to
misclassification. Since the data are unbalanced and the
sample size is rather small to produce balanced classes by
subsampling the largest class, we used a weighted SVM1

(38) to apply larger penalty to the class with the smaller
number of samples. If the penalty parameter is not
weighted (equal C for both classes), there is an undesirable
bias toward the class with the large training size; thus we
set the ratio of penalties for the two classes, C1 and C2, (in
each binary classification), to the inverse ratio of the train-
ing class sizes (38). The kernel function used in our SVM
classifier is gaussian radial basis function kernel. The
Gram matrix for two feature vectors xi,xj is defined as

K�xi,xj� � exp� �
�xi � xj�2

s2 � [2]

where s controls the size of the gaussian kernel. We de-
fined s to be adaptive to the number of retained features
(NF), using the equation s � k � NF � log�NF�, where k is a

constant. The aim was to include a constant fraction of the
training samples in a ball in feature space of size s for any
dimensionality (number of features). The constant k was
determined such that the fraction of the training samples
contained in the kernel is approximately 20%.

The multiclass problem was solved by constructing and
combining several binary classifiers into a voting scheme.
We applied majority voting from all one-vs-all binary clas-
sification problems. For assessing the predictive ability of
the classification scheme, we applied leave-one-out cross-
validation. In the future, when more training data will be
available for each class, we will assess the generalization
ability through 3-fold cross-validation and will further
optimize the classification parameters C and s for each
classification problem by exhaustive search.

RESULTS

We applied leave-one-out external cross-validation in
classifying meningioma (MEN), glioma of grades II, III,
and IV (GL2, GL3, and GL4, respectively), and metasta-
sis (MET) by applying three different classification
methods (LDA, kNN, nonlinear SVM) and two feature
ranking methods (t test with bagging, constrained LDA).
The results are presented in Table 1. The first column in
Table 1 shows the tumor type to be classified. The other
columns show the number of selected features (NF) giv-
ing the highest classification accuracy (the feature selec-
tion step was cross-validated; however, we currently
have no automated way of selecting the number of fea-
tures; hence, we recorded performance as a function of
the number of features), the classification accuracy
(ACC), defined as the percentage of correctly classified
samples, and the area under the receiver operating char-
acteristic curve (AUC). The last row shows the corre-
sponding mean values. The results show that the clas-
sification accuracy is higher when using SVM, as ex-
pected. The number of features giving highest accuracy
is overall smaller when t test is used as ranking criterion
vs constrained LDA.

Subsequently, we investigated the performance of SVM
using the SVM-RFE algorithm for feature selection and
assessed the contribution of each feature in classification.
The results are shown in Table 2. The first 10 rows show
the classification between two single tumor types, similar
to Table 1, whereas the last two rows show the classifica-
tion between combined types: secondary vs primary glio-
mas (i.e., metastases vs gliomas grades II, III, IV) and low
vs high grade gliomas (grade II vs III and IV). Those two
classification problems are clinically relevant since treat-
ment is usually adapted accordingly. Meningiomas are not
included in the combined classification problems because
they differ from the glial tumors and metastases in both
origin and behavior.

Table 2 also shows the top-ranked features (thresh-
olded based on t statistic and ranked by the SVM-RFE
algorithm for each classification task. Not all selected
features are shown in the third column, but only the
overall top ranked calculated by combining all leave-
one-out results. The notation used for these features is
described analytically in the Feature Description sec-
tion. The subsequent columns show the sensitivity,

1Chang C-C, Lin C-J. LIBSVM: a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/�cjlin/libsvm.
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specificity, accuracy, and area under the receiver oper-
ating characteristic values, respectively.

The results of Table 2 show that perfusion is an impor-
tant MR imaging technique for most classification tasks.
The enhancing portion in T1ce appears as significant pa-
rameter in the distinction of meningioma from gliomas of
all grades; specifically in the case of glioblastoma, the
enhancing portion in T1ce is selected as a single feature
and achieves 97.4% accuracy. A combination of multipa-
rametric features, including T2 and T1 precontrast imaging
characteristics, is used for classifying primary glioma vs
metastasis (with accuracy 84.7%) and low- vs high-grade
glioma (with accuracy 87.8%). Gabor texture seems also to

be a relevant pattern. It is interesting to note that usually
the large wavelengths (� � 8 or 8�2) appear as part of
the selected patterns.

For most binary classification pairs, the number of fea-
tures selected with SVM-RFE giving the highest classifica-
tion accuracy is relatively small, which means that the
chance of overfitting is reduced and the generalization
ability improved. The feature reduction is an important
advantage of SVM-RFE over the simple t test. Although the
accuracy over all classification tasks is on average almost
the same when applying SVM-RFE as a second step after t
test, the average number of selected features over all clas-
sification tasks is overall reduced by 33% (N� F � 30 in the

Table 1
Binary Classification Accuracy (Acc) and AUC Obtained by Leave-One-Out Cross-Validation Using Different Classifiers (LDA, k-NN,
SVM) and Feature Ranking Methods (t Test With Bagging or CLDA)

Classifier
feature
ranking

LDA k-NN (k � 3) SVM

t Test CLDA t Test CLDA t Test CLDA

NF Acc AUC NF Acc AUC NF Acc AUC NF Acc AUC NF Acc AUC NF Acc AUC

MET-MEN 12 92.9 96.9 27 85.7 75.0 11 96.4 99.0 32 89.3 76.6 5 96.4 97.9 1 85.7 83.3
MET-GL2 79 95.7 95.5 8 84.8 87.7 2 97.8 97.4 55 97.8 97.3 2 97.8 97.7 3 95.7 98.9
MET-GL3 1 81.0 89.1 12 83.3 85.4 70 90.5 88.0 152 88.1 89.9 8 88.1 88.4 10 88.1 87.5
MET-GL4 2 58.6 59.4 95 77.6 76.5 9 74.1 71.9 16 79.3 78.1 91 84.5 100 150 89.7 100
MEN-GL2 1 100 100 1 100 100 1 96.2 100 2 96.2 87.5 1 96.2 95.5 12 96.2 98.9
MEN-GL3 3 81.8 56.9 5 95.5 95.8 15 95.5 85.4 2 90.9 81.9 9 86.4 90.3 4 90.9 91.7
MEN-GL4 4 86.8 80.9 11 100 100 12 97.4 87.5 4 97.4 86.8 10 97.4 99.3 36 94.7 94.9
GL2-GL3 74 70.0 58.6 101 77.5 66.4 9 67.5 68.3 1 72.5 75.1 51 72.5 69.2 1 75.0 77.3
GL2-GL4 11 76.8 76.1 19 78.6 74.5 33 98.2 97.6 38 98.2 97.6 18 98.2 98.0 12 98.2 98.5
GL3-GL4 5 67.3 61.8 35 69.2 45.4 154 84.6 73.2 141 84.6 71.2 104 94.2 100 78 92.3 89.9
Mean 19.2 81.1 77.5 31.4 85.2 80.7 31.6 89.8 86.8 44.3 89.4 84.2 29.9 91.2 93.6 30.7 90.6 92.1

Table 2
Binary Classification Results Obtained by Leave-One-Out Cross-Validation Using SVM for Classification and SVM-RFE for Feature
Selection

Binary
classification

NF
Overall top-ranked features (maximum eight

features are shown)
Sensitivity Specificity Acc AUC

MET-MEN 6 varm
1 (rCBV), g4

5(FLAIR), g5
1(FLAIR), �c

3(T1ce),
�c

3(T1), varm
4 (rCBV)

75.0 100 96.4 97.9

MET-GL2 17 �m
3 (T1ce), �m

2 (T1), �c
3(T1ce), varc

4(FLAIR),
varm

1 (T2), �c
1(T1ce), varm

2 (rCBV), �m
3 (T1)

95.5 100 97.8 97.9

MET-GL3 13 g2
4(FLAIR), s2, varc

4(FLAIR), �c
2(T2), varc

1(T1ce),
varm

2 (rCBV), varm
4 (FLAIR), �m

1 (T1)
83.3 91.7 88.1 87.7

MET-GL4 11 �c
2(T2), g5

4(T1ce), varm
1 (T2), varc

2(T2), vedm,
�c

2(T1ce), varc
4(rCBV), �c

4(FLAIR)
88.2 70.8 81.0 81.9

MEN-GL2 9 venh, varc
1(rCBV), varm

1 (rCBV), varm
1 (T1), �c

2(T1),
�m

2 (T1), varm
4 (rCBV), g4

5(FLAIR)
100 75.0 96.2 100

MEN-GL3 15 venh, varm
4 (rCBV), �c

3(T1), s3, �m
2 (T2),

g4
5(FLAIR), varm

1 (rCBV), varm
1 (T1)

94.4 75.0 90.9 91.7

MEN-GL4 1 venh 100 75.0 97.4 79.4

GL2-GL3 43 �c
1(T1), �m

1 (T1), varc
4(rCBV), s4, �c

4(FLAIR),
�c

1(T1ce), varc
1(T1), �m

2 (T1)
55.6 90.9 75.0 71.0

GL2-GL4 7 �c
3(T1ce), varm

1 (rCBV), varc
4(FLAIR),

varc
4(rCBV), g1

5(FLAIR), venh, g5
5(FLAIR)

100 90.9 96.4 98.9

GL3-GL4 76 �c
3(T1ce), varc

2(rCBV), age, varc
4(FLAIR),

g5
2(FLAIR), venh, vnec, �c

3(T1)
100 72.2 90.4 98.5

MET-GL 16 vedm, �c
2(T2), varm

1 (T2), varc
2(T2), g5

4(T1ce),
�c

2(rCBV), g4
5(T1ce), varc

1(T1)
86.5 79.2 84.7 88.2

Low-high grade 24 varm
4 (rCBV), �c

3(T1ce), �c
1(T1), g1

5(FLAIR),
�c

4(FLAIR), �c
1(T2), varc

1(T1), s2

84.6 95.5 87.8 89.6
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case of t test and N� F � 20 in the case of SVM-RFE). Figure
3 and Fig. 4 (1st row) show the classification accuracy with
increasing number of retained features. The plots illustrate
that the fluctuations of accuracy around the optimal num-
ber of features are small and the method is not very sen-
sitive to the exact number of selected features, except in
the case of metastasis vs GBM, where the plateau is quite
narrow. The feature selection method in general elimi-
nates the redundant features, reduces the noise, and builds
groupings that are both robust and accurate.

Accuracy is relatively high for all classification pairs
except for grade II vs grade III glioma. These two types of
tumor have common characteristics due to the mixed his-
tology and are difficult to differentiate. On the other hand,
the accuracy in classifying metastasis from primary glioma

and low- from high-grade glioma is high, as illustrated in
Fig. 4.

Consistency in Feature Selection During Cross-Validation

In order to assess if the same features are selected as
discriminant features for each leave-one-out experiment,
we calculated the normalized entropy (E) and standard
deviation (S) of the ranking scores for each feature. Aver-
aging of E and S across all selected features showed that
the highest consistency was observed when distinguishing
meningioma from GBM (E� � 0.95, S� � 0.99, NF � 1), as
well as from gliomas grade II (E� � 0.82, S� � 0.92, NF � 9)
and metastasis (E� � 0.71, S� � 0.92, NF � 6).

Multiclass

For the multiclass problem, one-vs-all SVM classification
and majority voting are applied. For each one-vs-all clas-
sification task, feature selection is performed using SVM-
RFE. Since in the multiclass problem the number of clas-
sifications to be performed is large, feature selection with
RFE on the total number of features (161) is computation-
ally very expensive. For this reason, we excluded from the
evaluation all features that were never (or only once) se-
lected as significant features in all binary classification
tasks (Table 2). Accordingly, 50 features were retained and
used for feature selection. The confusion matrix with
leave-one-out cross-validation is shown in Table 3. Menin-
giomas were not included due to their small sample size
and small clinical value. The highest classification accu-
racy is achieved for metastasis, where only two (out of 24)
samples are misclassified (one as glioma grade III and one
as GBM) and for low-grade tumors, with two (out of 22)
cases being misclassified (one as glioma grade III and one
as metastasis).

DISCUSSION AND CONCLUSIONS

This paper presents a classification scheme for differenti-
ating adult brain tumors using conventional MRI and rCBV
maps calculated from perfusion MRI. Shape characteris-
tics, statistics on image intensities, and rotation-invariant
Gabor texture features are extracted from the central and
marginal tumoral, edematous, and necrotic region. The
scheme is fully automated and the help of an expert is not
required, except for tracing the ROIs. Overall, we found
that SVM-based classification of texture patterns is a very
promising approach to developing an objective and quan-
titative evaluation of brain tumors. However larger data-
sets need to be analyzed, which is expected to test the

FIG. 3. Classification accuracy (with SVM-RFE) vs number of re-
tained features for classification of metastasis vs gliomas grade II,
III, or IV (1st row) and glioma grading (2nd row).

FIG. 4. Classification accuracy (with SVM-RFE) vs number of re-
tained features (1st row) and receiver operating characteristic (ROC)
analysis (2nd row) for two main classification problems: metastases
vs primary gliomas (grades II, III, IV) shown in the 1st column and
low- vs high-grade gliomas (grade II vs III and IV) shown in the 2nd
column.

Table 3
Multiclass Confusion Matrix Obtained With One-Versus-All Voting
Scheme Using SVM Classifiers With RFE

Prediction, NF � 18 (out of 50)

GL2 GL3 GL4 MET

Ground truth GL2 20 1 0 1
GL3 8 6 2 2
GL4 0 10 14 10
MET 0 1 1 22
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generalization ability of this approach, but also to further
improve its performance, as such classification systems
perform better if trained more extensively.

The results of multiclass classification (Table 3) illus-
trate that the highest classification accuracy is achieved for
metastasis (91.7%) and low-grade glioma (90.9%),
whereas the classification accuracy for GBM is reduced
(29.4% are classified as grade III and 29.4% as metastasis).
The lowest classification rate in the multiclass problem is
for the grade III glioma, where the largest portion (44.4%)
is classified as grade II and the smaller portions as GBM
(11.1%) or metastasis (11.1%). The prediction of glioma
grade is inherently difficult since brain neoplasms are
often heterogeneous, meaning that different histopatho-
logic features (such as mitotic index) can be present
throughout an individual neoplasm. Therefore, part of our
validation relies on examining the distribution of the false
positives. The results of Table 3 show that most of the
misclassified samples are assigned to a class of close de-
gree of malignancy (grade). The degree of malignancy
starts from the less malignant tumors (such as meningio-
mas) and increases until the high grade gliomas and me-
tastases. The failure of the method to classify grade III
gliomas possibly indicates that the extracted features do
not form a separate cluster, but are rather similar to the
features of the nearby classes (grade II and grade IV). The
binary classification tasks, where only tumors from two
single types are compared, exhibit higher classification
accuracy (mean � 91%; standard deviation � 7.7% over
all tasks). The highest accuracy is achieved when distin-
guishing grade II glioma from metastasis (97.8%), and the
lowest, (75%) when distinguishing grade II from grade III
glioma.

Generally, the classification accuracy using the pro-
posed method is comparable or higher than in other stud-
ies (6) not using spectroscopy or diffusion tensor imaging.
The results in Devos et al. (21) using imaging intensities
from standard MR alone cannot be immediately compared
with ours because (i) they were based on ROIs extracted
from spectroscopy imaging, which we want to avoid in
this study; and (ii) they reflected the number of voxels
correctly classified rather than the number of subjects
(voxels from the same image were used as independent
samples). In Georgiadis et al. (19), an SVM-based classifi-
cation system with radial basis function kernel achieved
74.4% overall accuracy in discriminating primary brain
tumors from metastases utilizing the external cross-valida-
tion method, whereas an artificial neural network classifier
performed better (80% accuracy). The features employed
in that study were solely textural features from the T1ce
MR images. Our analysis, achieving 84.7% accuracy on the
leave-one-out cross-validation error, also showed that Ga-
bor textural features from T1ce are important for this clas-
sification task combined with statistical parameters (mean,
variance, etc.) from other imaging sequences (T2, rCBV).
Moreover, our results in glioma grading (low vs high
grade) are comparable with the ones reported in Li et al.
(20) (the accuracy in Li et al. (20) was assessed by cross-
validation not being external to the feature-selection pro-
cess). This study was based on descriptive features esti-
mated by domain experts, whereas we applied features
extracted in a semiautomatic way.

The feature subset selection method shows that all MR
sequences are important for classification since different
features are selected for different classification tasks (Table
2). The rCBV maps calculated from perfusion seem to be
particularly important since parameters extracted from
those are usually top ranked in most classification pairs.
Also, contrast-enhanced T1 is a significant sequence; the
volume of enhancement as percentage of total tumor vol-
ume (venh) is used as single feature for distinguishing be-
tween meningioma and GBM and is also part of the top-
ranked features for other classification tasks. Texture cal-
culated on specific frequencies also contributes to tumor
classification. Textural parameters extracted from the
edematous area in FLAIR seem to be significant for glioma
grading, whereas texture in the neoplastic area in T1ce is
important for distinguishing metastatic from glial tumors.

The features currently used for classification are ex-
tracted from the imaging profile and describe shape and
texture. We have not incorporated features describing the
deformation of the healthy structure due to tumor growth.
It is known that different tumor types affect the surround-
ing healthy region differently, and therefore studies have
used the tumor mass effect as a descriptor for classifying
gliomas according to their clinical grade (20) or as an
independent predictor of survival (39). For this purpose,
we recently proposed an automated method for quantify-
ing the mass effect (40) by measuring how much the de-
formation in the tumor origin deviates from the range
observed in a normal population. We plan to incorporate
the indicator of mass effect as an additional parameter in
our classification framework in the future.

Moreover, a limitation of this framework comes from the
need for tracing ROIs, which makes the current approach
semiautomatic and subject to intra- and interobserver vari-
ability. However, it should be also noted that most of
applied features are based on spatial averaging and there-
fore are not very sensitive to small differences in the de-
lineation of ROIs. The most sensitive features are expected
to be the ones calculated over the marginal area of the
ROIs. We have investigated in the past the use of conven-
tional and advanced MR imaging for automatic segmenta-
tion of neoplastic and healthy tissue (41). We plan in the
future to combine the two frameworks in order to automat-
ically segment and classify brain neoplasms. The aim of
this study is to assess the discrimination ability of stan-
dard MR imaging usually acquired in most clinical facili-
ties. The use of imaging intensities from standard MR
alone reaches lower performance than when combined
with spectroscopy (21). In the future, we plan to incorpo-
rate also diffusion tensor imaging and spectroscopy in our
analysis for assessing the increase in classification accu-
racy. Other data based on microscopy imaging or his-
topathological examinations could also be included to in-
crease accuracy in predictions. For example, nuclear fea-
tures extracted from segmented nuclei (42) or blood vessel
patterns (43) can assist brain astrocytoma malignancy
grading, and the spatial organization of tumor vessels can
be indicative for differentiation between medulloblasto-
mas and supratentorial primitive neuroectodermal tumors
(PNETs) (44). Voxel-wise histopathological parameters
that reflect proliferation and protein synthesis or PET im-
aging could also be used, if available, in order to extend
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the current framework to output spatial maps of malig-
nancy (instead of a single grade), providing more reliable
differentiation of heterogenous neoplasms.

REFERENCES

1. Aronen HJ, Gazit IE, Louis DN, Buchbinder BR, Pardo FS, Weisskoff
RM, Harsh GR, Cosgrove GR, Halpern EF, Hochberg FH, Rosen BR.
Cerebral blood volume maps of gliomas: comparison with tumor grade
and histological findings. Radiology 1994;191:41–51.

2. Krabbe K, Gideon P, Wagn P, Hansen U, Thomsen C, Madsen F. MR
diffusion imaging of human intracranial tumors. Neuroradiology 1997;
39:483–489.

3. Provenzale JM, Mukundan S, Baroriak DP. Diffusion-weighted and
perfusion MR imaging for brain tumor characterization and assessment
of treatment. Radiology 2006;239:632–649.

4. Wolde H, Pruim J, Mastik MF, Koudstaal J, Molenaar WM. Proliferative
activity in human brain tumors: comparison of histopathology and
L-[l-HC] tyrosinePET. J Nucl Med 1997;38:1369–1374.

5. Young RJ, Knopp EA. Brain MRI: tumor evaluation. J Magn Reson
Imaging 2006;24:709–724.

6. Lev MH, Ozsunar Y, Henson JW, Rasheed AA, Barest GD, Harsh GR,
Fitzek MM, Chiocca EA, Rabinov JD, Csavoy AN, Rosen BR, Hochberg
FH, Schaefer PW, Gonzalez RG. Glial tumor grading and outcome
prediction using dynamic spin-echo MR susceptibility mapping com-
pared with conventional contrast-enhanced MR: confounding effect of
elevated rCBV of oligodendrogliomas. Am J Neuroradiol 2004;25:214–
221.

7. Kremer S, Grand S, Remy C, Esteve F, Lefournier V, Pasquier B, Hoff-
mann D, Benabid AL, Le Bas JF. Cerebral blood volume mapping by MR
imaging in the initial evaluation of brain tumors. J Neuroradiol 2002;
29:105–113.

8. Provenzale JM, Mukundan S, Baroriak DP. Diffusion-weighted and
perfusion MR imaging for brain tumor characterization and assessment
of treatment response. Radiology 2006;239:632–649.

9. Wang Q, Liacouras EK, Miranda E, Kanamala US, Megalooikonomou V.
Classification of brain tumors using MRI and MRS. In: Proceedings of
the SPIE Conference on Medical Imaging, 2007.

10. Weber MA, Zoubaa S, Schlieter M, Jüttler E, Huttner HB, Geletneky K,
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