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'is study aimed at elucidating the relationship between the number of computed tomography (CT) images, including data
concerning the accuracy of models and contrast enhancement for classifying the images. We enrolled 1539 patients who un-
derwent contrast or noncontrast CT imaging, followed by dividing the CT imaging dataset for creating classification models into
10 classes for brain, neck, chest, abdomen, and pelvis with contrast-enhanced and plain imaging. 'e number of images prepared
in each class were 100, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, and 10,000. Accordingly, the names of datasets
were defined as 0.1K, 0.5K, 1K, 2K, 3K, 4K, 5K, 6K, 7K, 8K, 9K, and 10K, respectively. We subsequently created and evaluated the
models and compared the convolutional neural network (CNN) architecture between AlexNet and GoogLeNet.'e time required
for training models of AlexNet was lesser than that for GoogLeNet.'e best overall accuracy for the classification of 10 classes was
0.721 with the 10K dataset of GoogLeNet. Furthermore, the best overall accuracy for the classification of the slice position without
contrast media was 0.862 with the 2K dataset of AlexNet.

1. Introduction

In the field of computer vision, deep learning with a con-
volutional neural network (CNN) [1] can be used to attain
precise general image classification. Recently, deep learning
has been increasingly used in medical imaging [2–17]. Ar-
guably, deep learning has several potential abilities, in-
cluding object detection [9, 10] and image segmentation.
Typically, medical images differ from general images in that
medical images only depict human structures with no
background structure other than that of a human body.
Previously, some studies have reported the classification of
the scan position with computed tomography (CT) imaging
using deep learning [18, 19]; however, it evaluated the ac-
curacy of classification only when detecting scan slice po-
sitions. 'us, research has recognized the necessity of the
enhancement information using contrast media for tumor
diagnosis [20, 21] because radiologists commonly refer to the
slice position, organ structure status, and presence of an

organ or tumor enhancement. Further, information con-
cerning the position and presence of contrast media is one of
the critical factors for the basic requirement for automatic
diagnosis using deep learning. Fundamentally, deep learning
requires several images [22] to create classification models,
although human structures comprise variable organ struc-
tures with different sizes in each subject. Moreover, related
works with deep learning in CT images have recently been
reported dealing with detections of anatomies and tumors
[23–26]. In these techniques, whole body CT images could
not be used for deep learning because those images have to
be classified as concerning region in advance. However, till
date, no study has reported how many images are required
for the classification of CT images, including contrast en-
hancement data. If the precise classification of CTimages has
done as a preprocessing, the automatic diagnosis using deep
learning for whole body images will be more practical
technique. 'us, this study aimed at elucidating the re-
lationship between the number of CT images, including data

Hindawi
Journal of Healthcare Engineering
Volume 2018, Article ID 1753480, 9 pages
https://doi.org/10.1155/2018/1753480

mailto:sugimori@hs.hokudai.ac.jp
http://orcid.org/0000-0002-7796-5113
https://doi.org/10.1155/2018/1753480


concerning the accuracy of models and contrast enhance-
ment for creating classification models.

2. Materials and Methods

2.1. Subjects. Totally, 1539 patients (males, 815; females, 724;
mean age± standard deviation (SD), 59.9± 18.5 years) who
underwent contrast or noncontrast CT imaging of the brain,
neck, chest, abdomen, or pelvis in January 2016 were in-
cluded in the study. 'e study protocol was approved by the
Ethics Committee of the Hokkaido University Hospital
(Sapporo, Japan).

2.2. Datasets. 'e dataset of CT images for creating clas-
sification models was divided into 10 classes for the brain,

neck, chest, abdomen, and pelvis with contrast-enhanced
(CE) and non-contrast-enhanced CT, which was defined as
plain (P).'e number of images prepared for each class were
100, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000,
9000, and 10,000; the datasets were named 0.1K, 0.5K, 1K,
2K, 3K, 4K, 5K, 6K, 7K, 8K, 9K, and 10K. We used these
images of 90% of the data for training and 10% for validation
for creating classification models. In addition, 1000 images
from each class other than the datasets mentioned above
were prepared for testing models. Table 1 presents the name
of all such datasets with complete details.

'e image ranges of each class were defined as follows:
brain, slice from the anterior tip of the parietal bone to the
foramen magnum; neck, slice from the foramen magnum to
the pulmonary apex; chest, slice from the pulmonary apex to
the diaphragm; abdomen, slice from the diaphragm to the

Table 1: Names of datasets and the number of images in each label.

Names of datasets

0.1K 0.5K 1K 2K 3K 4K 5K 6K 7K 8K 9K 10K Testing dataset

Brain (P) 100 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000 100
Brain (CE) 100 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000 100
Neck (P) 100 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000 100
Neck (CE) 100 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000 100
Chest (P) 100 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000 100
Chest (CE) 100 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000 100
Abdomen (P) 100 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000 100
Abdomen (CE) 100 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000 100
Pelvis (P) 100 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000 100
Pelvis (CE) 100 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000 100
Total number of images 1000 5000 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000 1000

For training 900 4500 9000 18,000 27,000 36,000 45,000 54,000 63,000 72,000 81,000 90,000 -
For validation 100 500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000 -

Contrast-enhanced
CT images

Plain CT images

Brain

Neck

Chest

Abdomen

Pelvis

Slice positionCT scanogram 

Figure 1: Range of the slice location and example image of 10 classes: the brain, neck, chest, abdomen, and pelvis.
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top of an iliac crest; and pelvis, slice from the top of an iliac
crest to the distal end of the ischium. Figure 1 indicates the
image ranges for each class.

Furthermore, CE was defined as the state of intravascular
injection of contrast media in the examination. We did not
consider the timing of scans from the injection. Criteria for
exclusion from the dataset were CT images with excessive
magnification, the reconstruction kernel of the bone or lung,
nothing (above the anterior tip of the parietal bone), and
arms or legs only.

2.3. Preprocessing for Creating Models. We retrieved CT
images from the Picture Archiving and Communication
System. Next, to convert images for the training database, we
converted these CT images from the digital imaging and
communications in medicine (DICOM) to the joint pho-
tographic experts group (JPEG) file format using dedicated
DICOM software (XTREK View; J-Mac System Inc., Sap-
poro, Japan). In addition, the window width and level of the
DICOM image were used with preset values in the DICOM-
tag. Next, we converted all JPEG images to grayscale 8-bit
images sized 512× 512 pixels, followed by sorting the con-
verted JPEG files into particular folders according to image
classes. Furthermore, we used the NVIDIA Deep Learning
GPU Training System (NVIDIA DIGITS; NVIDIA Cor-
poration, Santa Clara, CA), the conversion software of the
training database, and an authoring software for deep
learning. Finally, the database type was set to the lightning
memory-mapped database (LMDB).

2.4. Training for Creating Models. Figure 2(a) outlines the
training for creating models. We used the authoring soft-
ware NVIDIA DIGITS for deep learning, a deep learning
optimized machine with two GTX1080 Ti GPUs with 11.34
TFlops single precision, 484GB/s memory bandwidth, and
11GBmemory per board.�e convolutional architecture for
fast feature embedding (Caffe) [27] constituted the deep
learning framework, which was worked on the NVIDIA
DIGITS. Here, we compared CNN architectures, which
could be selected on the NVIDIA DIGITS, between the 16-
layer AlexNet [28] and 22-layer GoogLeNet [29]. �e
training model hyperparameters were used as a default on
the software (Table 2), and the maximum training epoch was
set to 30. �e initial learning rate was set at 0.01; it was later
dropped by one-tenth following every 10 epochs of training.

Dataset (0.1K)

Training data

Validating data

Model (generated from 0.1K dataset) 

Model (generated from 0.5K dataset) 

Model (generated from 10K dataset) 

Dataset (0.5K)

Training data

Validating data

Dataset (10K)

Training data

Validating data

Testing dataset
1000 images

Brain (P): 100 images
Brain (CE): 100 images
Neck (P): 100 images

Neck (CE): 100 images
Chest (P): 100 images

Chest (CE): 100 images
Abdomen (P): 100 images

Abdomen (CE): 100 images
Pelvis (P): 100 images

Pelvis (CE): 100 images

(i) Evaluation for creating models

(a) Validation accuracy

(b) Validation loss

(ii) Evaluation for created models

(a) Recall
(b) Precision
(c) F-measure
(d) Overall accuracy

CNN architectures (AlexNet, GoogLeNet)
Hyperparameters (epochs, base learning rate, and so on) 
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Figure 2: Schematic of the datasets, creating models, and validation of creating models. (a) Workflow of creating models and (b) workflow
of the evaluation of created models. (i) Evaluation points for creating models and (ii) evaluation points for the created models.

Table 2: Hyperparameters of training models.

CNN architecture

AlexNet GoogLeNet

Training epochs 30
Snapshot interval 10
Validation interval 1
Random seed None
Batch size of training 128 32
Batch size of validation 32 16
Solver type Stochastic gradient descent (SGD)
Base learning rate 0.01
Policy Step down
Step size (%) 33
Gamma 0.1
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In both CNN architectures, training was acquired three
times for each dataset, followed by recording the best ac-
curacy and loss of validation and calculating the mean value.
We evaluated these results using datasets and CNN archi-
tectures, respectively. Moreover, the duration from the start
of training to the complete creation of the model was
assessed in each dataset.

2.5. Evaluation of Created Models. Figure 2(b) outlines the
training for the evaluation of created models. �e confusion
matrix obtained by an independent dataset was intuitively
a fair indicator of the performance of the created models
because training accuracy was the only result that was re-
peatedly evaluated using the same dataset. Figure 3 shows
examples of the confusion matrix. To evaluate the created
models, we applied the dataset for the testing model (Section
2.2). For training with 10 classes, which presented as
a 10×10 table, all performance measures were based on
hundred numbers obtained by applying the classifier to the
test dataset. Moreover, the confusion matrix comprised
columns and rows corresponding to the predicted and the

true image label, respectively. �e same position was in-
tegrated for evaluating the positional detection ability, for
example, brain (P) and brain (CE) as to the brain; the
confusion matrix was created as a 5× 5 table.

Here, the confusion matrix generated four parameters:
precision, recall, F-measure, and overall accuracy. Precision
was presented as a ratio of how many images were correctly
predicted to produce the predicted labels; recall as a ratio
presented how many of these were correctly classified.
Furthermore, we defined F-measure as the harmonic mean
of precision and recall:

F-measure �
(2 × recall × precision)

(recall + precision)
. (1)

Overall accuracy was presented as the ratio of the
number of correctly classified images in all test images.
Furthermore, we evaluated the confusion matrix thrice
based on the number of created models.

2.6. Statistical Analysis. Precision, recall, F-measure, and
overall accuracy were presented as mean± SD regardless of
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Figure 3: Computing different measures from the confusion matrix. �e precision and recall of each class and the overall accuracy were
calculated. (a) Confusion matrix with 10 classes and (b) confusion matrix of each slice location, calculated from (a).
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the dataset. In addition, the accuracy of validation for
training, recall, precision, F-measure, and overall accuracy
were evaluated at mean values higher than 0.80, 0.85, 0.90, or
0.95, and the loss of validation for training was evaluated at
mean values less than 0.20, 0.15, 0.10, or 0.05. 'e time for
training the model was evaluated as the mean time. 'e best
overall accuracy was recorded from all datasets. Besides, the
comparison of CNN architecture irrespective of the dataset
was evaluated using the Mann–Whitney U test. Further-
more, we used the Steel–Dwass test for the multiple com-
parison of the slice position for the recall, precision, and
F-measure and the comparison of the CNN architecture
irrespective of the dataset. P < 0.05 was considered statis-
tically significant.

3. Results and Discussion

3.1. Results

3.1.1. Evaluation of Training of Models. Table 3 presents the
accuracy of validation, loss of validation, and time taken for

training the model. Datasets from 4K to 10K on AlexNet and
2K to 10K on GoogLeNet had an accuracy of validation of
>0.95. In addition, datasets of 10K on AlexNet and from 5K
to 10K, except for 6K, on GoogLeNet had loss of validation
of <0.05. 'e mean accuracy of validation for AlexNet and
GoogLeNet was 0.87± 0.19 and 0.90± 0.16, respectively, and
a significant difference was observed between CNN archi-
tectures (P � 0.0027). 'e mean loss of validation for
AlexNet and GoogLeNet was 0.35± 0.52 and 0.27± 0.43,
respectively, and a significant difference was observed be-
tween CNN architectures (P � 0.0036). Furthermore, the
mean time of training model for AlexNet and GoogLeNet
was 16.4± 11.45 minutes and 43.42± 31.78 minutes, re-
spectively, and a significant difference was observed between
CNN architectures (P � 0.0003).

3.1.2. Evaluation of Created Models

(1) Comparison of All 10 Classes. Table 4 presents the recall,
precision, and F-measure for each class for both AlexNet and

Table 3: Accuracy and loss of validation for training models.

CNN architecture
Dataset

0.1K 0.5K 1K 2K 3K 4K 5K 6K 7K 8K 9K 10K

Accuracy of validation
AlexNet 0.27 0.77 0.87 0.92 0.93 0.95 0.95 0.96 0.97 0.97 0.97 0.97

GoogLeNet 0.40 0.78 0.93 0.96 0.96 0.97 0.98 0.97 0.97 0.98 0.98 0.98

Loss of validation
AlexNet 2.00 0.57 0.36 0.21 0.21 0.15 0.14 0.12 0.11 0.11 0.10 0.09

GoogLeNet 1.59 0.55 0.24 0.12 0.12 0.10 0.09 0.10 0.09 0.08 0.08 0.07

Time for training (min)
AlexNet 0.8 2.1 3.8 7.3 10.7 14.2 17.4 21.3 24.7 27.9 31.8 34.8

GoogLeNet 1.1 4.9 9.5 18.7 28.9 38.5 48.3 45.7 67.6 76.5 86.4 95.0

Table 4: Recall, precision, and F-measure for each class in AlexNet and GoogLeNet.

Recall Precision F-measure

AlexNet GoogLeNet AlexNet GoogLeNet AlexNet GoogLeNet

Brain (P) 0.71 0.77 0.81 0.80 0.74 0.78
Brain (CE) 0.77 0.79 0.72 0.70 0.73 0.73
Neck (P) 0.20 0.17 0.46 0.46 0.25 0.22
Neck (CE) 0.53 0.57 0.46 0.55 0.46 0.54
Chest (P) 0.44 0.49 0.68 0.67 0.52 0.55
Chest (CE) 0.71 0.67 0.63 0.62 0.65 0.64
Abdomen (P) 0.61 0.69 0.57 0.54 0.56 0.59
Abdomen (CE) 0.73 0.74 0.48 0.47 0.56 0.57
Pelvis (P) 0.52 0.52 0.48 0.53 0.48 0.51
Pelvis (CE) 0.42 0.40 0.52 0.60 0.44 0.47

Table 5: Recall, precision, F-measure, and overall accuracy for each dataset in AlexNet and GoogLeNet.

CNN architecture
Dataset

0.1K 0.5K 1K 2K 3K 4K 5K 6K 7K 8K 9K 10K

Recall
AlexNet 0.20 0.39 0.52 0.53 0.61 0.67 0.61 0.67 0.67 0.65 0.64 0.62

GoogLeNet 0.15 0.38 0.57 0.62 0.65 0.68 0.61 0.65 0.69 0.62 0.67 0.69

Precision
AlexNet 0.20 0.39 0.53 0.54 0.61 0.67 0.65 0.69 0.70 0.68 0.67 0.64

GoogLeNet 0.15 0.41 0.58 0.62 0.65 0.68 0.63 0.66 0.71 0.64 0.70 0.70

F-measure
AlexNet 0.14 0.35 0.49 0.50 0.60 0.65 0.59 0.65 0.66 0.63 0.62 0.59

GoogLeNet 0.11 0.35 0.54 0.61 0.64 0.67 0.59 0.63 0.67 0.60 0.65 0.68

Overall accuracy
AlexNet 0.20 0.39 0.52 0.53 0.61 0.66 0.61 0.67 0.67 0.65 0.63 0.62

GoogLeNet 0.15 0.38 0.57 0.62 0.65 0.68 0.61 0.65 0.69 0.62 0.67 0.69
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GoogLeNet. �e precision of the recall for brain (P) for
AlexNet and GoogLeNet was >0.80; however, no parameters
of the recall and F-measure were >0.80. Table 5 presents the
recall, precision, F-measure, and overall accuracy for each
dataset of AlexNet and GoogLeNet. No parameters in all
datasets were >0.80. �e mean recall for AlexNet and Goo-
gLeNet was 0.56± 0.28 and 0.58±0.28, respectively, and no
significant difference was observed between CNN architec-
tures (P � 0.4052). �e mean precision for AlexNet and
GoogLeNet was 0.58± 0.23 and 0.59± 0.22, respectively, and
no significant difference was observed between CNN archi-
tectures (P � 0.2496). �e mean F-measure for AlexNet and
GoogLeNet was 0.54± 0.24 and 0.56±0.24, respectively, and
no significant difference was observed between CNN archi-
tectures (P � 0.1918). In addition, the mean overall accuracy
for AlexNet and GoogLeNet was 0.56± 0.14 and 0.58± 0.16,
respectively, and no significant difference was observed be-
tween CNN architectures (P � 0.2601). Furthermore, the best
overall accuracy for the classification of 10 classes was 0.721,
which was obtained with dataset #3 of 10K of GoogLeNet.

(2) Comparison of Each Slice Position. Figure 4 indicates the
recall, precision, and F-measure for each slice position for

AlexNet and GoogLeNet. �e mean recall for the brain in
GoogLeNet and the abdomen in AlexNet and GoogLeNet
was >0.90 and that for the brain in AlexNet was >0.85. �e
mean precision for the brain in AlexNet and GoogLeNet was
>0.85 and that for the neck and chest in AlexNet and the
pelvis in AlexNet and GoogLeNet was >0.80. In addition, the
mean F-measure for the brain in AlexNet and GoogLeNet
was >0.85. Table 6 presents the recall, precision, F-measure,
and overall accuracy for each dataset in AlexNet and
GoogLeNet. Furthermore, the best overall accuracy for the
classification of the slice position was 0.862, which was
obtained with dataset #3 of 2K of AlexNet.

3.2. Discussion. In this study, a total of 12 datasets for the
training models were compared for evaluating models.
Regarding the training model, datasets with >4000
images/class on AlexNet and >2000 images/class on Goo-
gLeNet could obtain an accuracy >0.95. Regarding valida-
tion loss, a higher number of images per slice were essential
to reduce the loss. In addition, the training time in the CNN
architecture of GoogLeNet was approximately double than
that of AlexNet.�e significant difference in training models
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Figure 4: (a) Recall, (b) precision, and (c) F-measure for each slice position with AlexNet. (d) Recall, (e) precision, and (f ) F-measure for
each slice position with GoogLeNet (without specific marks indicates significant differences between each group; ∗n.s., no significant
differences between the two groups, Steel–Dwass test).
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between AlexNet and GoogLeNet occurred because the
CNN structures of GoogLeNet had several layers in detail.
Regarding the evaluation of created models with 10 classes,
CT images of the brain (P) and brain (CE) exhibited higher
recall and precision because the anatomy and size of the
brain were different from that of the other parts of the body,
indicating that the F-measure value was higher in the brain
than in other organs. However, other classes of the recall and
precision exhibited lower classes of the brain; in fact, the
recall of the neck (P) was particularly lower than that of the
others, perhaps, because the CT images of the neck were
affected by the artifact from the metal of the artificial tooth.
Reportedly, the recall of the classification could be lower
because these artifacts from the tooth, which rendered
differentiating the enhancement by contrast media difficult,
affected images in the form of noise [30]. Typically, the
difference between P and CE images could only be reflected
in the vascular because of the few structures of the strong
enhancement by contrast media in the neck. In addition, the
lower recall of the neck and pelvis could be attributed to the
similar symmetric structure of the iliac bone and scapula on
the backside of the body. Precisely, the lower recall of the
neck and pelvis was caused not only by the difference in
the enhancement by contrast media but also the structure.
'e calcification of the iliac artery was one of the causes of
confusion between P and CE images, because the CT value
was higher at the calcification of the artery, which resembled
the enhanced vascular. Reportedly, the calcification of the
iliac artery, which is associated with some diseases [31, 32],
was one of the causes of confusion between P and CE images,
because the calcification of the artery was depicted like an
enhanced vascular. Regarding the evaluation of the created
models for each slice position, CT images of the brain
exhibited higher recall and precision for the same reason as
that for the 10 classes. As the recall of the abdomen was
higher, it leaves no bone structure, except for the spine, in
the range of the abdomen in this study. Of note, the lower
recall of the neck and pelvis was formed by the similar
symmetric structure because the contrast of the bone was
primarily characterized as a feature of CT images. In ad-
dition, the features over the two regions were unclear be-
cause the borders between the neck and chest and between
the chest and abdomen were overlapped in each position. In
case of removing the overlapped range of images from the
dataset, the recall and precision would probably be higher;
this assumption was supported by the fact that the dataset of

1K had already exhibited an overall accuracy of approxi-
mately 0.8. Previously, some studies have reported the
classification of CT images [18, 19]. However, the number of
CT images in each class was one-tenth compared with the
datasets in this study. Moreover, the test dataset for the
validation of created models was 10,000 images of 1000
images per class; in this respect, this study differed from
others. Regarding the CNN architecture, the time for the
training model of AlexNet was faster than that for Goo-
gLeNet, because the larger number of layers and complicated
CNN structure of GoogLeNet affected the time for the
training model. In addition, no significant differences
existed between both of them regarding the evaluation of
created models. 'us, AlexNet would be useful for being
rapid and simple. 'is study has some limitations. First, we
used the default CNN architecture and hyperparameters.
Because the classification of general images with deep
learning was sophisticated [28, 29], the major change in the
CNN architecture for medical images might be unstable for
the optimization of creating models. Second, the created
models were evaluated using the hold-out method which
was known as the simplest kind of cross validation. With
regard to the cross validation, we focused on the simple
tendency for the effect of the size of dataset though the k-fold
cross validation has been reported [33]. 'e reason of choice
for the hold-out method was that the small number of
dataset had not enough the number of images because the
k-fold method has to divide the data into k-equally sized
folds. However, we could present the basic tendency for the
size of the dataset in this study. 'ird, all images of the
dataset in this study were original CT images. 'us, giving
a variety to the feature of the dataset was necessary for this
study, although the data augmentation [19] was critical for
not only the increased number of images but also the re-
peated usage of similar images for the training. However, the
number of patients in this study was approximately 1539
with >100,000 images; thus, we believe that the results of this
study could serve as a reference for further investigation in
the future.

4. Conclusions

'is study elucidates the relationship between the number of
CT images, including data about contrast enhancement for
creating classification models, and accuracy of models. 'e
time for training models of AlexNet was faster than that for

Table 6: Recall, precision, F-measure, and overall accuracy for each dataset in AlexNet and GoogLeNet.

CNN architecture
Dataset

0.1K 0.5K 1K 2K 3K 4K 5K 6K 7K 8K 9K 10K

Recall
AlexNet 0.39 0.77 0.84 0.82 0.83 0.85 0.81 0.84 0.83 0.84 0.81 0.83

GoogLeNet 0.34 0.72 0.78 0.79 0.82 0.82 0.75 0.79 0.81 0.75 0.81 0.83

Precision
AlexNet 0.43 0.79 0.85 0.84 0.84 0.86 0.82 0.85 0.86 0.85 0.84 0.83

GoogLeNet 0.33 0.80 0.81 0.80 0.82 0.83 0.78 0.81 0.83 0.78 0.82 0.84

F-measure
AlexNet 0.32 0.77 0.83 0.81 0.83 0.85 0.80 0.84 0.83 0.84 0.82 0.83

GoogLeNet 0.30 0.71 0.78 0.79 0.81 0.82 0.74 0.79 0.81 0.74 0.80 0.83

Overall accuracy
AlexNet 0.39 0.77 0.84 0.82 0.83 0.85 0.81 0.84 0.83 0.84 0.81 0.83

GoogLeNet 0.34 0.72 0.78 0.79 0.82 0.82 0.75 0.79 0.81 0.75 0.81 0.83
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GoogLeNet. Furthermore, the best overall accuracy for the
classification of 10 classes was 0.721 with the dataset of 10K
of GoogLeNet, and the best overall accuracy for the clas-
sification of the slice position regardless of contrast media
was 0.862 with the dataset of 2K of AlexNet.
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