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Background: Cancer has been a leading cause of death in the United States with

significant health care costs. Accurate prediction of cancers at an early stage and

understanding the genomic mechanisms that drive cancer development are vital to

the improvement of treatment outcomes and survival rates, thus resulting in significant

social and economic impacts. Attempts have been made to classify cancer types with

machine learning techniques during the past two decades and deep learning approaches

more recently.

Results: In this paper, we established four models with graph convolutional neural

network (GCNN) that use unstructured gene expressions as inputs to classify different

tumor and non-tumor samples into their designated 33 cancer types or as normal.

Four GCNN models based on a co-expression graph, co-expression+singleton

graph, protein-protein interaction (PPI) graph, and PPI+singleton graph have been

designed and implemented. They were trained and tested on combined 10,340

cancer samples and 731 normal tissue samples from The Cancer Genome Atlas

(TCGA) dataset. The established GCNNmodels achieved excellent prediction accuracies

(89.9–94.7%) among 34 classes (33 cancer types and a normal group). In silico gene-

perturbation experiments were performed on fourmodels based on co-expression graph,

co-expression+singleton, PPI graph, and PPI+singleton graphs. The co-expression

GCNN model was further interpreted to identify a total of 428 marker genes that

drive the classification of 33 cancer types and normal. The concordance of differential

expressions of these markers between the represented cancer type and others are

confirmed. Successful classification of cancer types and a normal group regardless of

normal tissues’ origin suggested that the identified markers are cancer-specific rather

than tissue-specific.

Conclusion: Novel GCNN models have been established to predict cancer types or

normal tissue based on gene expression profiles. We demonstrated the results from

the TCGA dataset that these models can produce accurate classification (above 94%),

using cancer-specific markers genes. The models and the source codes are publicly

available and can be readily adapted to the diagnosis of cancer and other diseases by

the data-driven modeling research community.
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INTRODUCTION

Cancer has been the leading cause of death in the United States
(U.S.) and cancer mortality is 163.5 per 100,000 people. About 1.7
million new cases of cancer were diagnosed in the United States
and 609,640 people died from cancer in 2018. Further, about
38.4% of the U.S. population will be diagnosed with cancer at
some point during their lifetimes based on the 2013–2015 data.
This has led to an estimated $147.3 billion in cancer care in 2017.
The cancer care cost will likely increase as the population ages
and cancer prevalence increases thus causing more expensive
cancer treatments to be adopted as standards of care [1].
Extensive research has shown that early-stage cancer diagnoses
predict cancer treatment outcomes and improve survival rates
[2–5]. Therefore, early-stage screening and identifying cancer
types before arising symptoms have significant social and
economic impacts.

Newly adopted technologies and facilities have generated huge
amounts of cancer data which has been deposited into the cancer
research community. In the past decade, the analysis of publicly
available cancer data has led to some machine learning models
[6–11]. Recently, deep-learning-based models for cancer type
classification and early-stage diagnosis have been reported. Li
et al. proposed a k-nearest neighbor algorithm coupled with
a genetic algorithm for gene selection and achieved >90%
prediction accuracy for 31 cancer types based on The Cancer
Genome Atlas (TCGA) dataset in 2017 [10]. Later on, Ahn
et al. designed a fully connected deep neural network trained
by 6,703 tumor samples and 6,402 normal samples and assessed
an individual gene’s contribution to the final classification in
2018 [12]. Lyu et al. proposed a convolutional neural network
(CNN) model with a 2-dimensional (2-D) mapping of the
gene expression samples as input matrices and achieved >95%
prediction accuracy for all 33 TCGA cancer types [13]. Since
the gene expression profiles are represented by 1-dimensional
data and CNN models prefer a 2-dimensional image type data,
Lyu reorganized the original 103,81 × 1 gene expression based
on the chromosome number assuming that adjacent genes are
more likely to interact with each other. With this positioned
sequence, the 1-dimensional (1-D) data was reshaped into a
102 × 102 image by adding some zeros at the last line of the
image. Our group has developed a deep learning model, an
auto-encoder system with embedded pathways and functional
gene-sets to classify different cancer subtypes [14]. This research
suggested that embedding the 1-D data with respect to their
functional groups might be a promising approach. However,
gene expression data are inherently unstructured but given that
gene expression profiles measure the outcomes of gene-gene
regulatory networks at the mRNA level, they should reside in
a manifold defined by the functional relationship of genes. Our
group also developed a CNN model that classified normal tissue
and 33 cancer types from the TCGA dataset randomly imposing
the gene expression data into a (2-D) space to achieve a 93.9–
95% accuracies [15]. In contrast, the CNN models proposed in
the existing work are originally designed for data in the Euclidean
domain such as images. As a result, they struggle to learn the
manifold of the gene expression data.

Graph convolutional neural network (GCNN) was developed
recently to model data defined in non-Euclidean domains such
as graphs [16]. GCNNs perform convolution on the input graph
through the graph Laplacian instead of on the fixed grid of 1-D
or 2-D Euclidean-structured data. GCNNs have been applied in
studies of social networks and physical systems [17–20]. Recently,
GCNN models have been applied to predict metastatic breast
cancer events and to integrate the protein-protein interaction
database (STRING) into breast cancer study [21–24]. This
motivated us to investigate GCNN models for expression-based
cancer type classification.

In addition to designing a proper deep learningmodel for gene
expression data, another challenge in cancer type classification
is to identify cancer-specific gene markers, disentangled with
tissue-specific markers. This is because these primary cancer
types are uniquely associated with their tissues/organs of
origin and therefore the tissue-specific markers have the same
discriminating power as cancer-specific markers. It is non-trivial
to determine if a discriminate gene in a cancer type classifier is
cancer- or tissue-specific.

To investigate GCNN for cancer type prediction and identify
cancer-specific markers, we proposed and trained four GCNNs
models using the entire collection of TCGA gene expression data
sets, including 10,340 tumor samples from 33 cancer types and
731 normal samples from various tissues of origin. Graphs of the
four models were generated, namely, the co-expression network,
the co-expression+singleton network, the PPI network, and
the PPI+singleton network. The models proposed successfully
classified tumor samples without confusion from normal tissue
samples, suggesting the markers identified are likely cancer-
specific without dependency on tissues. Also, we examined
the co-expression graph model and effects of each gene on
the accuracy of cancer type prediction using in silico gene
perturbation, where we set one gene’s expression level to 0 or 1 in
one sample before fed into the established model per simulation
and then examined the perturbation in prediction accuracy of all
cancer types.We expected that the largest changes in the accuracy
of predicting a cancer type would yield the most discriminative
marker genes to a designated cancer type.

MATERIALS AND METHODS

Data Preparation
RNA-seq data were downloaded from TCGA and processed
as described previously [15]. Briefly, we downloaded the
dataset using an R/Bioconductor package TCGAbiolinks [25].
The dataset includes the entire collection of 11,071 samples
containing 10,340 samples from 33 cancer types and 731 normal
samples from 23 different tissues with 18 of those samples not
having a tissue of origin but identified as non-cancer as of
December 2018. The specific numbers of cancer and normal
samples in each cancer type are shown in Figure 1. We note
that normal tissue samples in a specific cancer study are referred
to as the corresponding tissue types, not necessary from a
matching tumor in the same study. For example, normal tissue
samples in the BRCA study represent normal breast tissue.
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FIGURE 1 | The distribution of the samples for each tumor group. The samples are separated from cancerous and normal tissue samples.

All of the abbreviations in this study are listed at the end of
the manuscript.

The 56,716 genes’ expression levels are in the log2(FPKM+1)
unit where FPKM is the number of fragments per kilobase per
million mapped reads. To reduce the complexity of the model, a
total of 7,091 most informative genes were selected, which had a
mean expression level >0.5 and a standard deviation >0.8. We
standardized the gene expression between 0 and 1 in this study to
ensure the convergence of the model.

Graph Generated by Co-expressions
Two different input graphs were generated, a co-expression graph
and a PPI graph from the STRING database (https://string-db.
org/) [22, 23]. To create the co-expression graph, Spearman
correlation was calculated usingMATLAB (Mathworks Inc.,MA)
to generate a correlation matrix between each gene in the dataset.
Spearman Correlation is a widely adopted method to assess
monotonic linear or non-linear relationships in sequencing data
[26]. If the correlation between two genes is>0.6 with a p< 0.05,
a weight of 1 is placed in an adjacency matrix, otherwise 0. If
there is no correlation >0.6 with a given gene, then that gene is
removed from the gene list, leading to a total of 3,866 genes in
the co-expression graph. The graph structure is represented by a
3,866 by 3,866 adjacency matrix, Wco−expr .

Graph Generated by PPI Database
All 7,091 genes were fed into the BioMart databased to find
the corresponding unique Ensembl protein IDs [27]. All human
protein interactions were downloaded from the STRING website
[22, 23]. Due to the existence of non-coding genes in the
TCGA dataset and a limited amount of proteins in the STRING
database, a total of 4,444 genes were selected to build the graph.
Connections among the genes with medium confidence in the
STRING database were considered. If a connection between
two genes is considered, a weight of 1 will be placed in an
adjacency matrix. The PPI graph is represented by a 4,444 by
4,444 adjacency matrix, WPPI . The string database is selected

for the PPI interactions due to the quantity and quality of data
coverage, convenient visualization support, and user-friendly file
exchange format [28].

Graph Generated by Singleton Nodes
All 7,091 genes were used in PPI and singleton node graph
where all 2,647 genes not included in the PPI graph were
treated as singleton nodes. The 7,091 by 7,091 adjacency matrix
included the 4,444 by 4,444 adjacency matrix WPPI from the
PPI graph at the upper-left corner and zeros in other places.
The same occurs in the co-expression and singleton graph. The
additional 3,225 genes that are not included in the co-expression
graph are included as singleton nodes where Wco−expr upper-left
corner and zeros in other places to generate a 7,091 by 7,091
adjacency matrix.

Proposed GCNN Models
The GCNN includes an input graph represented by the adjacency
matrix, graph convolutional layer (coarsening and pooling),
and a hidden layer fully connected to a softmax output layer
as shown in Figure 2. We trained four different ChebNet
based on the co-expression, co-expression+singleton, PPI, and
PPI+singleton networks.

Background on ChebNet
ChebNet is a computationally efficient implementation of
GCNN, which approximates the computationally complex global
filter on the graph by fast localized filters by using Chebyshev’s
polynomials. To explain ChebNet for our problem, consider that
the gene expression data, x ∈ Rn can be mapped to a graph, G
= (V, E) where V is a list of vertices or nodes, E is a list of edges
between the nodes, and n denotes the number of gene/nodes. The
adjacency matrices generated previously were used to encode the
connections, i.e., the edge weights between vertices. Let W =

(wij) ∈ R n×n represent the matrix of edge weights and the graph
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FIGURE 2 | Structure of the proposed GCNN model. The model includes two parts: graph convolution and a fully connected output layer for classification. Input is 1D

gene expression levels of TCGA samples and the adjacency matrix of genes (input graph). The graph is then pooled into a single GCNN layer to be fed into the hidden

and output layers.

Laplacian of W can express as

L = In − D−
1
2WD−

1
2 , L ∈ Rnxn (1)

where D is the diagonal matrix with Dii =
∑
j
wij, and In is

an n × n identity matrix. The graph Laplacian L is a self-
adjoint positive-semidefinite operator and therefore allows an
eigendecomposition L = U3UT , where U=[u1, u2, . . . , un]
represents n eigenvectors of L and 3= diag[λ1, λ2, . . . , λn] is
a diagonal matrix composed of the eigenvalues of L [29]. Such
decomposition admits a spectral-domain operation similar to
the Fourier transform in the Euclidean. Application of a filter
G to the input signal x on the graph can be calculated by the
convolution of G and x, which can be computed in the spectral
domain according to in the following equation,

y = g (L) x = g
(
U 3UT

)
x = Ug (3)UTx, (2)

where gθ is the spectral representation of the filter that gets
increasingly complex with the dimension of the input data and
the number of neighboring nodes.

To reduce the complexity, a polynomial expansion of g can be
obtained as

gθ (3) =
∑K−1

k= 0
θk3k, (3)

where 3k = diag[λk1, λk2, . . . , λkn] and θk are the polynomial
coefficients. It is shown [29] that this expansion yields local filters
with manageable computation. A Chebyshev approximation
Tm(x) of order m have been proposed in Defferrard et al. for this
expansion and is represented by

Tm(x) = 2xTm−1 (x) − Tm−2 (x) , (4)

where T0 (x) = 1 and T1(x) = x [29, 30]. Then, the local filter
described in (3) can be expressed as

gθ (3) =
∑K−1

k= 0
θkTk(3̂), (5)

where 3̂ is a scaled 3 defined fas

3̂ = = 23/λmax − In, (6)

that maps the eigenvalues in [−1,1]. This makes the Chebyshev
expansion to have x̂0 =x and x̂1 = L̂x which greatly
decreases the computational cost. This resulting implementation
is called ChebNet.

Graph Convolutional Network
Kipf et al. further simplified this ChebNet by keeping the filter to
be an order of 1 and set θ = θ0 = − θ1 to prevent overfitting.
This reduced (2) into [18]

y = θ

(
In + D−

1
2WD−

1
2

)
x. (7)

A normalization with Ŵ = W + 1 and D̂ii =
∑
j
Ŵij is applied

that leads to the final expression for the filtering as

y = θ

(
D̂−

1
2 ŴD̂−

1
2

)
x (8)

This resulting implementation is also referred to as graph
convolutional network (GCN).

Coarsening, Pooling, and Output Layer
A greedy algorithm was used for layer coarsening, which reduced
the number of nodes roughly by half. The greedy rule chose an
unselected node to be paired with another unpaired neighbor
node and their vertices being summed together. When pooling
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and coarsening a singleton node, the node grouped with a
random node that was unpaired.

The output nodes of the final GCNN layer served as the input
to a single dense fully connected layer with a ReLu function
which then led to the output layer with a softmax function to get
the probabilities.

Loss Function, Optimization, and
Hyperparameter Selection
Categorical cross-entropy was used as the loss function and the
Adam optimizer was selected for all four GCNNmodels. Random
Search was used to find the optimal pooling, learning rate, size
of the hidden layer, and batch size. The hyperparameters were
selected based on the highest accuracy and lowest loss function
with multiple model parameters providing similar results. The
parameters chosen remained consistent throughout the four
models. The epoch and batch size was chosen as 20 and 200,
respectively. Only one coarsened GCNN layer was used with 1
filter, an average pooling of 2, and one hidden layer was selected
after the GCNN layer of 1,024 nodes. The only hyperparameter
that changed was the learning rate which increased from 0.001 to
0.005 in the singleton graphs. 5-fold cross-validation was used to
train and test the model.

Computational Gene Perturbation
Post-modeling Analysis of GCNN Model
Determining the most influential gene to each cancer type
or normal tissue classification is an important task for model
analysis and verification, yet very difficult for the GCNN model
due to the collapse of nodes in the graph. Inspired by Ahn’s
model analysis for a single type of cancer, a computational
gene perturbation analysis for multiple cancer classes was used
in this study [12]. The pseudocode is shown in Figure 3. The
gene perturbation post-modeling analysis examined how much
the predictions of a trained model changed before and after a
gene was perturbed in computer simulations, where significant
prediction accuracy change suggested the importance of the gene
in the classification.

Step 1: Screen samples

A sample without a satisfactory prediction (>0.5) given by
the GCNN model was removed from this analysis since it
did not represent the class adequately. A threshold of 0.5
was chosen since any prediction greater than that guaranteed
that classification.

Step 2: Calculate the contribution score of each gene to 34
classification types

FIGURE 3 | The pseudocode for the in silico gene perturbation post-modeling analysis.
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In the perturbation post-modeling analysis, each gene was set
to the lowest value (0) and then the highest value (1) at a time
to see how the expression change would affect the prediction
accuracy of the trainedmodel for each sample after the screening.
The newly obtained prediction accuracies caused by a gene
were compared to the original prediction accuracy from the
model for the cancer type labeled by TCGA data. The larger
prediction accuracy change of the labeled cancer type was chosen
as a contribution score of that gene for that cancer type. The
process was repeated for each gene in all cancer types and
normal samples, resulting in a contribution score for each gene
of all 34 classification groups (33 for cancer types and normal
type). The contribution scores were represented by a matrix
with dimensions of the number of classes (34) by the number
of genes.

Step 3: Normalization

The final contributions were normalized to their respective class
resulting in their gene-effect score between 0 (lowest effect) to 1
(highest effect). The normalization was done to standardize the
score onto the same scale because some tumor types have more
samples thus having more contributions to that class. Min-max
normalization was chosen since we only cared for the magnitude,
not the direction in which the prediction changes—positively
(higher confidence) or negatively (lower confidence). Min–max
normalization equation is also shown in the pseudocode as
shown in Figure 3. An additional class was added to investigate
genes that may be associated with multiple cancer types. A
summary statistic termed “Overall Cancer” was calculated by
adding the gene-effect scores from all 34 cancer types resulting
in scores between 0 and 34.

RESULTS

All of the four models were implemented with Google’s
TensorFlow package 1.14.1 in python and all codes are available
at https://github.com/RicardoRamirez2020/GCN_Cancer.

Accuracy of Predicting Cancer Types
Inputs for co-expression, co-expression+singleton, PPI, and
PPI+singleton GCNN are 3,866 by 1, 7,091 by 1, 4,444 by 1, and
7,091 by 1 vectors, respectively. The property of the four graphs
and the key hyperparameters for four GCNN models based on
the graphs are all shown in Table 1. Though the co-expression
graph has fewer nodes, it contains more links than the PPI based
graphs, suggesting possible long convergence time.

The prediction accuracy of each GCNN model is shown in
Table 2. The PPI+singleton GCNNmodel performed the best on
average and peak values of accuracy. In addition, it was the most
stable with the lowest standard deviation as shown in Table 2.

The four GCNNmodels were trained with a combined 11,071
tumor and non-tumor samples initially. To evaluate the training
procedure and their robustness against overfitting, we examined
loss functions for four models as shown in Supplement 1 using
5-fold cross-validation for training and validation. The validation
loss of PPI+singleton GCNN converged to a value <0.5 after
5 epochs with no obvious overfitting (Supplements 1G,H). The

TABLE 1 | Property of four graphs established and the hyperparameters for four

GCNN models trained by combined tumor and normal samples.

Co-expression

+singleton

graph

Co-expression

graph

PPI+singleton

graph

PPI

graph

Number of nodes 7091 3,866 7,091 4,444

Number of links 175,688 175,688 53,372 53,372

Learning rate 0.005 0.001 0.005 0.001

Batch size 200 200 200 200

Size of hidden

layer

1024 1024 1024 1024

Convergence time

(Epochs)

15 15 10 10

TABLE 2 | Performance of predicting cancer types of four GCNN models trained

by combined tumor and normal samples.

Co-expression

+singleton graph

Co-expression

graph

PPI+singleton

graph

PPI graph

Mean ± std 94.23% ± 0.146 94.24% ± 0.251 94.61% ± 0.107 88.98% ± 0.883

Peak 94.43% 94.67% 94.71% 89.99%

Mean

precision

91.39% 92.06% 92.76% 87.75%

Mean recall 92.30% 91.39% 92.19% 83.79%

Mean

training loss

0.19 0.51 0.2 0.38

Mean

validation

loss

0.30 1.05 0.49 0.91

co-expression GCNNmodel demonstrated a similar convergence
speed as the PPI+singleton model while having a little higher
loss (Supplements 1A,B) and its singleton counterpart having
similar convergence speed but a lower loss (Supplements 1C,D).
The PPI GCNN model had the longest convergence time
but lowest validation loss (>0.5) among the four models
(Supplements 1E,F).

The prediction accuracy of the PPI GCNN model was the
lowest (88.98% ± 0.88%, mean ± std)% as shown in Table 2.
The PPI graph only included genes that were mappable to
proteins and have interactions based on the STRING database.
Therefore, non-coding genes were not included in the PPI graph.
In addition, the protein interaction network might not capture
all gene regulations and activities at the transcriptomic level,
which might be an explanation of the low performance of the PPI
GCNNmodel. Similarly, another recent PPI based GCNNmodel
for breast cancer subtype classification reported a prediction
accuracy of 85%, suggesting the PPI graph itself may not be a
complete graph representation for gene expression profiles from
TCGA [24]. The GCNN model with the PPI+singleton graph
included all the 7,091 genes and demonstrated a >5% increase
in prediction accuracy compared with the PPI graph with a
smaller accuracy variation as shown in Table 2, suggesting that
the additional 2,647 genes could be important in determining
cancer type.
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Prediction accuracy of the co-expression GCNN model
(94.24% ± 0.25%) is comparable to the PPI+singleton GCNN
model (94.61% ± 0.11%) and both were better than the PPI
GCNN model. While adding singleton nodes helped the PPI
graph to achieve better classification, the co-expression graph
with singleton nodes did not show a similar effect. GCNN model
based on co-expression + singleton graph and co-expression
graph demonstrated similar results. This might partially be due to
the fact that the PPI network only included 4,444 protein-coding
genes from 7,091 selected genes in this study. Adding singleton
nodes to PPI brought back the role of non-coding genes that were
not in the STRING database and thus improved the performance.
In the co-expression graph, 2,315 genes were part of the PPI
network, and 1,551 were other genes not inside the PPI network,
probably included non-coding genes, which provided additional
classification accuracy and robustness. Surprisingly, singleton
nodes represented genes not passing the co-expression test and
did not have a major impact on the cancer type classification,
alluding that transcriptomic regulations between genes and their
differential activities played a critical and sufficient role in cancer
type prediction. The common genes in both singleton, PPI, and
co-expression graphs are shown in Figure 4.

Further evaluation of micro-averaged precision-recall
statistics of the co-expression and co-expression+singleton
GCNN models with 34 output classes yielded very interesting
observations shown in Figures 5, 6. The largest discrepancy
in the precision-recall value appeared for tumor type rectum

FIGURE 4 | Venn diagram of genes included in four GCNN models. Both

singleton graphs contain 7,091 genes. The PPI graph contains 4,444 from the

7,091 genes. The co-expression graph contains 3,866 from the 7,091 genes.

The intersection of the PPI graph and the co-expression graph is 2,315 genes.

adenocarcinoma (READ) in all four models. This is due to a
large number of READ samples were misclassified into COAD
(colon adenocarcinoma), causing a much higher recall level.
A total of 68, 16, 95.2, and 72.9%, out of 166 READ samples
were classified into COAD cancer type by the co-expression,
co-expression+singleton, PPI, and PPI+singleton GCNNmodel
respectively (confusion matrices in Figures 7, 8, and further
illustrated in Supplements 2–5). Meanwhile, 6.9, 30.9, 0.2,
and 6.4% of 478 COAD samples are misclassified into READ
types. Adenocarcinomas of colon or rectum (a passageway
connects the colon to anus) are two cancers having different
staging procedures, and subsequent treatment, while different
molecular aberrations were identified for both of them [31],
the overall expression profiles of READ and COAD are similar,
probably lead to the higher misclassification. The much more
tumor samples in COAD group (n = 478) vs. 166 in READ
resulted in model training to bias toward a classification of
colon adenocarcinoma when confusion occurred, rather than to
rectal adenocarcinoma.

Similarly, cholangiocarcinoma (CHOL), a type of liver cancer
that forms in the bile duct, has only 36 tumor samples,
while 22.2, 22.2, 19.4, and 13.9% of the 36 samples were
misclassified into hepatocellular carcinoma (LIHC) by the co-
expression, co-expression+singleton, PPI, and PPI+singleton
model, respectively. Since cholangiocarcinoma can affect any area
of bile ducts, either inside or outside the liver, it is often mixed
with both cancerous tissues, thus difficult to separate these two
types of cancer. Among 4 models, the PPI+singleton GCNN
models performed pretty well to separate these two types of liver
cancer with an accuracy of 72% for CHOL and 95% for LIHC, and
the co-expression graph resulted in 34% for CHOL and 94.4% for
LIHC (Supplement 5 and Figure 7).

Lastly, Uterine carcinosarcoma (UCS) had only 56
tumor samples, frequently confused with the uterine corpus
endometrioid carcinoma (UCEC), two types of uterine cancers
collected in the TCGA cohort.

UCS classification performed poorly (misclassification
rate of 25, 25, 58.9, and 21.4% for co-expression, co-
expression+singleton, PPI model, and PPI+singleton GCNN
model, respectively), and most of these misclassified samples
were in UCEC as expected. We also noted that there were no
normal tissues collected within UCS type, the GCNN model
might not learn to remove tissue-specific markers.

Not all samples from the same organ classified together. There
are three types of kidney cancers, kidney chromophobe (KICH),
kidney clear cell carcinoma (KIRC), and kidney papillary
cell carcinoma (KIRP) in the TCGA dataset, and two lung
cancers, lung adenocarcinoma (LUAD) and lung squamous cell
carcinoma (LUSC) in the TCGA cohort. The co-expression
GCNN model classified KICH, KIRC, KIRP, LUAD, and LUSC
with accuracy rates at 93.8, 94, 91, 94.6, and 89.6%, while the
PPI+singleton model has the accuracy at 90.7, 94.6, 93.8, 95.3,
and 91.2%. Other GCNNmodels have comparable performance.

Cancer-Specific Classification
Previous studies have demonstrated promising classification
results on TCGA data. Hoadley et al. have identified 28
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FIGURE 5 | Precision (blue) and recall (red) of the co-expression GCNN models trained with combined 33 different cancer types and normal samples.

distinct molecular subtypes arising from the 33 different
tumor types analyzed across at least four different TCGA
platforms including chromosome-arm-level aneuploidy, DNA
hypermethylation, mRNA, and miRNA expression levels and
reverse-phase protein arrays [32]. Their results illustrated
significant molecular similarities among anatomically related
cancer types. Meanwhile, other recent studies have demonstrated
the successful classification of cancer types using either clustering
or deep learning algorithms [10, 13]. However, these studies
did not include normal samples in the classification and there
remained a doubt on whether these classifications were tissue-
specific or cancer-specific. Anh and our group have recently
reported the classification of the tumor and normal tissues that
suggest possible cancer-specific classification [12, 15].

To verify the cancer-specific classification of the GCNN
algorithm, the co-expression GCNN model was used to separate
all 1,221 breast tissue samples from the TCGA dataset, among
which 113 were normal samples and 1,108 were cancerous. The

result showed a mean accuracy of (99.34% ± 0.47%) using 5-
fold cross-validation. Overall, about 92% (672 out of 731) normal
tissues classified correctly into NT groups, regardless of their
origins, suggesting the GCNN models identify cancer-specific
samples’ class designation without using biomarkers related to
specific tissues.

Post-modeling Analysis
Post-modeling analysis of the co-expression GCNN was
performed for two reasons. There was no significant difference
in accuracy between the coexpression graph and either the
PPI+singleton or coexpression+singleton graph. In addition,
in silico gene perturbation in a combined co-expression +

singleton graph heavily favored singleton nodes, while connected
nodes would be compensated by its connected neighbors.
Therefore, considering the PPI graph’s worst classification
performance, the post-modeling analysis was performed on the
co-expression GCNN.
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FIGURE 6 | Precision (blue) and recall (red) of the co-expression+singleton GCNN models trained with combined 33 different cancer types and normal samples.

A total of 428 potential markers found in the 34 classes
with a gene-effect score ≥0.3 (see Methods section), giving an
average of approximately 38 genes per class. None of the 428
genes are unique to one specific class, indicating that the co-
expression GCNN model relied on the combinations of genes
to perform the cancer type classification. The threshold for the
gene-effect score of 0.3 was selected based on their histogram
of all gene-effect scores (Supplement 6). Thymoma (THYM),
testicular germ cell tumors (TGCT), glioblastoma multiforme
(GBM), and cervical cancer (CESC) has <10 marker genes
with their gene-effect scores >0.3, while mesothelioma (MESO),
sarcoma (SARC), and skin cutaneous melanoma (SKCM) had the
largest number of genes (>100)s affecting the prediction accuracy
in the co-expression GCNNmodel as shown in Figure 9.

The top 20 genes selected for breast cancer and the top 20
“Overall Cancer” summary statistics were shown in Table 3. The
features learned in breast cancer were interesting: the first 9 genes
were Y chromosome related, suggesting that the network learned

gender feature first since TCGA breast cancer were obtained all
from females. The 11 remaining genes were reported in breast
cancer studies, however, whether their functions were actually
learned by the GCNN model were yet to be discovered. Genes
from the “Overall Cancer” column are those effective in multiple
cancer classification.

DISCUSSION

This is the first study to establish a data-driven model for
cancer type classification using a graph convolutional neural
network approach. The proposed method successfully integrated
four different graphs into the deep learning framework. The
models were trained by gene expressions from the entire TCGA
collections and achieved cancer type prediction accuracy at
94.6%, which is better than or comparable to other machine
learning algorithms previously reported [10, 13, 15]. Our
GCNNmodel successfully integrated normal and tumor samples
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FIGURE 7 | Confusion matrix of all samples predicted by the co-expression GCNN model with combined 33 different cancer types and normal samples.

together to further enrich for cancer-specific prediction. Our
unique implementation of model interpretation is also novel,
where an in silico gene perturbation procedure was executed to
evaluate the role of each gene in classification through a novel
gene-effect scoring method.

In the study presented here, a total of 7,091 genes from the
complete TCGA dataset were chosen with a mean >0.5 and a
standard deviation >0.8. Obviously, changing the threshold on
mean and standard deviation could generate different numbers
of genes to be selected. Our earlier deep learning studies
suggested that genes selected captured sufficient information
for the proposed objectives [15, 33], however, the sensitivity
of the chosen threshold for the GCNN models may require
further investigation. The graph complexity was also tested with
similarly, multiple different correlations thresholds to generate
co-expression graphs. Correlation of 0.6 with a p < 0.05
gave the best results, the model had a sufficient number of
discriminative genes to classify each cancer type but not overly
generalized where the Laplacian of the graph lost its significant
meaning. Meanwhile, if the correlation threshold is too high,
some discriminative genes may be excluded from the graph.
Though it might be computationally costly, these thresholds can
be included as learning parameters in our future studies.

FPKM unit was used in this study because it is one of
the normalized measures available from the TCGA data portal
(GDC) and it is widely used in official TCGA publications.
Another gene expression unit, TPM, or transcriptions per
million, is another measure of gene abundance potentially with
higher consistency among samples. We downloaded TPM data
from the UCSC TumorMap and compared it to the FPKM
dataset used in the present study. Among the 6,583 genes and
9,617 samples common between the two datasets (total numbers
in our manuscript, 7,091 genes, and 11,071 samples), TPM
and FPKM values were greatly consistent (Pearson correlation
coefficient, 0.94). Furthermore, 84.8 and 94.1% of the edges in
the coexpression network built using FPKM (correlation> 0.6 in
FPKM) remained to be highly correlated with correlations >0.6
and 0.5, respectively, in the TPMdataset. A total of 86.1% of genes
remained in the coexpression network constructed in the TPM
dataset with an identical threshold of correlation >0.6. Thus,
we expect the coexpression network and GCNN performance
achieved using the TPM dataset to be very similar to FKPM.

The co-expression graph generated using correlation
coefficients captures linear regulation relationships
predominantly. The mutual information (MI) method
including ARACNe and MINDY may serve as an alternative
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FIGURE 8 | Confusion matrix of all samples predicted by the coexpression+singleton GCNN model with combined 33 different cancer types and normal samples.

FIGURE 9 | The number of genes significantly affect each cancer type classification with a gene-effect score >0.3.

to correlation-based methods to measure gene interactions,
especially non-linear relationships [34, 35]. However, due to
a requirement of permutations for each gene pair to assess
statistical significance, MI consumes tremendously more

computation capacity than correlation and thus is hardly
possible for a genome-wide search. Therefore, the most
successful applications of MI methods are mainly limited to
small pre-defined networks, such as transcript factor bindings
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TABLE 3 | Top 20 Genes in Breast Cancer and Overall Cancer Scores.

TCGA-

BRCA

Overall

Cancer

Ensmbl geneID Gene

Name

Score Ensmbl geneID Gene

Name

Score

ENSG00000129824 RPS4Y1 1** ENSG00000202198 *RF00100 20.49

ENSG00000067048 DDX3Y 0.99 ENSG00000129824 RPS4Y1 9.95

ENSG00000012817 KDM5D 0.99 ENSG00000274012 *RN7SL2 9.37

ENSG00000198692 EIF1AY 0.99 ENSG00000171560 FGA 9.05

ENSG00000114374 USP9Y 0.99 ENSG00000067048 DDX3Y 9.00

ENSG00000131002 *TXLNGY 0.99 ENSG00000198692 EIF1AY 8.97

ENSG00000067646 ZFY 0.99 ENSG00000012817 KDM5D 8.95

ENSG00000183878 UTY 0.99 ENSG00000067646 ZFY 8.94

ENSG00000233864 *TTTY15 0.99 ENSG00000114374 USP9Y 8.94

ENSG00000275410 HNF1B 0.55 ENSG00000183878 UTY 8.94

ENSG00000160862 AZGP1 0.37 ENSG00000131002 *TXLNGY 8.94

ENSG00000259974 *LINC00261 0.33 ENSG00000233864 *TTTY15 8.94

ENSG00000181449 SOX2 0.33 ENSG00000113924 HGD 8.904

ENSG00000118526 TCF21 0.31 ENSG00000134020 PEBP4 8.89

ENSG00000184661 CDCA2 0.30 ENSG00000128709 HOXD9 8.68

ENSG00000163734 CXCL3 0.30 ENSG00000173432 SAA1 8.58

ENSG00000101076 HNF4A 0.26 ENSG00000181449 SOX2 8.22

ENSG00000212694 *LINC01089 0.26 ENSG00000184661 CDCA2 8.12

ENSG00000125798 FOXA2 0.25 ENSG00000128713 HOXD11 8.11

ENSG00000103855 CD276 0.24 ENSG00000103254 FAM173A 7.96

Y chromosome-specific genes are specified to the right of the genes-effect score as, **.

The high gene-effect score most likely is due to the GCNNs learned these genes are non-

essential genes for breast cancer, but perhaps useful for other types, such that perturbing

these gene expressions will lead to large prediction accuracy changes. The * symbol is

associated with genes that do not code to proteins.

and miRNA targets (known as the ceRNA regulation). In
our previous papers, we compared the two types of methods
and showed that correlation-based methods achieved higher
performance and efficiency in capturing the dynamic gene
regulations using gene expression data [36, 37]. Furthermore, it
was reported that gene regulation is typically linear or monotonic
and thus correlation-based methods can achieve equivalent or
even better performance [38]. Thus, to enable our GCNN
model to a genome-wide network that incorporated as much
information as possible, we utilized correlation to construct
co-expression networks.

In the PPI+singleton GCNN model, isolated genes, such
as non-coding genes, are integrated as singleton nodes in the
graph. Since these singleton genes may have higher gene-effect
scores than the coding genes (2,674 genes are not in PPI-
graph), databases for non-coding genes, RNA-RNA interaction,
and transcription factors should be considered to establish links
between these genes and genes inside the PPI graph for a
complete GCNN model. Another possible approach to build a

graph for a GCNN model is a literature-derived graph. There
are over 4 million cancer-related manuscripts in the PubMed
database and building a literature-derived graph will be time-
consuming and therefore is not included in this study. Previously,
we established a knowledge map of post-myocardial infarction
responses by automatically text-mining more than 1 million
abstracts from PubMed [39].Wewill use literature review tools to
build a literature-derived network for cancer study in our future
research. One thing worth mentioning is that the deep-learning
algorithm is purely a data-driven method and some techniques
to integrate biological meaning to the graph-related network may
require an overhaul of our current GCNN model design, such as
the development of a GCNN model based on the latest results of
explainable networks [40, 41].
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NOMENCLATURE

ACC adrenocortical cancer

BLCA bladder urothelial carcinoma

BRCA breast invasive carcinoma

CESC cervical and endocervical cancer

CHOL cholangiocarcinoma

COAD colon adenocarcinoma

DLBC diffuse large B-cell lymphoma

ESCA esophageal carcinoma

GBM glioblastoma multiforme

GCNN graph convolutional neural network

HNSC head and neck squamous cell carcinoma

KICH kidney chromophobe

KIRC kidney clear cell carcinoma

KIRP kidney papillary cell carcinoma

LAML acute myeloid leukemia

LGG low grade glioma

LIHC liver hepatocellular carcinoma

LUAD lung adenocarcinoma

LUSC lung squamous cell carcinoma

MESO mesothelioma

OV ovarian serous cystadenocarcinoma

PAAD pancreatic adenocarcinoma

PCPG pheochromocytoma and paraganglioma

PPI protein-protein interaction

PRAD prostate adenocarcinoma

READ rectum adenocarcinoma

SARC sarcoma

SKCM skin cutaneous melanoma

STAD stomach adenocarcinoma

std standard deviation

TCGA The Cancer Genome Atlas

TGCT testicular germ cell tumor

THCA thyroid carcinoma

THYM thymoma

UCEC uterine corpus endometrioid carcinoma

UCS uterine carcinosarcoma

UVM uveal melanoma
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