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Abstract

Leaf characters have been successfully utilized to classify Camellia (Theaceae) species; however, leaf characters combined
with supervised pattern recognition techniques have not been previously explored. We present results of using leaf
morphological and venation characters of 93 species from five sections of genus Camellia to assess the effectiveness of
several supervised pattern recognition techniques for classifications and compare their accuracy. Clustering approach,
Learning Vector Quantization neural network (LVQ-ANN), Dynamic Architecture for Artificial Neural Networks (DAN2), and C-
support vector machines (SVM) are used to discriminate 93 species from five sections of genus Camellia (11 in sect.
Furfuracea, 16 in sect. Paracamellia, 12 in sect. Tuberculata, 34 in sect. Camellia, and 20 in sect. Theopsis). DAN2 and SVM
show excellent classification results for genus Camellia with DAN2’s accuracy of 97.92% and 91.11% for training and testing
data sets respectively. The RBF-SVM results of 97.92% and 97.78% for training and testing offer the best classification
accuracy. A hierarchical dendrogram based on leaf architecture data has confirmed the morphological classification of the
five sections as previously proposed. The overall results suggest that leaf architecture-based data analysis using supervised
pattern recognition techniques, especially DAN2 and SVM discrimination methods, is excellent for identification of Camellia
species.
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Introduction

Camellia is a large genus of family Theaceae with many species

of significant economic and scientific value [1]. Some Camellia

species are used to produce green tea, a popular beverage. It is

estimated that more than 3.6 million tons of tea leaves are

produced annually in 40 countries [2,3,4]. Camellia species offer a

range of health benefits [5]. Some species are primarily

cultivated as ornamental plants while the seeds of others are

used as edible oils [6,7]. This wide usage of the Camellia species

has resulted in extensive cultivation and production. In China

alone, more than 3 million hectares of agricultural land is used to

grow Camellia species to produce in excess of 164,000 tons of

edible cooking oil [5].

Although Camellia is grown in many regions of the world, it is

particularly prevalent in East and Southeast Asia and its

identification and classification has been the subject of many

studies [6,7,8,9]. Traditionally, professionals dealing with the

production, distribution and sales of Camellia use their

experience and intuition to classify the plants into categories

with distinct economic values. Later, researchers developed

different taxonomic and analytical methods for classification. In

1958, Sealy [8] reported 82 Camellia species that he classified

into 12 sections. More recently, Chang [10] grouped the native

Chinese Camellia into four subgenera, 22 sections, and 280

species, whilst Ming [6] arranged them into two subgenera, 14

sections, and 119 species [11]. However, there is still

disagreement in the interspecies relationship of the genus

Camellia [5].

The aforementioned classifications were based on morpholog-

ical approach. Recent studies suggest that classifications purely

based on the traditional morphological characteristics are

insufficient [12,13,14]. Therefore, alternative taxonomic methods

were developed for classification of Camellia [15,16].

Contemporary advances in technology have resulted in new

tools that allow classification based on alternative and innovative

approaches. Lu et al. [12] used Fourier transform infrared

spectroscopy (FTIR) on Camellia leaves to determine if they can

be discriminated based on biochemical profiles. Chen et al. [3]

and Yang et al. [17] used molecular approach based on genetic

information for classification of Camellia species. Clearly, there is

disagreement among researchers and no dominant method for this

important classification problem has emerged. There are still

many uncertainties about the relationships among species within

sections and further taxonomic research on this section is

necessary [13].
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We acknowledge that although the flowers and the fruit are

seasonal, the leaf lacks those limitations and their traits are more

commonly used in plant taxonomic applications [18,19,20,21].

Especially, Lin et al. [22] and Lu et al. [12] successfully revised

three sections of genus Camellia based on leaf anatomic characters.

Pi et al. [13] have used leaf morphology and anatomical characters

for delimitation of species. They report that ‘‘leaf features have been

largely unexploited in taxonomic studies, resulting from a belief that they

respond in a plastic manner to environmental forces.’’

Although leaf morphology has been the subject of some studies,

lack of standard definitions of leaf characteristics has caused

confusion in interpreting the value of the resulting classifications

[13]. Taxonomical classification of Camellia based on a more

comprehensive description of leaf morphology (also referred to as

leaf architecture) is, therefore required. Leaf architecture refers to

the placement and form of various elements constituting the

outward expression of leaf structure, including leaf shape, leaf size,

marginal configuration, gland position and venation pattern [23].

The leaf architecture has been the subject of several studies to

resolve taxonomic and evolutionary relationships [24]. However,

little research has been performed utilizing leaf architecture of

genus Camellia species [25,26,27,28].

The traditional analytical approaches employed by researchers

to perform Camellia classification have included the principal

component analysis, multivariate analysis, cluster analysis, and

simulated annealing. Recently, some researchers have used

supervised classification techniques in their studies. Supervised

techniques are one of the most effective analysis tools in a variety

of domains, such as information retrieval, remote sensing, and

food bruise detection [29,30,31]. These tools apply available

information about a category membership of samples to develop a

model for classification of the genus. The classification model is

developed using a training set with a priori defined categories and

the performance is appraised using samples from a test set by

comparing predicted categories with their true categories, as

defined by experts [32,33].

Artificial neural networks (ANN), as a pattern recognition tool,

have been used for modeling complex systems [34,35,36,37,38].

Pandolfi et al. [15] discriminate and identify morphotypes of Banksia

integrifolia by BP-ANN based onmorphological and fractal parameters

of leaves. Similarly, Pandolfi et al. [38] have used the BP-ANN

approach to morphologically differentiate 17 Vietnamese tea plants.

Support vector machine (SVM) is another supervised pattern

recognition technology that has seen popularity of applications over

the past several years [31,39,40,41,42]. This algorithm was developed

in the machine learning community [43,44] and is capable of

learning in high-dimensional feature spaces [45].

Although pattern recognition tools have been applied in variety

of fields, to the best of our knowledge this approach has not been

used for classification of genus Camellia using leaf architecture data.

We have used two different ANN architectures (LVQ-ANN and

DAN2) and the support vector machine (SVM) to model Camellia

classification. As stated earlier, there is still disagreement in the

interspecies relationship of the genus Camellia [5,12,13,14].

Researchers continue to use different taxonomical methods and

analytical approaches to find more discriminating results. In this

research, we combine the leaf architecture properties of genus

Camellia with various pattern recognition tools, including a newly

introduced method (DAN2), using a relatively large data set, to

analyze the taxonomical classification of Camellia plants. The goal

of the present work, therefore, is to classify Camellia species based

on leaf architecture data. We present (1) results of using leaf

morphological and venation characters of 93 species in five

sections for Camellia classification, and (2) report the effectiveness of

supervised pattern recognition techniques (LVQ-ANN, DAN2,

and SVM) for such classifications and (3) compare their accuracy.

Table 1. Leaf architectural characters and related morphological characters [23,26].

Characteristic Encoding number Figure 1

0 1 2 3 4

1. Whole lamina shape Lanceolate Ovate Oblong Longly oblong Broadly oblong See A

2. Base only Auriculate Rounded Cuneate See B

3. Apex Long acuminate Short acuminate Obtusely acuminate Acute See C

4. Abaxial surface Hairy Glabrous /

5. Adaxial surface Hairy Glabrous /

6. Reticulate veins Slight Unconspicuous Obvious Conspicuous See G

7. Secondary veins shape Bend Zigzag See D

8. Secondary veins balance Uniform Uneven See E

9. Areoles development Incompletely Imperfect See K

10. Margin shape Entire Spinose Cassidate Setaceous Spherulate See H

11. Margin spacing Regular Irregular See I

12. ASVPV on upper part1 Nearly right angle Sharp angle /

13. ASVPV on middle part Nearly right angle Sharp angle /

14. ASVPV on lower part Nearly right angle Sharp angle /

15. VADSV2 Nearly uniform Upper secondary veins
more obtuse than lower

Upper secondary veins
more acute than lower

See F

16. Veinlets Simple 1–2 times branched More than 3 times
branched

See J

1ASVPV means angulation between secondary veins and primary veins;
2VADSV means variations in angle of divergence of secondary veins.
doi:10.1371/journal.pone.0029704.t001
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Materials and Methods

Materials
In this research we use comprehensive leaf morphology and leaf

architecture for taxonomical classification of Camellia. Healthy leaf

samples, consisting of 11 species from sect. Furfuracea, 16 species

from sect. Paracamellia, 12 species from sect. Tuberculata, 34 species

from sect. Camellia, and 20 species from sect. Theopsis, for a total of

93 plants, are examined in this study (following Chang [10]

taxonomic treatment, Table S1). Leaf samples were taken from the

third mature leaves that were fully exposed to sunlight and were

horizontally arranged on the 2-year-old branches of the plants in

the garden. At least three different individual plants per species are

selected. Plant materials are all collected from the International

Camellia Garden in Jinhua, Zhejiang Province (29u079N, 119u359E,

altitude 40 m). Voucher specimens for all species are deposited in

the Chemistry and Life Science College of Zhejiang Normal

University (ZJNU) (see Appendix S1 for voucher details).

Leaf veins specimen preparation
In order to use information from leaf vein patterns, we

produced leaf veins specimens. The method used for making leaf

veins specimen follows the process used by Zhang and Xia [46].

Leaves were placed in a glass tube, 10% sodium hydroxide

(NaOH) was added in sufficient quantity to cover the material at

70–80uC for 3–4 hours. Since the leaf texture may differ among

species, thicker leaves were treated for longer time periods. Leaves

were taken out when the epidermis and mesophyll showed

sufficient segregation. The leaves were then gently brushed to

remove the epidermis and mesophyll with a paint brush. They

were next rinsed in water and bleached by 10% hydrogen

peroxide (H2O2) for approximately 60 minutes until the specimen

Figure 1. Leaf architectural characters and related morphological characters.
doi:10.1371/journal.pone.0029704.g001

Lu et al. Camellia Classification
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was white. Bleached and cleared leaves were then washed in

running water thoroughly. They were then fully stained by 0.5%

methyl green for at least two hours. Subsequently, their pictures

were taken with the Canon EOS 50D camera for further

analysis.

Leaf architecture data collection
(Table 1) presents list of the most commonly used leaf

characteristics from literature [23,26]. 31 characteristics of each

leaf are collected and measured. All the test indexes were

measured according to Hickey [23] specifications and guidelines.

The leaf architecture data results are expressed as mean values.

Below we describe the process in detail.

I. Leaf shape observation
Following earlier research [23,26], we selected 16 characteristics

of leaf architecture and morphology that best describe leaf shapes

for this research (Figure 1, Table 1). The same encoding values are

used in all of the classification models.

II. Leaf size measurements
The leaves of each species were scanned by CanoScan 4400FF

Canon scanner (resolution of 4800*9600 dpi) using the WinFO-

LIA system (Regent Instruments Inc., Canada). For each sample,

we measure leaf area, perimeter, vertical length, horizontal width,

leaf aspect ratio (width/length), and leaf form factor (LEF). The

formula used for estimating the LEF is:

LEF~
16 � A

P2
ð1Þ

Where A is the area and P is the perimeter. Other characteristics

including number of secondary veins (pairs), petiole length,

average value of entirely vein height (EVH), average value of leaf

widest part height (LWPH), average ratio of EVH and leaf vertical

length, average ratio of LWPH and leaf vertical length, serrulate

length in upper part of leaf, serrulate length in middle part of leaf,

and serrulate length in lower part of leaf, were measured with

ImageJ Launcher (Broken Symmetry Software).

Figure 2. Schematic diagram of LVQ-ANN.
doi:10.1371/journal.pone.0029704.g002

Figure 3. The DAN2 Network Architecture.
doi:10.1371/journal.pone.0029704.g003

Lu et al. Camellia Classification

PLoS ONE | www.plosone.org 4 January 2012 | Volume 7 | Issue 1 | e29704



Analysis methods
Traditional methods used for Camellia classification includes

principal component analysis, multivariate analysis, cluster

analysis, and simulated annealing. We examine the effectiveness

of using various pattern recognition methods in this research.

Specifically, we used a traditional artificial neural network (LVQ),

a dynamic artificial neural network (DAN2), support vector

machines (SVM), and cluster analysis for classification of the 93

samples. We used Chang (1998) classification data, presented in

(Table S1), grouped into training and testing data sets, to measure

and compare the accuracy of the three classification algorithms

presented in this study. The training of these algorithms relies on

(a) leaf characteristics data, and (b) class designation. The class

designation used predefined Chang [10] classification.

LVQ-ANN classification model. The first ANN model used

is the Learning Vector Quantization (LVQ). LVQ is a special case

of ANN that uses the ‘‘winner-take-all Hebbian learning strategy’’

[47,48]. The network architecture consists of three layers: the

input layer, the competitive layer (Kohonen layer) and the output

layer. The input layer represents properties of species while the

output layer represents the number of classes. In the competitive

layer, each unit corresponds to a cluster, with the center

designated as the ‘‘codebook’’ vector. An input vector closest to

the codebook vector (using the Euclidean distance measure)

belongs to the corresponding cluster. The optimal number of

neurons in the competitive layer is determined experimentally. In

this study, 93 samples belong to five different sections (categories)

were selected: 48 samples were used to generate the classification

model input for the training set and the remaining 45 samples

were used in the testing stage (Table S1). Each vector of the input

layer includes the 31 feature attributes of leaf architecture

mentioned earlier. The number of nodes in the competitive

layer varied from 20 to 30, and their impact was assessed on the

respective classification capabilities. The output layer contained

five neurons representing specific sections (taxon), including sect.

Furfuracea, sect. Paracamellia, sect. Tuberculata, sect. Camellia, and

sect. Theopsis. LVQ-ANN topology used in our study is shown in

(Figure 2). By computing the Euclidean distance between a

Figure 4. UPGMA dendrogram of genus Camellia based on leaf architectural characteristics. sect. Camellia (m), sect. Theopsis (N), sect.
Tuberculata (&), sect. Paracamellia (#), sect. Furfuracea (%).
doi:10.1371/journal.pone.0029704.g004
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training vector and the weight of each node, the nearest node

(‘winner node’) was generated. Winner nodes move towards the

training vector when the winner nodes are in the same class,

otherwise, they move away. The input vectors were then

allocated to the category with the winning nodes. Training is

complete when the mean square error (MSE) converges, or it is

less than 0.1, or the number of training iterations reaches 1,000

epochs. We used two implementations of the LVQ algorithm: the

LVQ1 and LVQ2. In LVQ1 a single best machine codebook

vector is selected and moved closer or further for each data vector

at each iteration, whereas in LVQ2 two sets of best machine

codebook vectors are selected and only updated if one belongs to

the desired class and one does not [49]. The LVQ-ANN

modeling program was designed and programmed under

MATLAB software (The Mathworks, Inc., Natick, MA, USA,

version 7.9 R2009b).

DAN2 classification model. DAN2, (A Dynamic Architecture for

Artificial Neural Networks), is a dynamic ANN model. It consists of

input and output layers similar to LVQ and other ANNs.

However, in DAN2 the number of hidden layers and hidden

neurons are automatically and dynamically generated [50]. Two

significant properties of DAN2 are: (1) its dynamic nature

eliminates the need to experimentally define the number of

hidden layers and hidden nodes, and (2) its architecture is fully

scalable and can easily and effectively process any number of

inputs. DAN2 is shown to be very effective in solving a variety of

complex problems including classification problems [51,52].

(Figure 3) presents the overall DAN2 architecture. As shown in

(Figure 3), each hidden layer is composed of four nodes. The first

node is the bias or constant (e.g. 1) input node, referred to as the C

node. The second node is a function that encapsulates the

‘‘Current Accumulated Knowledge Element’’ (CAKE node)

during the previous training step. The third and fourth nodes

represent the current residual (remaining) nonlinear component of

the process via a transfer function of a weighted and normalized

sum of the input variables. Such nodes represent the ‘‘Current

Residual Nonlinear Element’’ (CURNOLE nodes).

The scalability of DAN2 is a distinguishing strength of the

approach from traditional artificial neural networks. In order to

compare effectiveness of each technique, we use the exact same

input vectors and the same training and testing data sets for the

DAN2 model that were used in the LVQ models (Table S1) and

report its results.

SVM classification model. SVM is based on statistical

learning theory and structural risk minimization and was first

proposed by Vapnik [44]. This approach generates hyperplanes

to separate classes [53]. The boundaries of the hyperplane are

represented by support vectors instead of a single boundary

value. Support vectors run through the sample patterns which

are the most difficult to classify and are closest to the actual class

boundaries. Overfitting is prevented by specifying a maximum

margin that separates the hyperplanes from the classes [54].

Samples violating this margin are penalized.

Once again, the exact same input vectors and training and test

data sets that were used in LVQ were also used for the support

vector machines models (Table S1). All C-SVM algorithms were

implemented with LIBSVM (Version 3.0) under MATLAB

software [55].

Cluster analysis
Cluster analysis is the process of grouping data based on objects’

attributes into similar and dissimilar groups. In this research, we use

clustering analysis to classify 5 sections in genus Camellia based on

the leaf architecture data (31 attributes) and to compare the results

with Chang [10]. The clustering approach used is based on the

Unweighted Pair-Group Method with Arithmetic Means (UP-

GMA). To address multidimensional scaling, the Gower General

Similarity Coefficient is applied. The cluster analysis is conducted

using MVSP software (Version 3.13n, Kovach Computing

Services). The result of clustering analysis is presented in section 3.2.

Table 2. The classification results of LVQ-ANN with different number of competitive layer neuron based on LVQ1 and LVQ2
learning algorithm.

Samples

Sample

numbers

Learning

algorithm Identification rate of different numbers of competitive layer neuron numbers

20 21 22 23 24 25 26 27 28 29 30

Sect.

Furfuracea

5 LVQ1 80.00% 20.00% 80.00 20.00% 60.00% 20.00% 40.00% 60.00% 20.00% 40.00% 20.00%

LVQ2 0.00% 0.00% 0.00% 80.00 0.00% 80.00% 80.00% 0.00% 0.00% 20.00% 20.00%

Sect.

Paracamellia
8 LVQ1 37.50% 37.50% 37.50% 37.50% 37.50% 37.50% 37.50% 37.50% 37.50% 37.50% 37.50%

LVQ2 0.00% 75.00% 75.00% 75.00% 0.00% 75.00% 75.00% 0.00% 75.00% 75.00% 75.00%

Sect.

Tuberculata
6 LVQ1 0.00% 16.67% 16.67% 16.67% 16.67% 16.67% 16.67% 0.00% 16.67% 0.00% 16.67%

LVQ2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Sect. Camellia 16 LVQ1 62.50% 68.75% 62.50% 68.75% 68.75% 68.75% 68.75% 68.75% 62.50% 62.50% 62.50%

LVQ2 75.00% 75.00% 87.50% 68.75% 81.25% 93.75% 81.25% 81.25% 81.25% 75.00% 75.00%

Sect. Theopsis 10 LVQ1 90.00% 90.00% 90.00% 90.00% 90.00% 90.00% 90.00% 90.00% 90.00% 90.00% 90.00%

LVQ2 100% 0.00% 0.00% 0.00% 100% 0.00% 0.00% 100% 0.00% 0.00% 0.00%

Total accuracy
(%)

LVQ1 57.78% 55.56% 60.00% 55.56% 60.00% 55.56% 57.78% 57.78% 53.33% 53.33% 53.33%

LVQ2 48.89% 40.00% 44.44% 46.67% 51.11% 55.56% 51.11% 51.11% 42.22% 48.89% 42.22%

doi:10.1371/journal.pone.0029704.t002
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Results

Leaf architecture data and related morphological data of
samples
(Table S2) presents leaf architecture data for each Camellia

species. The data shows that the leaf architecture for sect.

Furfuracea, sect. Paracamellia, sect. Tuberculata, sect. Camellia, and

sect. Theopsis are different. The most pronounced difference is in

leaf vertical length (Table S2, column 20). Most vary from 5 to

10 cm; however, a few are closer to 15 cm (species in sect.

Furfuracea), or less than 5 cm (sect. Theopsis). But for species in sect.

Paracamellia, sect. Tuberculata, and sect. Camellia, the leaf vertical

length values are diverse and vary widely. However, genus Camellia

becomes a more natural group since it does have a series of

common traits [6]. The common leaf architecture characteristics

of the five sections are: leaf blade is symmetric, angulations

between secondary veins and primary veins on upper part, on

middle part, and on lower part is always at acute angle (Table S2,

column 11–13), veinlets are 1–2 times branched (Table S2,

column 16), and areoles development is incomplete (Table S2,

column 17). As shown in (Table S2, columns 6–9, 14–15), there

are differences in leaf venation characteristics such as the reticulate

veins (column 6), margin shape (column 7), margin spacing

(column 8), secondary veins shape (column 9), the number of

secondary veins variations in angle of divergence between primary

and secondary veins (columns 14), number of secondary veins

(column 15).

Cluster analysis based on leaf architecture data
The dendrogram resulting from hierarchical cluster analysis

grouped the 93 species into two main clusters (Figure 4). Cluster 1

(C1), included all species of sect. Theopsis, and most species of sect.

Paracamellia, Cluster 2 (C2) had all species of sect. Furfuracea, sect.

Tuberculata, and most species of sect. Camellia. On closer inspection,

C1 contained two subclusters: subcluster 1a (SC1a) comprised of

all special species of sect. Theopsis, C. semiserrata which belongs to

sect. Camellia, and C. parvimurivata which belongs to sect.

Tuberculata. Subcluster 1b (SC1b) comprised of all species of

Paracamellia. C2 contained the remaining three sections and

differed from previous classification [10]. For instance, subcluster

2a (SC2a) and subcluster 2b (SC2b) are mainly comprised of sect.

Camellia and sect. Tuberculata, indicating significant closeness with

species affinities. Therefore, we suggest that sect. Camellia and sect.

Tuberculata may be merged into one section. However, branch I (I)

Figure 5. Classification accuracy in different kernel parameter (C) and regularization parameter (c) by cross-validation. Three
dimension diagram (A) and contour map (B).
doi:10.1371/journal.pone.0029704.g005

Table 3. Comparing best classification accuracy of LVQ1, LVQ2, DAN2 and RBF-SVM.

Class LVQ1 Training LVQ1 Testing LVQ2 Training LVQ2 Testing DAN2 Training DAN2 Testing SVM Training SVM Testing

Sect. Furfuracea 83.33% (5/6) 80% (4/5) 33.33% (2/6) 80% (4/5) 100% (6/6) 100% (5/5) 100% (6/6) 100% (5/5)

Sect. Paracamellia 62.5% (5/8) 37.50% (3/8) 75% (6/8) 75.00% (6/8) 100% (8/8) 87.50% (7/8) 100% (8/8) 100% (8/8)

Sect. Tuberculata 16.67% (1/6) 16.67% (1/6) 0% (0/6) 0% (0/6) 83.33% (5/6) 66.70% (4/6) 83.33% (5/6) 83.33% (5/6)

Sect. Camellia 94.44% (17/18) 62.50% (10/16) 100% (18/18) 93.75% (15/16) 100% (18/18) 93.75% (15/16) 100% (18/18) 100% (16/16)

Sect. Theopsis 80.00% (8/10) 90.00% (9/10) 0% (0/10) 0% (0/10) 100% (10/10) 100% (10/10) 100% (10/10) 100% (10/10)

Total Accuracy (%) 75.00% (36/48) 60.00% (27/45) 54.17% (26/48) 55.56% (25/45) 97.92% (47/48) 91.11% (41/45) 97.92% (47/48) 97.78% (44/45)

doi:10.1371/journal.pone.0029704.t003

Lu et al. Camellia Classification
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and branch II (II) were clearly divided by species of sect.

Furfuracea and some species of sect. Camellia. These results provide

mostly the same categorization of genus Camellia as specified by

Chang [10].

LVQ-ANN, DAN2, and SVMs classification based on leaf
architecture data
(Table 2) shows the classification results for the Learning Vector

Quantization neural network (LVQ-ANN) with different number of

Figure 6. The classification results of linear, polynomial, RBF and sigmoid SVMs with the optimal parameters.
doi:10.1371/journal.pone.0029704.g006

Table 4. The classification results of the polynomial SVM with different degrees in the optimal parameters (C = 2.828, c= 0.088).

Samples

Sample

Numbers Identification rate of polynomial classifiers in different degree

3 4 5 6 7 8 9 10

Sect. Furfuracea 5 100% 100% 100% 100% 100% 100% 100% 100%

Sect. Paracamellia 8 100% 87.50% 87.50% 87.50% 75.00% 75.00% 87.50% 87.50%

Sect. Tuberculata 6 83.33% 83.33% 83.33% 83.33% 83.33% 83.33% 66.67% 66.67%

Sect. Camellia 16 93.75% 93.75% 93.75% 93.75% 87.50% 81.25% 75.00% 68.75%

Sect. Theopsis 10 100% 100% 100% 100% 100% 100% 100% 100%

Total accuracy (%) 95.56% 93.33% 93.33% 93.33% 88.89% 86.67% 84.44% 82.22%

doi:10.1371/journal.pone.0029704.t004

Lu et al. Camellia Classification
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competitive layer neurons. Following suggestion of other research- ers [32], and in order to achieve the best performance for the LVQ-

Figure 7. Leaf specimen of sect. Furfuracea. Numbers in figure corresponding species numbers in Table S1. Scale bar = 1 cm.
doi:10.1371/journal.pone.0029704.g007

Figure 8. Leaf specimen of sect. Paracamellia. Numbers in figure corresponding species numbers in Table S1. Scale bar = 1 cm.
doi:10.1371/journal.pone.0029704.g008
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ANN algorithms, we experimented by varying the number of

neurons in the competitive layer. Both the LVQ1 and LVQ2

learning algorithms reached their highest classification accuracy

with the competitive layer neuron number set to 24 and 25,

respectively. Comparing the two LVQ-ANNmethods, revealed that

LVQ1 learning algorithm produces a more accurate results, for

both the training and testing data sets (75% and 60%), than LVQ2

(54.17% and 55.56%) (Table 3). Although, the classification of sect.

Theopsis by LVQ2-ANN reached 100.00% accuracy, when the

number of competitive layer neuron was 20, 24, or 27 (Table 2);

overall, the classification results produced with LVQ1 learning

algorithm were more stable, especially in the sect. Theopsis

classification (accuracy of 90.00%), and the sect. Paracamellia

(accuracy of 37.50%) (Table 3). Although LVQ-ANN does not

provide acceptably accurate results for this data set, the advantage

of this model is in its simplicity and the fact that the input data does

not need to be normalized or orthogonalized. Thus, LVQ-ANN

may be used as a simple control method for classification.

DAN2 is a dynamic neural network model that does not require

model configuration or parameter optimization. DAN2’s algorithm,

at every iteration, solves a nonlinear minimization problem.

Specifically, the nonlinear optimization strategy used in DAN2

estimates a nonlinear parameter. Like all nonlinear optimization

methods for non-convex/non-concave functions, obtaining global

optimization is never guaranteed. Similar to other optimization

applications, choice of a good starting point can improve

convergence to local optimum and beginning the search at

various starting points can facilitate reaching multiple local

optima. Ghiassi and Saidane [50] identify the starting point as

F0(X) and use the training data and the standard linear regression

to obtain its value. In classification problems, F(X) only takes

binary (or integer) values, so in addition to the standard MLR; we

have experimented with using a rudimentary kNN solution to

obtain a good starting point. The kNN approach used is a

simplified method that only considers one or two values for k

(k = 1 or k = 3) to quickly obtain a starting point value. In this

study, we use the exact same data sets used in the LVQ model to

train DAN2 models. During DAN2 training, we iteratively

reduce training error tolerance by specifying a SSE/MSE value.

The model training stops either when it reaches this value or a

predefined number of iterations. The value of this error level can

be iteratively reduced to a desired level. The model uses

internally defined metrics to avoid overfitting [51]. DAN2 model

uses the ‘‘one-vs.-all’’ classification approach detailed in [53].

Results from this model are presented in (Table 3). The overall

training and testing accuracy for this model is 97.92% and

91.11% respectively (sect. Furfuracea-100%, sect. Paracamellia-

87.5%, sect. Tuberculata-66.67%, sect. Camellia-93.75%, and sect.

Theopsis-100%, respectively, for the test data set). DAN2 model

presents better results than LVQ models and does not require

model configurations.

We next present results of using SVM for this analysis. To use

the support vector machines (SVMs) model, and in order to obtain

the best performance, the two SVM parameters of regularization

(C) and kernel parameter (c) are optimized using cross validation.

Linear, polynomial, sigmoid, and radial basis function (RBF)

kernel classifiers were tested in this study. We used the same input

vectors, training and testing data sets for the LVQ models and the

Figure 9. Leaf specimen of sect. Tuberculata. Numbers in figure corresponding species numbers in Table S1. Scale bar = 1 cm.
doi:10.1371/journal.pone.0029704.g009

Lu et al. Camellia Classification

PLoS ONE | www.plosone.org 10 January 2012 | Volume 7 | Issue 1 | e29704



SVM models. As seen in (Figure 5), the highest accuracy of

97.92% was achieved when C=2.828 and c=0.088 for the

training data set. All SVM models are optimized by manipulating

C and c parameters to obtain the best training accuracy. (Figure 6)

presents the classification results of all the SVM models, with

optimal parameters for the test data sets. The linear kernel overall

accuracy for the test data set is 88.89%. For the polynomial model,

the degree parameter (d) ranges from three to ten. (Table 4) shows

the classification results of polynomial SVM models with different

degrees. The best results, 95.56% accuracy for the test data set,

was obtained for d=3. The polynomial SVM classifier with

polynomial degree d=7 had a classification rate of 88.89% for the

test data set, which was similar to the linear model. (Table 4) also

shows that classification accuracies do not improve for the

polynomial degree larger than three. The sigmoid model

performed less accurately than other SVM models. The overall

accuracy for the test data for this model was only 77.78%.

(Figure 6) shows that the RBF SVM classifier offers the best results

with overall accuracy of 97.78% for the test data set (sect.

Furfuracea-100%, sect. Paracamellia-100%, sect. Tuberculata-83.33%,

sect. Camellia-100%, and sect. Theopsis-100%, respectively, for the

test data sets).

Discussion

Taxonomical classification based on description of leaf mor-

phology is an effective approach [13]. Leaf architecture has been

the subject of several studies in taxonomy and evolutionary

relationships of taxa with controversial genera [24]. The

architectural properties of leaf venation patterns for systematic

classification have also been studied [56,57,58]. Macrofossils

studies have shown that the leaf venation patterns can be

extensively utilized in identifying fossil taxa in palaeobotany

[59]. The lamina morphological and venation character details of

Camellia are also shown in the Figure 7 through 17. We found

significant results using the leaf venation pattern for identifying

various Camellia species indicating the importance of this tool for

classification.

To identify and distinguish Camellia plants, the floras edited by

botanists such as Chang [10] and Ming [6] are commonly used as

a comprehensive resource [60]. Indented dichotomous keys in the

literature are commonly used as the identification keys. When a

new unknown species needs to be classified, we always turn to

these floras, and the identification process often follows a

predefined path with the observed characteristics. However, since

the traditional information retrieval processes are tedious, the final

Figure 10. Leaf specimen of sect. Camellia (No. 40–55). Numbers in figure corresponding species numbers in Table S1. Scale
bar = 1 cm.
doi:10.1371/journal.pone.0029704.g010
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Figure 11. Leaf specimen of sect. Camellia (No. 56–73). Numbers in figure corresponding species numbers in Table S1. Scale
bar = 1 cm.
doi:10.1371/journal.pone.0029704.g011

Figure 12. Leaf specimen of sect.Theopsis. Numbers in figure corresponding species numbers in Table S1. Scale bar = 1 cm.
doi:10.1371/journal.pone.0029704.g012
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Figure 13. Detail venation characters of sect. Furfuracea. Numbers in figure corresponding species numbers in Table S1. Scale
bar = 1 mm.
doi:10.1371/journal.pone.0029704.g013

Figure 14. Detail venation characters of sect. Paracamellia. Numbers in figure corresponding species numbers in Table S1. Scale
bar = 1 mm.
doi:10.1371/journal.pone.0029704.g014
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Figure 15. Detail venation characters of sect. Tuberculata. Numbers in figure corresponding species numbers in Table S1. Scale
bar = 1 mm.
doi:10.1371/journal.pone.0029704.g015

Figure 16. Detail venation characters of sect. Camellia. Numbers in figure corresponding species numbers in Table S1. Scale
bar = 1 mm.
doi:10.1371/journal.pone.0029704.g016
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classification is often subjective. Clustering and pattern recognition

techniques, especially DAN2 and SVM, used in this research, are

shown to be an effective and objective classification tools that can

be used to classify new species. We present results from using these

tools along with the leaf architecture data for classifying 93 Camellia

species (Table S2).

The classification of species from our dendrogram is mostly in

agreement with previous research, indicating that the discrimina-

tion of these species by leaf architecture data reflects their

phylogenetic relations. In this discussion, we compare and contrast

our results from applying cluster analysis and pattern recognition

methods using leaf architecture-based data, with existing classifi-

cations. Specifically, we compare results from the cluster analysis,

and the two pattern recognition methods with the best results

(DAN2, and the RBF-SVM) with those of Chang [10] and Ming

[6].

Analysis of leaf characters data has been successfully employed

to investigate plant taxonomy. Our study suggests that leaf

architecture-based Camellia classification using pattern recognition

techniques can be used to discriminate plants at the genus level. In

this study, the results of cluster analysis using leaf architecture data

mainly support Chang’s [10] classification of Camellia. However,

our results continue to strengthen the controversy about a number

of species.

The separation of 93 species in the dendrogram obtained in this

study using clustering analysis (Figure 4) was mostly in agreement

with the taxonomy of Chang [10]. However, as illustrated in

(Figure 4), C. weiningensis (No. 25) has similar attributes with species

belonging to sect. Camellia. This finding makes it reasonable to

merge C. weiningensis into sect. Camellia; thus, validating Ming’s [6]

classification of the C. weiningensis. Similarly, Chang [10] classifies

C. semiserrata (No. 49) to belong to sect. Camellia, and C. parvimuricata

(No. 35) to belong to sect. Tuberculata. We find these two species

(Nos. 35 & 49) to have closer relationship with sect. Theopsis.

Therefore, we find it more reasonable to merge them into sect.

Theopsis. In addition, Chang’s taxonomic treatment advocates sect.

Tuberculata and sect. Camellia as two independent sets. However, as

depicted in (Figure 4), species of sect. Tuberculata are closer to sect.

Camellia. We recommend that they should be merged into one

section. For sect. Furfuracea, all species are grouped together,

validating Chang’s taxonomic treatment. We disagree with Ming’s

[6] suggestions that sect. Furfuracea should be canceled and that its

species arrangements should be adjusted. Studies of Ming [6]

suggest that the C. hiemalis (No. 18) species should be classified as a

variant of C. sasanqua (belonging to sect. Oleifera), whereas our

hierarchical dendrogram based on leaf architecture data shows C.

hiemalis to be similar to the species of sect. Paracamellia and does not

support merging of C. hiemalis into C. sasanqua. Our findings

support Chang’s [10] treatments of these two species. Moreover,

C. oblate (No. 6) and C. parafurfuracea (No. 10) are classified as one

species class by Ming [6]. Our study shows that the bases of C.

oblate and C. parafurfuracea are round and both species have similar

leaf architecture characteristics. Our cluster analysis reaffirms

Ming’s treatment of these two species so it is reasonable to consider

C. oblate and C. parafurfuracea as one species. The two species C.

parvilimba var. brevipes (No. 87) and C. parvilimba (No. 86) are very

Figure 17. Detail venation characters of sect. Theopsis. Numbers in figure corresponding species numbers in Table S1. Scale
bar = 1 mm.
doi:10.1371/journal.pone.0029704.g017
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similar, indicating a high degree of homogeneity. For these species,

we agree with Chang in considering C. parvilimba var. brevipes as a
variety of C. parvilimba. These results augment the usefulness of leaf

architecture data for plant taxonomic treatments. We also note

that deviation from the classification needs to be further

investigated to see if a misclassification is due to the underlying

algorithm’s fitting of the data or Chang’s [10] designation of the

species.

In analyzing results from the pattern recognition techniques, we

note that although LVQ-ANN did not produce very accurate

results, when comparing this approach with other ANNs, LVQ

has the advantage that it can classify any set of input vectors, has a

fast learning algorithm [61] and is used extensively in the

literatures [62,63,64,65,66,67,68].

In analyzing DAN2 results (Table 3), we note that all species of

sect. Furfuracea and Sect. Theopsis conform to Chang’s classifications.

In sect. Paracamellia, DAN2 suggests the C.winingensis (No. 25)

species to belong to sect. Camellia. This result is similar to the

clustering algorithm’s results and we disagree with Chang’s

classification. We suggest C.winingensis to belong to sect. Camellia,
and agree with Ming’s taxonomic results. Additionally, our cluster

analysis show that sect. Camellia and sect. Tuberculata have

significant closeness with species affinities. DAN2 results classify

C. hupehensis (No. 36), C. zengii (No. 37) and C. crassifolia (No. 39)

species to belong to sect. Camellia. This conclusion validates

Chang’s view about the close evolutionary relationship between

sect. Camellia and sect. Tuberculata. Furthermore, this shows that C.
hupehensis, C. zengii and C. crassifolia may indeed have underlying

links in biological evolutionary principles with species of sect.

Camellia. This finding emphasizes the need for further research in

this branch.

In analyzing the classification results from the SVM approach

(Figure 6), we note that the C. fluviatilis (No. 16) in sect. Paracamellia
was incorrectly identified by all SVM classifiers. This specie was

incorrectly identified as sect. Theopsis by linear, polynomial (d=2),

and RBF classifiers and as sect. Camellia by sigmoid classifier. The

results suggest C. fluviatilis to be similar to the species of sect.

Theopsis or sect. Camellia. We also note that in the clustering

analysis, (Figure 4) shows C. fluviatilis to have closer relation with

sect. Camellia. Therefore, it may be more reasonable to merge it

into sect. Camellia rather than merging it into sect. Paracamellia as

suggested by Chang [10]. Finally, the RBF-SVM classifier offers

the best conformance to Chang’s classification, validating its

effectiveness as a classification tool for plants.

In general, for this data set, the SVM approach shows better

generalization than LVQ-ANN and DAN2. As pointed out by

Pandolfi et al. [38], success of ANN methods usually depends on

the quantity, validity, and accuracy of training data. However,

other researchers have shown SVM to perform well for ill-posed

problems with few training records [45,69,70,71]. Our results

confirm this property of SVM. The RBF-SVM kernel used in this

study offers the best results by conforming to Chang [10]

classification. However, it should be noted that using Chang’s

classification as a reference is controversial and literature suggests

variation from this classification. Although DAN2 displayed lower

classification accuracy in conformance to Chang’s, we cannot

dismiss the correctness of its results. Taxonomy is a dynamic field

and existing theory does not support 100% accuracy of any

classification due in part to the fact that taxonomic treatments

based on different features may generate different results.

Therefore, it should not be surprising to see some divergences

among different tools such as those observed in using DAN2 and

RBF-SVM models in comparison with Camellia taxonomic systems

of Chang [10] and Ming [6]. Overall results from using the leaf

architecture data combined with pattern recognition and discrim-

ination methods (LVQ-ANN, DAN2, and SVM), is shown to be

an effective tool for identification of genus Camellia.

Conclusion
In conclusion, lamina morphological and venation characters of

93 species in five sections (sect. Furfuracea, sect. Paracamellia, sect.

Tuberculata, sect. Camellia, and sect. Theopsis) are reported. The

hierarchical dendrogram based on leaf architecture data confirms

the morphological classification of the five sections proposed by

Chang’s taxonomic treatment. LVQ-ANN, DAN2, and SVMs

models based on the 31 leaf architecture attributes were

constructed. In LVQ-ANN models, the best classification accuracy

is 60.00% for the test data set when number of competitive layer

neuron is 22 or 24 using the LVQ1 learning algorithm. The best

DAN2 model offers a classification accuracy of 91.11% for the test

data. In SVM models, the best classification accuracy is 97.78%

using the RBF SVM classifier with C=2.828 and c=0.088. The

overall results indicate that leaf architecture analysis using pattern

recognition tools, especially DAN2 and SVM algorithms, can be

effectively used to distinguish the Camellia genus and other plant

taxa.
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