
Research Article
Classification of Citrus Diseases Using Optimization Deep
Learning Approach

Ahmed Elaraby ,1 Walid Hamdy ,2 and Saad Alanazi 3

1Department of Computer Science, Faculty of Computers and Information, South Valley University, Qena, Egypt
2Department of Math and Computer Science Faculty of Science, Port Said University, Port Fuad, Egypt
3Department of Computer Science, College of Computer and Information Sciences, Jouf University, Sakakah, Saudi Arabia

Correspondence should be addressed to Ahmed Elaraby; ahmed.elaraby@svu.edu.eg

Received 21 December 2021; Revised 10 January 2022; Accepted 20 January 2022; Published 10 February 2022

Academic Editor: Deepika Koundal

Copyright © 2022 Ahmed Elaraby et al. $is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Most plant diseases have apparent signs, and today’s recognizedmethod is for an expert plant pathologist to identify the disease by
looking at infected plant leaves using a microscope. $e fact is that manually diagnosing diseases is time consuming and that the
effectiveness of the diagnosis is related to the pathologist’s talents, making this a great application area for computer-aided
diagnostic systems. $e proposed work describes an approach for detecting and classifying diseases in citrus plants using deep
learning and image processing. $e main cause of decreased productivity is considered to be plant diseases, which results in
financial losses. Citrus is an important source of nutrients such as vitamin C all around the world. On the contrary, citrus diseases
have a negative impact on the citrus fruit and quality. In the recent decade, computer vision and image processing techniques have
become increasingly popular for the detection and classification of plant diseases. $e suggested approach is evaluated on the
citrus disease image gallery dataset and the combined dataset (citrus image datasets of infested scale and plant village). $ese
datasets were used to identify and classify citrus diseases such as anthracnose, black spot, canker, scab, greening, and melanose.
AlexNet and VGG19 are two kinds of convolutional neural networks that were used to build and test the proposed approach. $e
system’s total performance reached 94% at its best. $e proposed approach outperforms the existing methods.

1. Introduction

$e essential techniques of attaining the greatest economic
value of citrus are the identification and categorization of
citrus diseases. Citrus disease classification, as the most
significant element of citrus disease processing, is pro-
gressively performed by machine learning than manual
techniques such as computer image processing, pattern
recognition, and other technologies. Automatic fruit clas-
sification using machine vision can not only solve difficulties
such as poor productivity and inconsistent classification
standards that come with human sorting but can also in-
crease classification accuracy [1]. For many people in the
world, agriculture has been their primary source of income.
Agriculture’s increased commercialization has had a sig-
nificant impact on our environment. One of the most

pressing problems in agriculture is the identification of plant
diseases. Early disease identification helps in the prevention
of disease transmission to other plants that leads to sig-
nificant economic losses. Plant diseases have a wide variety
of effects, fromminor symptoms to full plantation loss, all of
which have a significant influence on the agricultural
economy [2].

Deep learning is now widely utilized in a variety of
disciplines, including object identification [3], signal and
speech recognition [4], biomedical image classification
[5, 6], and segmentation [7]. Deep learning is also being
utilized extensively in agriculture for the identification and
categorization of plant diseases [8]. Convolutional neural
network (CNN) is regarded as the most effective deep
learning approach [9]. Several CNN architectures such as
AlexNet [10], GoogLeNet [11], and others are utilized to
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identify and classify plant diseases. Furthermore, there are
many researchers who used deep learning models for the
identification and classification of citrus diseases (Pourreza
et al. [12], Barman and Ridip [13], Xiaoling et al. [14], and
Zia Ur Rehman et al. [15]).

$e available dataset for training deep learning models
has a significant impact on their performance. On the
sufficiently big dataset, these models exhibit improved
outcomes and excellent generalizability. $e datasets cur-
rently available for citrus plant diseases usually lack suffi-
cient images in a variety of situations, which are required for
developing high-accuracy models. Given the small dataset,
the model may overfit and perform poorly on the real-world
test dataset. To improve the dataset, different data aug-
mentation techniques such as affine transformation and
perspective transformation are utilized [16]. Generative
adversarial networks (GANs) are used to create counterfeit
images when the training images are inadequate, and there is
no ability for image manipulation techniques to change the
outputs.

$e major goal of this research is to use deep learning
approaches to identify citrus plant diseases at a lower cost.
Two distinct citrus images, fruit disease image (FDI) and leaf
Disease image (LDI), are used to solve this problem. Viruses,
fungi, mold, bacteria, and mites are the most common
causes of diseases in plants. $e proposed approach detects
and classifies the affected plant’s diseases and then presents
the results in multiperformance metrics to prove the ef-
fectiveness of our models. When compared to prior or
current methodologies, the proposed approach yields a
result with less calculation time andmore accuracy. We used
stochastic gradient descent with momentum to optimize the
models.

2. Related Work

Many approaches for detecting and classifying fruit diseases
have been proposed by researchers in the fields of computer
vision and machine learning [17]. For segmentation of
arecanut bunches, Dhanesha et al. [18] employed the YCR
color model approach. For segmenting bunches, the ap-
proach employs volumetric overlap error and dice similarity
coefficient to estimate the similarity between the input image
and ground truth. $is technique focuses on segmenting
arecanut branches that are not arecanut. $e same approach
is expanded using the HSV color model for the purpose of
bunch segmentation [19].

To diagnose rice plant diseases, Ghosal and Sarkar [20]
presented a VGG16 with transfer learning. $e authors
utilized four classes of images to train this classification, and
VGG16 has an accuracy of up to 92.4%. Kumar et al. [21]
presented a system to identifying diseases at coffee leaves,
and radial basis function neural network, fuzzy logic-based
expert system, transfer learning techniques, and CNN with
data augmentation were used for identification. $is study
employs two types of datasets: original leaf images and
chosen symptomatic portions from leaf images. $ere are
five different kinds of leaf images in each dataset. $e model
performed well with a score of 97.61%.

For identifying the diseases in millet crops, Coulibaly
et al. [22] used a VGG16 model using a transfer learning
method. $is study gathered 124 leaf images and divided
them into two categories: mildew infections and healthy
leaves. $e accuracy of the VGG16 model was 95%.

A convolutional neural network was proposed by Hari
et al. [23] as an effective method for detecting diseases in
plant types such as grape, maize, tomato, and apple. $e
dataset comprises a total of 15,210 leaf images divided into
ten classes, which were used to train and test the model. $e
accuracy of the suggested convolutional neural network was
86%.

For identifying diseases in tomato leaf images, Jiang et al.
[24] employed a CNN model ResNet50. $e collection
contains 3,000 images that belong to three classifications.
$is model has 98.0% accuracy. For identifying diseases in
plant leaves, Nandhini and Bhavani [25] offered machine
learning methods such as KNN, decision trees, and SVM. To
segment the diseased part of the leaf image, they employed a
feature extraction technique that involves several steps,
including converting RGB images to lab color space models
for color feature extraction, K-means clustering, fast Fourier
transform, and histogram, scale-invariant feature transform
for shape feature extraction, and principal component
analysis for lowering vector size. For classification, the al-
gorithms discussed above were utilized, with SVM out-
performing the other two techniques. Panchal et al. [26]
utilized a random forest classifier to detect early blight, late
blight infections, and bacterial spot in leaves of plants. $e
herpes simplex virus (HSV) method was utilized to separate
the sick and healthy portions of the leaf in image seg-
mentation, and a gray level co-occurrence matrix was used
for feature extraction. $ose models have a 98% accuracy
rate.

Automatic plant disease identification for 28 distinct
classes gathered from 15 different plants was presented by
Kamal et al. [27]. A total of 23,352 images were chosen,
ranging in size from 43 to 1,760 per class. For feature ex-
traction, six distinct models were chosen: DenseNet 121,
DenseNet 169, VGG19, InceptionV3, NasNetmobile,
MobileNet, and ResNet. 50,000 images were gathered from
14 distinct crops by Agarwal et al. [28]. All the images were
created using the same dimensions. $ree convolutional
layers with three max-pooling layers and various filters are
included in the proposed model. Adhikari et al. [29] pre-
sented a methodology for automatically detecting plant
illness, particularly in tomato plants, using image processing.
$e datasets such as gray spot, late blight, and bacterial
canker included some images of three forms of tomato plant
diseases. Some of the images were taken from the Internet,
while others were taken with camera equipment on the
premises. $e CNN model that was formed contains 24
convolutional layers and two fully linked layers.

Janarthan et al. [30] created a system for the categori-
zation of four distinct citrus leaf diseases that included an
embedding module, a patch module, and a deep neural
network. $is study employed a dataset of 609 images. $e
patch module divides the various patches of lesion found on
leaves into individual pictures, increasing the amount of
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dataset available for training. Background removal and data
augmentation are among the preprocessing techniques
employed. $e training is performed with the deep Siamese
network. $e suggested approach achieved 94.04% with a
minimal computing cost; adjusting roughly 2.3 million
parameters are required to train the network. Pan et al. [31]
described a deep convolutional neural network-based
technique. Black spot, anthracnose, sand rust, canker, scab,
and greening (HLB) are among the diseases included in the
collection, which has 2,097 images. To expand the quantity
of datasets available for training, data augmentation ap-
proaches are used. $e dataset is partitioned into 6 : 2:2 for
training, validation, and testing, correspondingly. Features
are extracted and classified by using the DenseNet model.
$e last dense block in this work is changed to simplify the
DenseNet model. With a decent forecast time, the proposed
strategies achieved an accuracy of 88%.

Zhang et al. [32] proposed a technique for detecting
canker disease. Deep neural networks are used in both
rounds of this process. GANs (Generative adversarial net-
works) are employed in the initial stage to magnify the
dataset by reproducing the original dataset and creating
synthetic pictures. $e second step is based on AlexNet, and
it involves making modifications to the optimization target
and updating the parameters via Siamese training, with an
accuracy of 90.9% and a recall of 86.5%.

In this paper, we study and evaluate the effectiveness of
several first-order optimizers, particularly for identifying
images of citrus diseases using pretrained models such as
AlexNet and VGG19. $e pretrained AlexNet model sur-
passes the other architectures when it comes to categorising
photos of citrus diseases, according to the findings of the
experiments.

3. Proposed Methodology

In recent years, citrus plant diseases’ automatic detection has
grown in popularity by using deep neural networks. We
present a short description of the proposed framework that
will be used for detection and classification of diseases in
citrus plants using deep learning and image processing. $e
general architecture of our suggested deep learningmodels is
depicted in Figure 1, which includes input datasets, pre-
processing phase, deep learning model phase, transfer
learning phase, classification phase, and evaluation metrics
phase. First, it is possible to identify lesion patches on citrus
fruits and expose them by using the suggested deep learning
models. $e second step is to classify citrus diseases. It takes
a long time to train a neural network from scratch. It ne-
cessitates the use of a good hyperparameter selection
technique. Instead, transferring the weights from a con-
ventional pretrained network is simple and delivers better
categorization performance measures.

$e schematic diagram of transfer learning-based citrus
plant classification from the image of the diseases is shown in
Figure 2.$e disease images are scaled to fit into a pretrained
network’s standard input size. Data augmentation utilizing
rotation is accomplished in the preprocessing step since a
deep neural network works effectively with a higher number

of images. $e selected model’s starting layers and network
weights are transferred.$e discriminative features from the
illness images are extracted by the appropriate network.
Modifying the last layers allows for classification.

3.1.TransferLearning. A common deep learning approach is
based on transfer learning in which pretrained model
weights are transferred to a new classification issue. As a
result, training becomes more efficient and easier. $e ar-
chitectures AlexNet and VGG19 are employed in this study.
AlexNet [33] is made up of eight layers that may be learned
(five convolutional and three fully connected layers). Due to
its deep architecture, VGG19 [34] is a well-known pre-
trained model for image classification that works well. It has
47 layers, including sixteen convolutional layers, five max-
imum pooling layers, and three fully linked layers.

3.2. AlexNet. AlexNet [35] is made up of eight layers, five of
which are convolutional and three of which are completely
connected. Each convolutional layer is paired with a max-
pooling layer and a normalization layer to reduce the image
size and normalize the output pixel values [36]. For AlexNet,
the images are resized to 224 ∗ 224 pixels. $e first con-
volutional layer uses an input image of 224 ∗ 224 ∗ 3 pixels
with 96 kernels of size 11 ∗ 11 ∗ 3 pixels and a stride of 4 ∗ 4.
Here, 3 denotes creating three-channel RGB images. $is
layer has a total of 34,944 parameters. $e maxpooling layer
follows with a pool size of 2 ∗ 2 and 2 strides. $e second
convolutional layer uses data from the preceding layer and
has a 256-kernel size for 1 stride, followed by maxpooling
layers with 2 ∗ 2 pool size and 2 strides. $is layer has a total
of 2,973,952 parameters. $e third convolutional layer has a
kernel size of 384 with 1 stride and is followed by a max-
pooling layer with a pool size of 22 with 2 strides, which
takes data from the previous layers. $is layer has a total of
885,120 parameters. $e fourth convolutional layer, with a
kernel size of 384 and 1 stride, takes input from the pre-
ceding layers. $is layer has a total of 1,327,488 parameters.
$e fifth convolutional layer has 256 parts and 1 step and is
followed by a maxpooling layer with 22 pool sizes and 2
steps, which integrates input from previous layers. $e total
parameter is now 884,992. $ere are three thick layers with
4,096 neurons after the five convolutional layers. $ere are a
total of 28,079,671 parameters utilized. $e activation
function utilized here is the Relu, while the Softmax acti-
vation function is used for the last dense layer.

3.3. VGG19. $is VGG19 [34] network is identical to
VGG16, but instead of 16, it will have 19 layers, including 16
convolutional layers and three entirely linked dense layers.
$e first and second layers each include 64 filters and 3 ∗ 3
kernels, which are followed by the maxpooling layer. Fol-
lowing the maxpooling layer, there are 128 filters with a 33%
kernel in the second and third convolutional layers, and
following that there are four convolutional layers with 256
filters of 3 ∗ 3 kernel and a maxpooling layer in that order.
Two further convolutional layers with 512 filters of 3 ∗ 3
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kernel are put in sequence, followed by a maxpooling layer.
$is output is then routed into layers that are fully coupled.
With 4096, 4096, and 1000 neurons, there are three fully
connected thick layers. For all layers, the activation function
is Relu, except for the last dense layer that uses the Softmax
activation function.

3.4. Optimization Algorithms. Gradient descent is a first-
order optimization process that iteratively adjusts a neural
network’s learnable parameters to minimize the loss. Gen-
erally, the gradient indicates the direction in which the loss
function’s change rate is the steepest.

$e learning rate is the rate at which each learnable
parameter is modified in the positive direction of dis-
placement, with a step size in the negative direction that is
appropriate. $e equation below represents the update
equation mathematically:

W � W − η∗
zL

zW
, (1)

where W is the learnable parameter vector, η denotes the
step size, and L denotes the loss function. $e gradient

descent algorithm contains three major variations,
depending on how many data samples used for gradient
computation: minibatch gradient descent (MBGD), sto-
chastic gradient descent (SGD), and batch gradient de-
scent (BGD). In the BGD technique, the loss function
gradient is calculated for the whole training dataset,
whereas in the SGD approach, a parameter update is
performed for each training sample. In the MBGD al-
gorithm, the entire dataset for training is partitioned into
minibatches, and the parameters are changed for each
minibatch. On the one hand, BGD causes sluggish training
and superfluous calculations. On the other hand, SGD is
faster, and although there are swings owing to frequent
updates with large volatility, it is generally stable. Mini-
batch gradient descent has a lower variance of parameter
updates than the other two methods, which might lead to
more steady convergence.

We used stochastic gradient descent with momentum
(SGDM). $e SGDM technique has been extended to in-
clude stochastic gradient descent with momentum [37]. It
takes past gradients into consideration in each dimension.
$e term momentum prevents undesirable oscillations and
speeds up the algorithm’s convergence.
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4. Experimental Results and Discussion

4.1. Dataset Description. In our experiments, we used a
sample of images taken from the benchmark databases. On
the citrus disease image gallery dataset, the combined dataset
(citrus images database of infested scale and plant village),
and our own gathered image database, the suggested ap-
proach is evaluated. Citrus diseases including anthracnose,
black spot, canker, scab, greening, and melanose were de-
tected and classified using these datasets. $e suggested
method outperforms current techniques. Our databases are
divided into two databases; first one for fruit disease image
(FDI), and the second one for leaf disease image (LDI). $e
description of our two databases is shown in Table 1.

$e samples of first database FDI and the samples of
second database LDI are presented in Figure 3 and Figure 4.

4.2. Data Augmentation. To be successfully trained, deep
learning classification networks require a large amount of
training data. Unfortunately, the number and scarcity of
current citrus disease image collections, as well as the lack of
genuine annotated ground truths, continue to obstruct the
automatic diagnosis of citrus diseases. To solve this problem,
augmentation operations on the training set were performed
to increase the number of training images and avoid the
overfitting problem that can occur in the case of using a
small amount of training data during the training process.
Several augmentation parameters, such as random cropping,
rotation, mirroring, and color shifting, were applied to the
data using principal component analysis. After augmenta-
tion, we get 12,211 images, as illustrated in Table 2.$e input
images are transformed to a standard size of 256 ∗ 256 di-
mensions in the proposed work to make implementation
easier and save processing time.

We employed different proportions of training and
testing samples to evaluate the efficiency of the pro-
portion of training and testing samples’ number on
classification. We used 80–20 and 60–40 training and
testing samples, respectively. As the number of training
samples grows, it is projected that the technique’s ac-
curacy would improve.

For the classification of citrus disease images, AlexNet
and VGG19 networks are trained and evaluated using the
two datasets. $e pretrained model is divided into two
phases; in the first phase, the dataset is split into 80% of the
images for training and 20% for testing, and in the second
phase, the dataset is split into 60% of the images for training
and 40% for testing of the images for each database. SGDM
optimizers are used for training. $e following equations
define the performance metrics utilized in this study.

$e sensitivity, otherwise called recall, indicates the
precision of positive instance, and it refers to how many
examples of positive sets were correctly labelled; it can be
measured using equation (2), where TP represents true
positive or the numeral of positive cases that are precisely
classified, and FN represents false negatives or the quantity
of positive cases that are inaccurately named as negatives.

sensitivity(recall) �
TP

TP + FP
. (2)

Specificity is explained as the restrictive probability of
actual negative token of an optional class, which generally
corresponds to the likelihood of the negative marking which
is true; it is expressed by equation (3), where TN signifies the
quantities of cases or real negatives that are negative and
named such true, and FP indicates the quantities of false
upsides or cases that are erroneously delegated positive.

specificity �
TN

TN + FP
. (3)

In general, sensitivity and accuracy measure the algo-
rithm’s effectiveness on a certain class and are either negative
or positive, respectively.

Precision is the most frequent criterion for assessing
categorization efficiency. During the assessment period, the
accuracy is evaluated every 20 iterations. $is metric, which
counts the proportion of samples that are properly cate-
gorized, is represented by the following equation:

accuracy �
TP + TN

TP + TN + FP + FN
. (4)

Equation (5) gives precision when we divide the number
of true positives by the same number plus the number of
false positives.$is statistic assesses the algorithm’s accuracy
or its ability to anticipate results. $e model’s precision
relates to how “exact” it is in terms of how many of the
anticipated positives are actually positive.

precision �
TP

TP + FP
. (5)

$e performance of a deep neural network may be
improved by properly selecting hyperparameters such as
batch size, maximum epochs, and step size. For training the
pretrained models, a batch size of 32 is chosen. A low step
size of 0.00001 and a number of epochs of 20 may lead to
better network performance when transferring pretrained
network weights. $e SGDM optimizer is used to change
network settings for each database, and performance
measurements are recorded. $e simulation findings show
that when a pretrained model is trained with 80% of the

(1) Select W0 as the initial parameter vector and
f(w) as the objective function

(2) Select the decay rate moving average c and
step size η

(3) Create the first moment M0 to zero vector
(4) while true do
(5) W0 is not converge do
(6) j� j+ 1
(7) at timestep, j, gj calculate the gradients
(8) Using the updated biased first-moment estimate Mj � c

Mj−1 + (1− c)gj

(9) Use to change the parameters Wj �Wj−1 − η Mj
(10) end

ALGORITHM 1: SGDM optimizer.
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images and tested with 20% of the images, the SGDM op-
timizer produces superior results.

Two different phases, 60 : 40 and 80 : 20, are used to
calculate results. In the first stage, 60 : 40 approach is used to
calculate classification performance for two datasets, and
results are shown in Tables 3 and 4.$ey explain the findings
achieved using the AlexNet and VGG19 models for various
datasets. AlexNet classifier gives better classification

accuracy as compared with VGG19 classifiers. On AlexNet,
the achieved accuracy is 91.4%, while precision, sensitivity,
specificity, and F-score are 90.7%, 90.6%, 90.4%, and 90.9%,
respectively, but on VGG19, the achieved accuracy is 91.1%,
while precision, sensitivity, specificity, and F-score are
90.1%, 90.3%, 90.2%, and 90.7%, respectively.

In the second stage, evaluation is performed by using a
ratio of 80 : 20. Tables 5 and 6 illustrate the results of this

Table 2: Number of our two dataset samples after augmentation.

Database name Disease classes Number of images Number of images after augmentation

Fruit disease image (FDI)

Black spot 19 1,209
Canker 78 1,678
Greening 16 1,589
Healthy 22 1,400
Scab 15 1,590

Leaf disease image (LDI)

Black spot 171 1,031
Canker 163 927
Greening 204 1,007
Healthy 58 800
Melanose 13 980

Total images 759 12,211

Table 1: Number of our two dataset samples.

Database name Disease classes Number of images

Fruit disease image (FDI)

Black spot 19
Canker 78
Greening 16
Healthy 22
Scab 15

Leaf disease image (LDI)

Black spot 171
Canker 163
Greening 204
Healthy 58
Melanose 13

Total images 759

Black spot Canker Greening healthy Scab

Figure 3: Sample of fruit disease image (FDI).

Black spot Canker Greening healthy Melanose

Figure 4: Sample of leaf disease image (LDI).
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Table 4: Proposed method classification performance for strategy 60 : 40 on LDI dataset.

Performance measures
Without SGDM With SGDM

AlexNet (%) VGG19 (%) AlexNet (%) VGG19 (%)
Accuracy 89.9 87.2 91.5 91.1
Precision 89.3 86.7 90.5 90.3
Sensitivity 89.1 86.6 90.6 90.4
Specificity 89.5 87 90.5 90.3
F-score 89.7 87 90.8 90.8

Table 5: Proposed method classification performance for strategy 80 : 20 on FDI dataset.

Performance measures
Without SGDM With SGDM

AlexNet (%) VGG19 (%) AlexNet (%) VGG19 (%)
Accuracy 91.6 91.2 93.5 92.6
Precision 91.2 90.9 93.2 92.4
Sensitivity 91.1 90.8 93.1 92.2
Specificity 91.2 90.9 92.9 92
F-score 91.5 91.1 93.4 92.5

Table 6: Proposed method classification performance for strategy 80 : 20 on LDI dataset.

Performance measures
Without SGDM With SGDM

AlexNet (%) VGG19 (%) AlexNet (%) VGG19 (%)
Accuracy 92.2 91.7 94.3 92.9
Precision 92 91.6 94.1 92.8
Sensitivity 91.9 91.5 93.9 92.5
Specificity 91.8 91.2 93.9 92.2
F-score 92.2 91.6 94.3 92.8

Table 3: Proposed method classification performance for strategy 60 : 40 on FDI dataset.

Performance measures
Without SGDM With SGDM

AlexNet (%) VGG19 (%) AlexNet (%) VGG19 (%)
Accuracy 89.7 87 91.4 91.1
Precision 89.2 86.8 90.7 90.1
Sensitivity 89.1 86.6 90.6 90.3
Specificity 89.4 86.9 90.4 90.2
F-score 89.7 87 90.9 90.7

84
85
86
87
88
89
90
91
92

Precision Sensitivity Specificity F-ScoreAccuracy

Alex Net
VGG19

AlexNet+SGDM
VGG19+SGDM

Figure 5: Proposed method classification performance for strategy 60 : 40 on LDI dataset.
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phase for two datasets. $ey explain the findings achieved
using the AlexNet and VGG19 models for various datasets.
It can be seen that the AlexNet classifier gives better
classification accuracy as compared with the VGG19

classifier. On AlexNet, the achieved accuracy is 93.5%,
while precision, sensitivity, specificity, and F-score are
93.2%, 93.1%, 92.9%, and 93.4%, respectively, but on
VGG19 the achieved accuracy is 92.6%, while precision,

Table 7: Comparison of deep learning methods for citrus disease classification.

Study Accuracy (%) Precision Sensitivity Specificity F-score
Sharif et al. 89.0 — — — —
Our model 94.3 94.1 93.9 93.9 94.3
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90
91
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Precision Sensitivity Specificity F-ScoreAccuracy

Alex Net
VGG19

AlexNet+SGDM
VGG19+SGDM

Figure 6: Proposed method classification performance for strategy 80 : 20 on LDI dataset.
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Figure 7: Proposed method classification performance for strategy 60 : 40 on FDI dataset.
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Figure 8: Proposed method classification performance for strategy 80 : 20 on FDI dataset.
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sensitivity, specificity, and F-score are 92.4%, 92.2%, 92%,
and 92.5%, respectively.

$e classification rate, accuracy, precision, sensitivity,
specificity, and F-score of the proposed and current tech-
niques are shown in Figures 5–8. In all experiments, the
suggested technique outperforms the existing methods in
terms of classification rate, accuracy, precision, sensitivity,
specificity, and F-score.

$e study results of Sharif et al. [38], dealing with of
citrus diseases, were compared with the results of our study
and are shown in Table 7. As seen in this table, the AlexNet
with the SGDM model achieved high accuracy than studies
of Sharif et al. with the original dataset.

5. Conclusion

$e performance of SGDM optimizers for the automated
identification of citrus disease images using the transfer
learning approach is evaluated and compared in this paper.
For extracting discriminative features from the source im-
ages, two standard models, AlexNet and VGG19, are ex-
amined. To assess network performance, the FDI and LDI
citrus disease datasets are used to reach the greatest clas-
sification accuracy of 94.3%. Based on the findings, we
determined that the deep learning methodology is a mature
approach when compared to other methods. When we have
a big amount of training data, we may also use an 80 : 20
strategy depending on the results. Data availability is con-
sidered to be the main hindrance of this work, which is
reduced partly due to the incorporation of the data aug-
mentation stage. In future research, we will concentrate on
these flaws and work to enhance accuracy and classification
algorithms.
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