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RESEARCH ARTICLE

Classification of COVID-19 electrocardiograms by

using hexaxial feature mapping and deep learning
Mehmet Akif Ozdemir1,2*, Gizem Dilara Ozdemir1,2 and Onan Guren1

Abstract

Background: Coronavirus disease 2019 (COVID-19) has become a pandemic since its first appearance in late

2019. Deaths caused by COVID-19 are still increasing day by day and early diagnosis has become crucial. Since

current diagnostic methods have many disadvantages, new investigations are needed to improve the

performance of diagnosis.

Methods: A novel method is proposed to automatically diagnose COVID-19 by using Electrocardiogram

(ECG) data with deep learning for the first time. Moreover, a new and effective method called hexaxial feature

mapping is proposed to represent 12-lead ECG to 2D colorful images. Gray-Level Co-Occurrence Matrix

(GLCM) method is used to extract features and generate hexaxial mapping images. These generated images

are then fed into a new Convolutional Neural Network (CNN) architecture to diagnose COVID-19.

Results: Two different classification scenarios are conducted on a publicly available paper-based ECG image

dataset to reveal the diagnostic capability and performance of the proposed approach. In the first scenario,

ECG data labeled as COVID-19 and No-Findings (normal) are classified to evaluate COVID-19 classification

ability. According to results, the proposed approach provides encouraging COVID-19 detection performance

with an accuracy of 96.20% and F1-Score of 96.30%. In the second scenario, ECG data labeled as Negative

(normal, abnormal, and myocardial infarction) and Positive (COVID-19) are classified to evaluate COVID-19

diagnostic ability. The experimental results demonstrated that the proposed approach provides satisfactory

COVID-19 prediction performance with an accuracy of 93.00% and F1-Score of 93.20%. Furthermore, different

experimental studies are conducted to evaluate the robustness of the proposed approach.

Conclusion: Automatic detection of cardiovascular changes caused by COVID-19 can be possible with a deep

learning framework through ECG data. This not only proves the presence of cardiovascular changes caused by

COVID-19 but also reveals that ECG can potentially be used in the diagnosis of COVID-19. We believe the

proposed study may provide a crucial decision-making system for healthcare professionals.

Source Code: All source codes are made publicly available at:

https://github.com/mkfzdmr/COVID-19-ECG-Classification

Keywords: COVID-19; ECG; Paper-based ECG; GLCM; Hexaxial Mapping; Deep Learning; Convolutional

Neural Network; Diagnosis
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Background1

Coronavirus Disease 2019 (COVID-19), caused by2

the novel coronavirus severe acute respiratory syn-3

drome coronavirus 2 (SARS-CoV-2), first emerged in4

the Wuhan region of China in early December 2019.5

COVID-19 is a contagious virus that causes respira-6

tory tract infection and can be transmitted from per-7

son to person and it has continued to spread since its8

first appearance and caused a pandemic that still con-9

tinues around the world [1, 2]. It has been affecting10

life negatively in terms of health, economy, and social11

aspects [3]. As of March 3, 2020, the global mortality12

rate is 3.4%. As of March 24, 2021, there are more than13

123 million confirmed cases. Over 100 million people14

have recovered, while more than 2.71 million patients15

died due to the virus [4]. Fast and accurate diagno-16

sis of the disease is of great importance in this pro-17

cess. For this reason, various protocols for the diagno-18

sis of the disease have been announced by the World19

Health Organization (WHO). Today, the most widely20

used standard test method for diagnosing COVID-1921

is real-time reverse transcriptase-polymerase chain re-22

action (rRT-PCR). Although PCR tests are the gold23

standard due to the high accuracy rate (sensitivity),24

they require long waiting times before results (at least25

4 to 6 hours), experienced personnel, and a logistically26

central location [5]. Other tests and diagnostic meth-27

ods that can produce faster results are still under in-28

vestigation. One of the methods used for the diagnosis29

of COVID-19 is radiography images. Due to the dis-30

advantages of the PCR technique, chest radiography31

images such as computed tomography (CT) and X-ray32

are frequently used for the early diagnosis of COVID-33

19 [6]. These images contain useful information for the34

diagnostic step. Several studies have found changes in35
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radiographic images that were taken before COVID-19 36

symptoms began [7]. 37

In the fight against COVID-19, Internet of Things 38

(IoT) applications provide great benefits from diag- 39

nosis to treatment of the disease [8, 9]. Recent stud- 40

ies suggest to integrate artificial intelligence (AI) into 41

IoT, Industry 4.0, and Industry 5.0 applications to aid 42

healthcare professionals and patients [10–13]. Diagno- 43

sis and treatment with AI are frequently used in the 44

field of medicine and it is a helpful tool for clinicians. 45

Deep learning, one of the sub-branches of AI, creates 46

an end-to-end model without the need for manual fea- 47

ture extraction step compared to traditional machine 48

learning methods and it is popularly used in many 49

areas today. As a result of the rapid spread of the 50

COVID-19 pandemic in the world, there are situa- 51

tions where the number of healthcare professionals is 52

insufficient. Due to all these conditions and other dis- 53

advantages, interest in AI-based automatic diagnosis 54

systems is increasing day by day. Deep learning meth- 55

ods have the potential to provide timely assistance to 56

patients with the fast and automatic diagnosis of the 57

disease. These methods do not require expertise and 58

therefore they can help healthcare professionals [14]. 59

Many studies have used radiographic images for the 60

diagnosis of COVID-19. Ozturk et al. [14] used X-ray 61

images as input for the deep learning model to di- 62

agnose COVID-19 automatically. In the DarkCovid- 63

Net model with 17 convolutional layers, they achieved 64

98.08% accuracy in binary classification (COVID, No- 65

Findings) and 87.02% accuracy in multiclass classifi- 66

cation (COVID, No-Findings, Pneumonia) by using 67

the real-time classifier. Toğaçar et al. [15] proposed 68

a model using X-ray images preprocessed with Fuzzy 69

Color for COVID-19 detection via deep learning. They 70

classified the features extracted with MobileNet2 and 71

SqueezeNet using support vector machines (SVM). 72

They achieved 99.72% overall accuracy as a result 73
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of multiple classifications (COVID, No-Finding, Pneu-1

monia). Karaknis et al. [16] proposed architecture to2

create synthetic images to increase the limited num-3

ber of X-ray images. In their study, with two deep4

learning models, they used binary classification for5

COVID-19 and normal cases, and multi-class classi-6

fication for COVID-19, normal cases, and pneumo-7

nia. In the study, the lightweight deep learning model8

is presented as an alternative to ResNet8. They ob-9

tained 98.7% accuracy, 100% sensitivity, and 98.3%10

specificity for binary classification, and 98.3% accu-11

racy, 99.3% sensitivity, and 98.1% specificity for multi-12

class classification. For further studies using X-ray and13

CT images for automatic detection, the reader is re-14

ferred to the accompanying paper [17]. However, be-15

sides the high success rate in diagnosing COVID 19,16

radiographic imaging techniques have some disadvan-17

tages such as not being portable, high cost, large radi-18

ation exposure, requiring technical skill for image anal-19

ysis, and examination [18]. New techniques are needed20

as the COVID-19 pandemic continues.21

While the primary impact area of COVID-19 infec-22

tion is the respiratory system, it also affects multi-23

ple human body systems, especially the cardiovascular24

system [19]. The cardiovascular changes in COVID-1925

patients [20–24] have prompted an investigation of the26

diagnostic value of the electrocardiogram (ECG). In27

the literature, many types of cardiovascular changes28

in COVID-19 which can be classified as cardiac ar-29

rhythmias, QRST abnormalities, myocarditis and peri-30

carditis, and conduction disorders were reported [25].31

The most important finding in ECGs of COVID-1932

patients is the ST changes [21, 22, 26–31]. Shortening33

of the PR interval [29, 32] and changes such as QT34

prolongation [33–37] were also observed in the ECG35

of COVID-19 patients. It should be noted that some36

studies claim that COVID-19 cannot be considered the37

complete cause of these cardiovascular complications,38

but it should be emphasized that it can reveal the un- 39

derlying conditions or worsen them [25]. 40

Considering the published studies, ECG can be used 41

to evaluate mortality, intubation, and intensive care 42

unit entry rates beyond patients with severe disease. 43

In order to propose ECG as a diagnostic assessment of 44

COVID-19, ECGs of the moderate and asymptotic pa- 45

tients need to be analyzed. Recently, a research group 46

has published a publicly available dataset containing 47

paper-based ECG of normal (no cardiac findings), car- 48

diac and COVID-19 patients, which provides an oppor- 49

tunity to succeed in the proposed aim. Considering the 50

advantages of ECG application such as low cost, harm- 51

lessness, accessibility, and real-time monitoring, auto- 52

matic detection from ECG may be of great value in 53

COVID-19 diagnosis besides radiography images and 54

PCR. In the previous researches, no studies have been 55

found in which deep learning or even AI is applied us- 56

ing ECG data to the diagnosis of COVID-19, to the 57

best of our knowledge. 58

Additionally, many deep learning approaches were 59

proposed for automatic cardiac arrhythmia detection. 60

Besides using 1D ECG signals [38, 39] to train the deep 61

network, in many studies were used a 2D representa- 62

tion of 1D ECG signals like ECG time-amplitude im- 63

ages [40, 41], time-frequency representations by using 64

Short-Time Fourier Transform (STFT) [42, 43] and 65

Continuous Wavelet Transform (CWT) [44], higher- 66

order spectral representations [45], and dual beat cou- 67

pling matrices [46] in order to train CNN architecture. 68

Considering the wide usage of paper-based ECG re- 69

ports [47], there is a lack in the automatic detection of 70

cardiac problems which require special attention. 71

In the light of these findings, this study addresses 72

two different problems: 73

• Automatic classification of the disorders that may 74

occur in ECG due to COVID-19 and even auto- 75

matic diagnosis of COVID-19 through ECG data. 76
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• In cases where ECG data can be collected in1

the form of paper-based reports instead of digi-2

tal ECG signals, proposing a novel and effective3

method that can aid automatic diagnosis from4

printed paper-based ECG reports.5

For these purposes, a novel, low-cost, and efficient6

automatic COVID-19 diagnosis method is proposed7

for the first time using deep learning and hexaxial fea-8

ture mapping with ECG data in this study. Firstly,9

paper-based ECG images obtained from the publicly10

available database are pre-processed and segmented.11

Then a novel hexaxial feature mapping process is im-12

plemented to generate hexaxial ECG images. These13

hexaxial ECG images are trained with a new deep net-14

work architecture to diagnose COVID-19.15

In the following, this paper is structured as; in the16

Related works section, related papers investigating17

cardiac findings that may be caused by COVID-19 are18

summarized; in the Methods section, firstly, the used19

dataset is explained, then the segmentation and pre-20

processing of the paper-based ECG images, feature ex-21

traction step, ECG mapping process, and finally the22

proposed deep network architecture are examined in23

detail; in the Results and discussion section, the clas-24

sification results are presented, and findings and lim-25

itations are discussed; and finally in the Conclusion26

section, the main findings of the study are summarized27

and some useful suggestions are given.28

Related works29

In this section, the changes seen in ECG associated30

with COVID-19 are detailed with the studies in this31

field. Wang et al. [33] detected abnormal ECG in 20132

of 319 COVID-19 patients and they reveal that ST-T33

change is the most important clinical evidence in the34

abnormal ECG. In addition, sinus tachycardia, atrial35

arrhythmia, right bundle branch block (RBBB), si-36

nus bradycardia, atrial fibrillation (AF), atrial tachy-37

cardia, abnormal Q-wave, and weak R-wave progres-38

sion were also observed in the ECG of patients with 39

COVID-19. In the comparative statistical analysis be- 40

tween patients with and without the severe disease, a 41

significant difference was found in all complications. 42

A significance of p < 0.001 was achieved in the ST- 43

T change. Pavri et al. [32] tried to detect heartbeat 44

and PR changes from the ECG of 75 COVID-19 pa- 45

tients. In 50.7% of patients with COVID-19, it was 46

observed that the PR interval shortened with the ac- 47

celeration of the heart rate. In addition, no change 48

was observed in 49.3% of COVID-19 patients. In the 49

statistical analysis performed with ECGs taken be- 50

fore COVID-19 and during COVID-19, a significant 51

difference was found between the two groups in their 52

heart rate and PR interval. In the conducted study, 53

the mortality rate was found to be higher in patients 54

with shortened PR interval. Angeli et al. [48] exam- 55

ined the ECGs of 50 patients with COVID-19. They 56

found ST-T abnormality in 30% of the patients and 57

left ventricular hypertrophy in 30%. Also, various ab- 58

normalities such as AF, tachy-brady syndrome, and 59

acute pericarditis have been detected in the ECG of 60

patients with COVID-19 during hospitalization. Al- 61

though rare, RBBB and Myocardial Infarction (MI) 62

have been observed in patients with COVID-19. Li 63

et al. [49] conducted a study by examining the ECG 64

of 113 COVID-19 patients 50 of whom died and 63 65

of whom survived. Ventricular arrhythmia was found 66

to be statistically significant evidence in patients who 67

died compared to patients who survived. In addition, 68

sinus tachycardia was observed widely in the ECG of 69

patients with COVID-19. Santoro et al. [34] detected 70

QT prolongation in 14% of the patients in their study, 71

by examining the ECG of 110 patients with COVID- 72

19. Jain et al. [35] reported that the drugs used for the 73

treatment of COVID-19 caused QT prolongation in the 74

ECG. To test this situation, the ECG of 2006 COVID- 75

19 patients was examined. According to the obtained 76
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results, QT prolongation was detected in 19.7% of pa-1

tients with COVID-19. In addition, it was determined2

that patients with this abnormality in their ECGs had3

higher rates of intubation and intensive care unit entry4

than others. Mccullough et al. [50] evaluated whether5

the ECG provides prognostic information in COVID-6

19 disease. In their study, they examined the ECG of7

756 patients with COVID-19 and detected abnormali-8

ties such as atrial premature contractions, intraventric-9

ular block, repolarization abnormalities, and RBBB10

were detected. Among these findings, ST-elevation was11

rarely observed. And it was stated that patients with12

these ECG findings had higher mortality rates. Lam13

et al. [29] conducted a study with 18 COVID-19 pa-14

tients. They detected abnormalities including PR de-15

pression, biphasic T-waves, PR prolongation, Q-waves,16

ST-segment elevation, atrial flutter, RBBB, and atrial17

trigeminy in 63% of the patients. According to their re-18

sults, it was determined that COVID-19 patients with19

abnormal ECG tended to have increased severity and20

stay in the hospital for 61% longer than other patients.21

Bertini et al. [30] examined the ECG of 431 patients22

with COVID-19. They found abnormalities in the ECG23

of 93% of the patients. AF was observed in the ECG24

of 22% of patients. Acute right ventricular pressure25

overload (RVPO) was detected in 30%, and ST-T pro-26

longation was observed in 4 patients. Nemati et al.27

[51] suggested that ECG could be an early indicator28

for COVID-19 infection this is because the changes29

in the ECG were also observed in COVID-19 patients30

without any cardiovascular history. As detailed above,31

many studies have demonstrated that some cardiac32

disorders may be caused by COVID-19 and they can33

be easily observed in ECG. Also, many cardiovascu-34

lar changes continue to be associated with COVID-1935

infection day by day. Therefore, ECG can be an im-36

portant diagnostic tool not only for the early diagnosis37

of COVID-19 but also for the cardiovascular complica-38

tions which may arise during or after COVID-19 dis- 39

ease for mild patients. 40

Methods 41

This study consists of 5 main stages. The visualizations 42

of these stages are shown in Figure 1. 43

COVID-19 ECG images dataset 44

In this study, a publicly available dataset containing 45

ECG images of cardiac and COVID-19 patients has 46

been used. The dataset was shared online by Khan 47

et al. [52] from the University of Management and 48

Technology on Mendeley Data. The dataset includes 49

1937 distinct patients’ paper-based ECG report im- 50

ages. ECG reports were examined by experts and the 51

images consist of 250 COVID-19 patients, 77 MI pa- 52

tients, 548 patients with abnormal heartbeats (recov- 53

ered from COVID-19 or MI), 203 patients that have 54

MI history, and 859 people without any cardiac find- 55

ings. The presented dataset is the first dataset shared 56

for the ECG of COVID-19 disease, in fact, it is the 57

first COVID-19 bio-signal database as far as we know. 58

The paper-based ECG records in the dataset consist 59

of ECG signal drawings from a 12-lead system (I, II, 60

III, aVR, aVL, aVF, V1, V2, V3, V4, V5, and V6) and 61

the sampling rate was 500 Hz. As understood from the 62

paper-based ECG reports, ECG signals were collected 63

via EDAN SE-3 series 3-channel electrocardiograph, 64

and some of the signals were applied with a 0.67-25 65

Hz bandpass filter, and some of them with a 0.5-100 66

Hz bandpass filter and a 50 Hz notch filter. 67

Unfortunately, the images of the dataset have some 68

limitations. The images do not have sufficient resolu- 69

tion, and report image sizes are not standard. In par- 70

ticular, the ECG reports of COVID-19 patients consist 71

of different types of reports. Other reports are more 72

standardized and have better resolution. 73

In this study, two different classification problems 74

are discussed; (i) to distinguish COVID-19 from No- 75
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Findings (that have normal ECG); all 250 COVID-191

and 250 out of 859 normal paper-based ECG report2

images were used and (ii) to diagnose COVID-193

(COVID-19 (Positive) vs other types of ECGs (Neg-4

ative)); all 250 COVID-19, 83 of 859 normal, 83 of5

548 abnormal heartbeat and 84 of 280 MI paper-based6

ECG report images were used. The reason for choosing7

the equal amount of data in the classification process8

is to eliminate the imbalanced dataset effect. In addi-9

tion, all paper-based ECG report images used in this10

study were selected from the group in which the 0.67-11

25 Hz bandpass filter was applied. An example for a12

12-lead paper-based ECG report of a COVID-19 pa-13

tient from the dataset (Report number: 211) is shown14

in Figure 1.15

Pre-processing and segmentation16

In this section, the conversion of noised 12-lead paper-17

based ECG images to noiseless channel-based binary18

images is explained. There are many studies that digi-19

tize paper-based ECG images [53, 54]. Nevertheless,20

these studies have high computational costs. More-21

over, the complex image processing and digitization22

processes may cause degeneration of ECG signals and23

cause information loss. Therefore, in this study, a sim-24

ple and effective paper-based ECG segmentation ap-25

proach that does not require any complex image pro-26

cessing method is proposed. Moreover, the proposed27

method does not involve a digitization process and pre-28

serves the ECG signals as images. Hence, no degrada-29

tion occurs in ECG signals. In the proposed method,30

the quality of ECG images depends only on the sam-31

pling rate of paper-based ECG signals.32

For this purpose, firstly, the part containing each33

ECG channel is segmented from paper-based ECG im-34

ages. The segmentation process was carried out with35

a rectangular frame. Since the paper-based ECG im-36

ages in the dataset have different resolutions, the po-37

sitions of this frame on the paper-based ECG image38

were measured manually. The segmentation process 39

is performed to include one or more RR intervals in 40

each channel. An example of a segmented paper-based 41

ECG image is shown in Figure 2a. Segmented ECG- 42

channel images have a background sourced from the 43

ECG-paper lines. This background is removed within 44

two steps. In the first step, the background lines were 45

removed by filtering the input densities with a density 46

mapping function [55], because the background has 47

denser or softer RGB values than the curves expressing 48

the ECG signal. This is essentially a contrast enhance- 49

ment process. An example of a segmented paper-based 50

ECG image with no background lines is shown in Fig- 51

ure 2b. Unfortunately, the obtained images still include 52

traces of the background where the background lines 53

are as dense as ECG curves. Besides, since only the 54

signal pattern in ECG reflects the information about 55

the heartbeat period, the RGB color distribution of 56

ECG curves is negligible [41]. For this reason, the RGB 57

images obtained in the last stage were converted to 58

binary images by taking the “G” channel as a ref- 59

erence (since “G” channel information is not domi- 60

nant in paper-based ECG images due to the nature 61

of ECG paper). An example of the paper-based ECG 62

image obtained after the binarization process is shown 63

in Figure 2c. While the ECG curve consists of adja- 64

cent interconnected pixels, background noise is sepa- 65

rate from this curve as seen in Figure 2c. In the second 66

step, the interconnected ECG curve pixels are filtered 67

from background noises by using the bwareafilt func- 68

tion of MATLAB®. Thus, the eventual binary seg- 69

mented paper-based ECG image was obtained without 70

any loss. An example of the final image is shown in Fig- 71

ure 2d. The pre-processed and segmented paper-based 72

ECG image database is available at GitHub. 73

GLCM and feature extraction 74

Feature extraction and selection play an important 75

role in machine learning-based classification problems. 76

https://github.com/mkfzdmr/COVID-19-ECG-Classification
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A set of images can be categorized according to their1

most distinctive features which can be found by imple-2

menting an appropriate feature extraction method. In3

our approach, at the end of the pre-processing steps,4

all paper-based ECG images were converted to binary5

images where the ECG signal is represented by 0s. We6

chose the Gray Level Co-Occurrence Matrix (GLCM)7

method [56] for feature extraction because it has been8

shown that GLCM is very useful in extracting the im-9

portant properties of an ECG signal such as periodicity10

and distortions [57, 58].11

GLCM generates a square matrix whose dimension12

equals the number of gray levels in the image. Each13

cell of GLCM corresponds to the number of the co-14

occurring related gray levels in the image. The GLCM15

matrix G can be calculated from the equation (1) as16

given in [58]:

G∆x,∆y(i, j) =

N
∑

x=1

M
∑

y=1















1, I(x, y) = i &

I(x+∆x, y +∆y) = j

0, otherwise

(1)17

where I is the image of the pre-processed binary ECG18

images with dimension NxM ; i and j are the pixel19

values, x and y are the spatial positions in the image20

I. ∆x and ∆y are the spatial offset, and I(x, y) is the21

pixel value. In our problem, the pixel values i, j take22

0, 1 and G is a size of 2x2 matrix. Taking the offset ∆x23

and ∆y values as 1 and 0, respectively, the transitions24

between the pixel with 0 and 1 intensities in horizon-25

tal direction provide the amount of deterioration in26

the signal specially in its periodicity. The second-order27

statistical analysis of the GLCM matrix provides dif-28

ferent parameters that are widely evaluated as image29

features in image classification studies [59].30

In this work, we extracted the most commonly used31

four GLCM features which are energy, contrast, cor-32

relation, and homogeneity from each lead of the seg-33

mented binary ECG images. Mentioned features can 34

be calculated using the G matrix obtaining in equa- 35

tion (1) as follows:

Energy(E) =

1
∑

i=0

1
∑

j=0

p2ij

Contrast =
1

∑

i=0

1
∑

j=0

(i− j)2pij

Homogeneity =

1
∑

i=0

1
∑

j=0

1

1 + (i− j)2
pij

Correlation =

1
∑

i=0

1
∑

j=0

(i− µi)(j − µj)

σiσj

pij (2) 36

where pij is the probability of adjacent pixels that have 37

ij intensity pattern and it is stored in the GLCM ma- 38

trix G, i.e. for a binary image first element of G shows 39

the probability of co-occurrence 00 pattern in the im- 40

age I. µi, µj , σi, and σj are means and standard de- 41

viations of the intensities, and were given as follows: 42

µi =

1
∑

i=0

1
∑

j=0

ipij σi =

√

√

√

√

1
∑

i=0

1
∑

j=0

(i− µi)2pij

µj =

1
∑

i=0

1
∑

j=0

jpij σj =

√

√

√

√

1
∑

i=0

1
∑

j=0

(j − µj)2pij (3) 43

We assessed the four GLCM features from a statisti- 44

cal perspective in order to select the most informative 45

and distinctive feature to represent the binary ECG 46

images. We performed the one-way ANOVA test on 47

GLCM features obtained from the binary ECG images. 48

ANOVA test results of GLCM features that belong to 49

No-Findings and COVID-19 classes are given in Fig- 50

ure 3. We found that all GLCM features were statis- 51

tically significant relative to each other (p < 0.0001). 52

When the gray level pixel distribution of an image is 53

periodic or homogeneous, the energy value is expected 54

to converge to the upper limit [60]. We concluded that 55

it is prominent to use GLCM energy among the other 56

GLCM features to emphasize the periodicity relation 57
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between RR intervals in ECG images. In addition, the1

energy values are directly related to uniformity. As ex-2

plained in the Related works section, since the peri-3

odicity and orderliness of COVID-19 ECG images are4

expected to be different from the ECG images without5

COVID-19, it has become important to measure im-6

age uniformity. Moreover, GLCM energy values help7

determine disorders in texture [61] which may be re-8

lated to COVID-19. Although all GLCM features that9

are obtained are statistically significant, for the rea-10

sons explained above, the GLCM energy is chosen as11

a feature to be used in the mapping process.12

Hexaxial feature mapping13

Inspired by our previous study [62], we proposed14

a novel method to represent the paper-based ECG15

record as a colorful two-dimensional image for vari-16

ous deep learning applications. The feature mapping17

approach can be defined as assigning a specific value18

to a specific point in a two-dimensional space. The19

point here is the projection of the measurement loca-20

tion in three-dimensional space into two-dimensional21

space (which we call the image plane in our study). The22

value is the feature that represents the measured sig-23

nal in the related measurement point, i.e. the GLCM24

energy of binary ECG images of each lead. We used25

the hexaxial diagram of heart’s electrical axis [63] as26

the image plane to define the measurement points.27

Our method relies on the 12-lead ECG record sys-28

tem which is accepted as the gold standard for ECG29

diagnosis, and works with the logic of combining30

Einthoven, Goldberger, and Wilson derivation systems31

[64]. In Figure 4a, 6 limb leads (blue arrows) (I, II, III,32

aVR, aVL, aVF), their reversed polarities (-I, -II, -III,33

-aVR, -aVL, -aVF), and 6 precordial leads (red arrows)34

(V1, V2, V3, V4, V5, V6) are shown. In ECG analy-35

sis, the projection of six limb leads with their negative36

poles on the coronal plane is called a hexaxial reference37

system shown by the blue points in Figure 4b. In this38

presentation, lead I is selected as the zero reference 39

point and lead I and aVF intersect at a right angle at 40

the electric center of the heart. The precordial leads 41

have lied on the transverse plane and only the positive 42

pole of each lead is indicated by the end labels shown 43

by the red points in Figure 4b. It is assumed that the 44

Lead V6 is parallel to Lead I and the other precordial 45

leads must be placed with a phase angle from V6 in 46

the transverse plane. The leads V2 and V6 intersect at 47

approximately a right angle at the electrical center of 48

the heart [65]. The phase angles of all leads are given 49

in Figure 4b. 50

According to this configuration, the heart is assumed 51

to be placed at the origin of a 3D cartesian coordinate 52

(x, y, z) system with axis Lead I (or V6) as y, aVF as 53

−z and V2 as x. Lead I and aVF span the coronal 54

plane whereas V6 and V2 span the transverse plane. 55

To find measurement points of all leads in 3D space, 56

we assume that the endpoints of each limb leads lie on 57

a circle centered at the origin with a radius r in the 58

image plane, and the endpoint of precordial leads lie 59

on a semi-circle centered at the origin with a radius 60

r in the transverse plane. The measurement points of 61

the limb leads are already in the image plane and 62

they can be calculated easily using these transforms:

x = 0

y = r cos θ

z = r sin θ (4) 63

where θ denotes the given phase angles of the leads. 64

The measurement points of the precordial leads lie 65

on the x−y plane and can be projected onto the image 66

plane by using these transforms:

x = 0

y = r cos θ

z = 0 (5) 67
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As a result, 18 measurement points are defined in1

2D cartesian coordinate (y − z) system. The virtual2

measurement points and their placement in the image3

plane are shown in Figure 4b.4

The next step in the hexaxial feature mapping5

method is assigning a value to the measurement point6

that represents the measured signal. The hexaxial fea-7

ture mapping procedure can be defined as follows:

HFM(ylead, zlead) =







































E(Ilead), lead = I,II,III,

aVR,aVL,aVF,

V1,V2,V3,V4,V5,V6

E(I lead), lead = -I,-II,-III,

-aVR,-aVL,-aVF

(6)8

where y, z shows the location of the projected measure-9

ment points of the leads, and E indicates the normal-10

ized GLCM energy (Energy values rescaled between 011

and 1 to avoid inconsistency and bias). HFM is an ex-12

pression of the value of E at location y, z. The HFM13

of the positive poles of limb leads and the precordial14

leads are found by calculating the GLCM energy of15

binary ECG images denoted by I. To find the HFM16

of the negative poles, the images of corresponding pos-17

itive poles are vertically mirrored denoted by I then18

the GLCM energy is computed.19

As a result, the GLCM energy features of each20

lead are mapped onto the coronal plane using vir-21

tual measurement points in the 2D plane. A natural22

two-dimensional neighbor interpolation process [66] is23

carried out between the existing measurement points24

to generate a smooth 2D colorful image. In Figure 4c25

(no cardiac findings) and Figure 4d (COVID-19) RGB26

color representation of the hexaxial feature mapping27

images are shown. When these two images are com-28

pared, it can be seen that the hexaxial feature map-29

ping method has succeeded in representing the ECG of30

a healthy person in a distinguishing way from the ECG31

of COVID-19 patients. Furthermore, the proposed ap-32

proach not only provides a 2D image representation 33

for deep learning studies but also collects all 12-lead 34

ECG information into a single image. Thus, the in- 35

formation contained in the multi-channel ECG can be 36

analyzed and processed over a single image. Since the 37

proposed approach includes the derivation information 38

of 12-lead ECG, hexaxial mapping images also contain 39

the electrical axis activity of the heart. 40

Proposed deep learning architecture 41

Recently, Convolutional Neural Network (CNN) ar- 42

chitectures have become incredibly popular in image 43

classification, object detection, and segmentation. A 44

typical CNN architecture consists of a convolutional 45

layer, a pooling layer, and a fully connected layer, re- 46

spectively. The CNN architecture aims to obtain deep 47

features. The convolutional layer scans the inputs via 48

a filter and obtains feature maps. The pooling layer 49

provides the selection of more meaningful features to 50

reduce the computational cost. And finally, the fully 51

connected layer flattens the inputs and calculates the 52

probabilities of the labels. There are many CNN ar- 53

chitectures proposed for image classification consisting 54

of the combination of these layers. Designing a model 55

inspired by previously proven CNN models is more ef- 56

ficient than rebuilding a new architecture [14]. 57

In recent studies, various approaches were conducted 58

on the selection of deep network architecture [14, 59

16, 67, 68]. Ardakani et al. [69] trained 10-different 60

CNN architectures and emphasized the network which 61

had the best classification performance among trained 62

models. In [67], ResNet-50 is selected as a base model 63

due to it yielded the best classification performance. 64

In this study, two main criteria were considered to 65

build the deep model; computational complexity and 66

classification performance. For this purpose, hexaxial 67

feature mapping images were trained with the net- 68

work architectures which are suggested by recent state- 69

of-the-art studies. When the classification results are 70
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compared ResNet-50 [70], AlexNet [71], ResNet-8 [16],1

and SqueezeNet [72] yielded an accuracy of 73.65%,2

93.60%, 85.12%, and 92.52%, respectively. The re-3

sults revealed that AlexNet which has less network4

depth achieved significant accuracy compared to well-5

known architectures. Additionally, the AlexNet model6

was presented, it was used to classify about 1.2 mil-7

lion images in 1000 different classes. Besides, AlexNet8

used the Dropout method to overcome overfitting and9

Rectified Linear Units (ReLU) as the activation func-10

tion to shorten the training time. Also, the model11

was compatible with multiple GPUs. Due to these12

advantages, AlexNet achieved the best performance13

in ImageNet Large Scale Visual Recognition Chal-14

lenge in 2012 (ILSVRC2012) [71]. Further, AlexNet15

has achieved effective performance in many ECG clas-16

sification studies [45, 73]. Therefore, a new deep net-17

work architecture modified from the AlexNet model is18

designed in this work. Graphical representation of the19

proposed CNN architecture is shown in Figure 5.20

In the designing phase, we build a 9-layer model21

that contains one more convolutional layer with 25622

filters and (3x3) kernel size compared to the original23

AlexNet. Therefore, the input shapes require a larger24

size of 256x256 compared to AlexNet. Moreover, in-25

put images with larger size need to resize, and the26

padding process is performed on input images that27

have lower size. In order to avoid increasing the train-28

ing cost, the number of layers is not increased further.29

Initially, the high-resolution 300 DPI colorful hexax-30

ial feature mapping images are resized to 256x256x331

to feed the proposed CNN architecture. This resizing32

process also provides less training cost and a balanced33

kernel size. In the first two layers, the input images34

are passed through a convolutional layer and a pooling35

layer. While both layers perform a convolution (Conv)36

with a (11x11) kernel and using a ReLU function as37

the activation function in the convolutional layer, the38

first one has a stride of 4 and the second one has a 39

stride of 2. Both pooling layers (maximum) used in this 40

step have a kernel size of (2x2) and a stride of 2. The 41

next stage consists of four repetitive convolutional lay- 42

ers called as a convolutional block. Each convolutional 43

layer has (3x3) kernels and a stride of 1, and the num- 44

bers of filters are 96, 256, 256, and 128, respectively. 45

Following the convolutional block is a maximum pool- 46

ing layer with (2x2) kernel size and a stride of 2. In 47

the next step, after the model is flattened, there is a 48

dense block consisting of three fully connected layers. 49

The dropout method (drop rate of 0.4) is used to pre- 50

vent overfitting after each fully connected layer in the 51

dense block. And finally, the SoftMax function is used 52

as the binary classifier in the output layer. The pro- 53

posed CNN architecture has over 23.5 million trainable 54

parameters. Also, in Figure 5 the output dimensions 55

of the network layers are illustrated. 56

During the training phase of the proposed archi- 57

tecture, Adam Optimizer [74] was used, because of 58

its effective choice of hyperparameters. Moreover, the 59

batch size is fine-tuned with parameter tuning. Differ- 60

ent batch sizes (32, 64, 128, and 256) have been tested 61

in the training phase to achieve the least error rate, and 62

the batch size optimized to 128. Furthermore, different 63

learning rates (0.01, 0.001, 0.0001, and 0.00001) were 64

tested to ensure a lower error rate and to prevent sat- 65

uration of the model. Although decreasing the learn- 66

ing rate hyperparameter slightly increased the training 67

cost, it fine-tuned on 0.0001 to avoid local minimums. 68

Epochs are tuned at 200 to observe the robustness of 69

the models and to compare the test results with equal 70

conditions. 71

Results and discussion 72

In this study, the generated images based on hexaxial 73

feature mapping, explained in the Methods section, are 74

used to train our proposed architecture. All training, 75

validating, and testing phases are performed on a com- 76
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puter with Nvidia GeForce RTX 2080 TI GPU and 641

GB RAM using Tensor Flow 2.2 and Cuda 10.1.2

Modified stratified k-fold cross-validation is adopted3

to evaluate the robustness of the proposed models4

in this study. Cross-validation methods are used to5

evaluate the robustness of models during the train-6

ing phase. The stratified k-fold cross-validation pro-7

cess re-arranges the dataset to ensure each fold prop-8

erly represents the entire dataset. We added an extra9

validation step to the stratified k-fold cross-validation10

to construct modified stratified k-fold cross-validation11

which is visualized in Figure 6. The training phase12

is processed as follows; firstly, the dataset is shuffled13

and then split k-part by using the stratified k-fold.14

While the k-1 part is used to train the model, the re-15

maining one k-part is used in the testing phase and16

cover all classes without overlap. After the test and17

training data sets are separated, the remaining train-18

ing set is split again with a training and validation19

split process (split rate of 0.25). We chose k as 5 in20

our study. Considering there are a total of 500 hexax-21

ial mapping images in each phase, 100 images are used22

in each test phase and any of them are not included in23

training phase (whereas, the total number of data is24

9000 when training 2D ECG spectral images (18-lead x25

250 paper-based ECG reports x 2 groups)). The data26

used in the test phase cover two classes (COVID-1927

vs others) with approximately equal amounts of data.28

The validation data (consisting of 100 images) is used29

both in the training and validating phases. Thus, a30

two-step verification process is performed to evaluate31

the robustness of the models during the training and32

testing phases. Furthermore, recall (REC), precision33

(PRE), accuracy (ACC), specificity (SPE), F1-Score34

(F1-S) [15], area under the receiver operating charac-35

teristic curve (ROC-AUC) [62, 75], and mean squared36

error (MSE) [17] are calculated during the validating37

and testing phases to investigate the robustness of the 38

models. 39

Experimental results and implications 40

We performed four experiments on two different binary 41

classification problems. All experiments were carried 42

out with 5 repetitive folds by using modified stratified 43

k-fold cross-validation scheme. In the first stage (i), 44

we trained three different models to detect and clas- 45

sify COVID-19. At this stage, we aimed to evaluate 46

the performance of the proposed architecture and to 47

show the effect of the proposed hexaxial feature map- 48

ping process on the success of the classification. For 49

comparison, we trained the AlexNet architecture using 50

ECG hexaxial mapping images (Experiment 1), the 51

proposed architecture using ECG hexaxial mapping 52

images (Experiment 2), and finally the proposed ar- 53

chitecture using 2D ECG spectral images (Experiment 54

3). In the second stage (ii), we trained our proposed 55

model to predict and diagnose COVID-19 (Exper- 56

iment 4). At this stage, we aimed to evaluate the di- 57

agnostic value of ECG by distinguishing ECG disor- 58

ders caused by COVID-19 from other ECGs without 59

COVID-19 findings and diagnose COVID-19 through 60

ECG data. The classification results of all test phases 61

are given in Table 1. 62

Experiment 1: By training the AlexNet architec- 63

ture using hexaxial mapping images, an average of 64

93.60% ACC value was achieved. The best training 65

performance was achieved with 95.00% ACC in the 5th 66

fold and 2nd fold. Test ACC values have a standard de- 67

viation of ∓2.63%. The deviations of ACC changes in 68

each fold are within acceptable limits. Also, the aver- 69

age PRE, REC, SPE, F1-S, and ROC-AUC values were 70

yielded 91.67%, 96.00%, 91.20%, 93.7%, and 97.48%, 71

respectively. The average test loss was calculated as 72

0.453 and the average MSE was calculated as 0.064. 73

The obtained REC values were equal or higher than 74

SPE values in all folds. This situation implied that the 75
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false-positive rate (FPR) was higher than the false-1

negative rate (FNR). FPR indicates the rate of being2

marked to have COVID-19, while the individuals did3

not have COVID-19. It took an average of 101.98 sec4

to train AlexNet using hexaxial mapping images.5

Experiment 2: By training the proposed architec-6

ture using hexaxial mapping images, an average of7

96.20% ACC value was achieved. This average ACC8

value provided a 2.60% better performance compared9

to AlexNet. The proposed model exhibited an ACC10

performance of over 96.00% on all folds, and the best11

performance was at the 4th fold with an ACC value12

of 98.00%. ACC values obtained in the test phase had13

only ∓1.48% standard deviation. This situation was14

an indicator of the robustness of the model. Moreover,15

the average PRE, REC, SPE, F1-S, and ROC-AUC16

values were achieved 96.20%, 94.33%, 98.40%, 94.00%,17

96.30%, and 99.15%, respectively, and where all val-18

ues performed better than AlexNet in all cases. The19

test loss proved the robustness of the model with a20

small value of 0.292 and a very low MSE of 0.038.21

By using the proposed architecture, the training time22

of hexaxial mapping images took only an average of23

103.21 sec. An almost ideal classification success has24

been achieved in Fold-4 with a ROC-AUC value of25

99.88%. Similar to the training of AlexNet, FPR val-26

ues were higher than FNR values. The achieved success27

in all folds of the proposed method has provided a sig-28

nificant improvement compared to the AlexNet. Fur-29

thermore, although the proposed architecture included30

more layers compared to AlexNet, an average training31

time difference was only 1.23 sec. Therefore, we used32

the proposed architecture to train other models.33

Experiment 3: In this step, we trained our pro-34

posed model with 2D ECG spectral images and evalu-35

ated the results to observe the success of the proposed36

hexaxial mapping approach. In this step segmented37

and pre-processed 2D ECG spectral images were given38

directly to the deep network as an input. All 18-lead (6 39

of them augmented) ECG images of each patient were 40

used in the training phase in order to include the in- 41

formation of all ECG channels. There was no evidence 42

that the abnormalities in ECG caused by COVID-19 43

can be separated on a channel basis. All findings in 44

the studies summarized in the Related works section 45

have been observed on the entire ECG, and as far as 46

we know, no channel-based study has been conducted. 47

Consequently, at each training, validation, and testing 48

phase 7200, 1800, and 1800 2D ECG spectral images 49

were used. As seen in Table 1, by training the pro- 50

posed architecture with the 2D ECG spectral images, 51

an average of 81.08% ACC was yielded. The highest 52

ACC value was calculated as 84.83% at the 1st fold and 53

ACC values had a standard deviation of ∓2.82%. The 54

highest standard deviation occurred at this step. More- 55

over, the lowest average PRE, REC, SPE, F1-S, and 56

ROC-AUC values were calculated as 79.42%, 84.10%, 57

77.81%, 81.68%, and 89.82%, respectively in this step. 58

The average test loss was 0.644 and the MSE was 0.220 59

and was relatively higher than other trained models. 60

Especially, SPE had the lowest value with 77.81%. Due 61

to the increasing training size, the computational cost 62

had increased and the average training time was calcu- 63

lated as 528.43 sec. A significant difference of 15.12% 64

ACC was observed compared to training of hexaxial 65

mapping images. As a result, the hexaxial mapping ap- 66

proach achieved higher performance with less compu- 67

tational cost and training time compared to the train- 68

ing of 2D ECG spectral images. 69

Experiment 4: To predict COVID-19 from ECG, 70

two groups were generated Positive vs Negative. While 71

the Positive group consisted of only the ECG data 72

of COVID-19 patients, we included an approximately 73

equal amount of normal ECG (of individuals without 74

any cardiac findings), history of MI patients’ ECG, and 75

abnormal ECG (of patients recovered from COVID-19 76
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or MI) to the Negative group. Firstly, we analyzed the1

GLCM energy features of both groups statistically by2

applying a one-way ANOVA test and it verified that3

the GLCM energy values of COVID-19 ECGs were sta-4

tistically significantly different from the GLCM energy5

values of the normal, MI, and abnormal ECGs groups6

(p < 0.0001). The ANOVA results are shown in the7

Figure 7. In order to evaluate the success of our pro-8

posed hexaxial mapping approach in this classification9

problem, mapping images that belongs to Positive and10

Negative groups were trained with the proposed archi-11

tecture. As seen in Table 1, an average of 93.00% ACC12

value was achieved with the proposed method and the13

best ACC value was obtained as 95.00% at the 2nd14

fold. Test ACC values had a standard deviation of15

∓1.58%. Moreover, with the proposed approach, the16

average PRE, REC, SPE, F1-S, and ROC-AUC values17

were achieved 90.58%, 96.00%, 90.00%, 93.20%, and18

94.98%, respectively. Although the average test loss19

was relatively high (0.628), the MSE value was quite20

low (0.070). As with other trained models, the FPR21

value was higher than the FNR value. It took an av-22

erage of 103.92 sec to train the proposed model with23

the proposed approach.24

As mentioned above, the classification of COVID-1925

ECG data with the proposed method has yielded out-26

standing test performance. Further, in Figure 8 train-27

ing and validation ACC graphs and training and val-28

idation loss graphs are shown for all folds to evalu-29

ate both training and validation phases. In all cases30

for all folds; training ACC and validation ACC val-31

ues converge to the upper limit. Nevertheless, AlexNet32

has more volatility and has had difficulty converg-33

ing compared to the proposed architecture. Moreover,34

the proposed architecture converged before the 200th35

epoch. Training loss values converged to the lower36

limit. Similarly, the proposed architecture converged37

to the lower limit before the 200th epoch. Due to the38

dropout method, some temporary loss increases were 39

observed, but they disappeared towards the last epoch. 40

Similarly, the validation loss values converged to the 41

lower limits. However, only in the proposed architec- 42

ture, although the 2nd fold loss tended to increase, 43

it moved within lower values compared to AlexNet. 44

Also, overfitting or underfitting was not observed in 45

any of the trained models. In the COVID-19 vs No- 46

Findings classification, during the training of AlexNet 47

architecture, average training ACC, training loss, val- 48

idation ACC, and validation loss were calculated as 49

98.20%, 0.057, 93.4%, and 0.563, respectively and the 50

proposed model was achieved 100.00%, 0, 96.20%, and 51

0.269, respectively. Besides, in the Positive vs Nega- 52

tive classification, the proposed model was achieved 53

99.60%, 0.013, 92.60%, and 0.603, respectively. In or- 54

der to clearly evaluate the performance of the trained 55

models, the ROC curves for the validation and testing 56

phase of the trained models are given in Figure 9. As 57

can be seen in the figure, the AUC values for mean 58

ROCs were calculated as the lowest 95% and had a 59

deviation of most ∓0.02%. Especially, the ROC curve 60

during the testing phase of the proposed model was 61

almost ideal. Moreover, for this purpose, the best con- 62

fusion matrices (CM) obtained in the test phase are 63

given in Figure 10. While there were 5 misclassified 64

labels using AlexNet in Experiment 1, 98 of 100 map- 65

ping images were correctly classified by the proposed 66

architecture and only one COVID-19 case was misclas- 67

sified in Experiment 2. Besides, as seen in CM obtained 68

using only 2D ECG spectral images in Experiment 3, 69

the rate of misclassification was high. Further, even 70

though misclassification performance increased in the 71

CM obtained in experiment 4, it misclassified only one 72

COVID-19 case. 73

Comparison with recent studies 74

Recently, presented studies to automatically diagnose 75

COVID-19 with deep learning have emphasized well- 76
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known architecture ResNet [70]. Accordingly, in addi-1

tion to the experiments performed, generated hexax-2

ial mapping images were trained with ResNet-50 ar-3

chitecture to compare with our proposed architecture.4

However, overfitting was observed during the training5

phase of the models. Therefore, sufficient performance6

could not be achieved during the testing phase of these7

models (average 70% ACC). The main reason for this8

was to train the deeper network with an insufficient9

number of labeled data. Since sufficient performance10

was not achieved with our input data in architectures11

that had more layers, the number of layers of the pro-12

posed model was not increased further.13

In this study, we want to draw particular attention14

to the results of Experiment 4 which reveals that ECG15

may be a diagnostic tool for COVID-19. In fact, in16

all conducted statistical analyses of GLCM features,17

a significant difference was observed between ECGs of18

COVID-19 and the others; MI, abnormal, and no car-19

diac findings in spite of having low-resolution images20

and the restricted number of data. Undoubtedly, we21

would like to point out that we need more ECG data22

especially ECGs of mild or asymptomatic COVID-1923

patient’s to prove our claim. We hope the health sci-24

ence community will share more data on COVID-19.25

Additionally, many deep learning-based studies have26

used radiographic images for the detection of COVID-27

19 and many of them have achieved outstanding clas-28

sification performance. The following studies can be29

shown as an example: Al-Waisy et al. [70] achieved30

accuracy of 99.99%, Dhiman et al. [76] achieved ac-31

curacy of 98.54%, Ozturk et al. [14] achieved accu-32

racy of 98.08%, and Ahuja et al. [72] achieved ac-33

curacy of 99.4%. The main reason for the success of34

the mentioned studies is that the most common symp-35

tom of COVID-19 disease is lung involvement [77] and36

the symptoms can be clearly observed on radiographic37

lung images [78]. Despite this, some studies using CT38

and X-ray to diagnose COVID-19 have achieved less 39

accuracy rate than our proposed method. The follow- 40

ing studies can be shown as an example: Ismael and 41

Şengür [68] achieved accuracy of 94.7%, Pathak et 42

al. [79] achieved accuracy of 93.02%, Song et al. [67] 43

achieved accuracy of 86%, Amyar et al. [17] achieved 44

accuracy of 94.67%, and Wang et al. [80] achieved ac- 45

curacy of 82.9%. Moreover, considering the disadvan- 46

tages of radiological images mentioned in the Back- 47

ground section, the proposed ECG-based COVID-19 48

diagnosis method may be more useful than the radio- 49

logical image-based detection methods. In particular, 50

it can be noted that the ECG is more accessible and 51

harmless than CT or X-ray. 52

Furthermore, many studies are presented to classify 53

cardiac arrhythmias using multi-lead ECG [42, 81]. Ar- 54

rhythmias may not be observed in all ECG channels 55

and may be dominant only in some ECG channels. Es- 56

pecially in multi-lead ECG and AI-based classification 57

studies, all channel information should be protected. 58

Otherwise, an abnormal ECG may be misclassified if 59

the prediction is performed through the ECG channel 60

where no abnormality is observed. Since the proposed 61

hexaxial mapping method includes all 12-lead chan- 62

nel information, no channel in which arrhythmias can 63

be observed has been ignored. Moreover, the proposed 64

hexaxial mapping method supports the representation 65

of not only paper-based ECG images but also 2D spec- 66

tral images of digital ECG signals. Therefore, it can be 67

used in the representation and classification of cardiac 68

arrhythmias from digital ECG signals and can be an 69

alternative to current automated arrhythmia detection 70

approaches. 71

Major contribution of the study 72

The COVID-19 pandemic has caused many medical 73

challenges. A fast and easily accessible method is re- 74

quired for the early and accurate diagnosis of the dis- 75

ease. Detection of COVID-19 with ECG data using a 76
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deep learning approach shows promise as a new diag-1

nostic method. In this respect, this paper makes sev-2

eral contributions to the literature. These innovative3

contributions may be emphasized as follows:4

• A novel, highly sensitive, and harmless method5

has been proposed as an alternative to the exist-6

ing diagnostic methods to aid in the diagnosis of7

COVID-19.8

• A new and effective approach has been proposed9

in order to classify paper-based ECG data, where10

all ECG-leads can be represented as a single col-11

orful 2D image.12

• Differences in the ECG data of patients with13

COVID-19 and individuals without any cardiac14

findings and patients with various arrhythmias15

were demonstrated.16

• The experimental classification results can be ev-17

idence for the presence of cardiovascular changes18

caused by COVID-19.19

• The advantages of the proposed hexaxial feature20

mapping process on classification performance21

were demonstrated.22

• A new and simple deep network architecture has23

been proposed for 2D image classification and the24

deep network hyperparameters were optimized to25

yield the best classification performance.26

Limitations and future scope27

Nonetheless, some limitations should be noted. In par-28

ticular, the hexaxial feature mapping process is very29

sensitive to the resolution of paper-based ECG images.30

Resolution variations in ECG images may cause dif-31

ferentiation in the features obtained through GLCM32

and may affect the color intensity of hexaxial maps.33

Further, while performing the segmentation of ECG-34

lead images, the size of the selected rectangular frame35

must be kept constant. It should be noted that the36

segmentation process can be standardized by using a37

smart-phone application that guides the user for tak-38

ing the right ECG image from the paper-based ECG 39

report. Additionally, although the proposed method 40

is designed as a patient-independent approach and its 41

robustness has been tested with various experimen- 42

tal scenarios, it needs to be evaluated with different 43

datasets. The main limitation here is the lack of access 44

to the COVID-19 patients’ ECG data and the lack of 45

a sufficient amount of data. Moreover, the dataset in 46

which the proposed method is tested does not contain 47

any information about the severity of the condition 48

of COVID-19 patients. This prevents an evaluation 49

of the occurrence of COVID-19-induced cardiovascu- 50

lar changes. 51

Another limitation is that there may be variability 52

in the number of leads and derivation when collecting 53

ECG data. Although the proposed method requires 12 54

basic leads, ECG data collected from various deriva- 55

tions can be adapted to the hexaxial mapping process. 56

It should also be noted that this work aims to dis- 57

cuss the ability to automatically distinguish COVID- 58

19 ECG data from other types of ECG data. Although 59

recent studies [30, 32–34, 51] have reported various 60

cardiovascular changes in most of the patients, they 61

also reported infected patients without any cardiovas- 62

cular changes. Therefore, the sensitivity of the pro- 63

posed method is related to the observability of cardio- 64

vascular changes. Furthermore, there are concerns that 65

COVID-19 may not be the main source of cardiovas- 66

cular changes in ECG data [25]. Thus, two main issues 67

could be addressed in future research; further research 68

should be attempted to specify COVID-19-induced 69

cardiovascular changes, and the current method should 70

be tested on a more robust dataset. 71

Conclusion 72

In this study, a novel and effective approach is pro- 73

posed to automatically detect COVID-19 using paper- 74

based ECG report images. This study aims to distin- 75

guish the ECGs of COVID-19 patients from various 76
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types of ECGs. Accordingly, a novel method based on1

representing 12-lead paper-based ECG images as 2D2

colorful images has been proposed and the generated3

colored images are then fed into a new CNN architec-4

ture to detect COVID-19. While recent state-of-the-art5

studies have revealed that COVID-19 can lead to car-6

diovascular complications directly or indirectly, ECG7

data is used for the first time to automatically diagnose8

COVID-19, to the best of our knowledge.9

Various experiments are conducted to evaluate the10

robustness of the proposed approach and compare its11

performance. The results demonstrated that the pro-12

posed method achieved promising performance in the13

diagnosis of COVID-19 using ECG data. Furthermore,14

the proposed deep network significantly improved clas-15

sification accuracy compared to well-known architec-16

tures and the proposed hexaxial mapping procedure17

not only decreased computational cost, but it also18

significantly increased classification performance. Fur-19

thermore, the capability of the proposed approach20

to differentiate COVID-19 ECGs can be the proof21

of the presence of COVID-19-induced cardiovascular22

changes.23

In the light of all findings, we can say that; the pro-24

posed approach can potentially be used as a faster,25

more harmless, more accessible, cost-effective, and26

more sensitive automatically diagnostic method to de-27

tect COVID-19 than the current methods. In future28

works, the presented ECG-based COVID-19 diagno-29

sis method can be simply adapted to real-time cloud-30

based systems and can be easily performed on mo-31

bile device-based decision-making applications. Thus,32

it may help healthcare professionals by providing a fast33

and effective solution to diagnose COVID-19, it may34

reduce both the contamination and the hospital bur-35

den by preventing unnecessary hospital visits.36
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Heliövaara, M., Knekt, P., Aro, A.L., Huikuri, H.V.: Experiences in23

digitizing and digitally measuring a paper-based ecg archive. Journal of24

Electrocardiology 51(1), 74–81 (2018).25

doi:10.1016/j.jelectrocard.2017.09.00726

55. Baydoun, M., Safatly, L., Abou Hassan, O.K., Ghaziri, H., El Hajj, A.,27

Isma’eel, H.: High precision digitization of paper-based ecg records: A28

step toward machine learning. IEEE Journal of Translational29

Engineering in Health and Medicine 7, 1–8 (2019).30

doi:10.1109/JTEHM.2019.294978431

56. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for32

image classification. IEEE Transactions on Systems, Man, and33

Cybernetics SMC-3(6), 610–621 (1973).34

doi:10.1109/TSMC.1973.430931435

57. Mustafa, M., Mohd Nasir Taib, Murat, Z.H., Noor Hayatee Abdul36

Hamid: Glcm texture classification for eeg spectrogram image. In: 201037

IEEE EMBS Conference on Biomedical Engineering and Sciences38

(IECBES), pp. 373–376 (2010). doi:10.1109/IECBES.2010.574226439

58. Sun, W., Zeng, N., He, Y.: Morphological arrhythmia automated40

diagnosis method using gray-level co-occurrence matrix enhanced41

convolutional neural network. IEEE Access 7, 67123–67129 (2019).42

doi:10.1109/ACCESS.2019.291836143

59. Armi, L., Fekri-Ershad, S.: Texture image analysis and texture44

classification methods-a review. arXiv preprint arXiv:1904.0655445

(2019). https://arxiv.org/abs/1904.0655446

60. Mohanaiah, P., Sathyanarayana, P., GuruKumar, L.: Image texture47

feature extraction using glcm approach. International journal of48

scientific and research publications 3(5), 1 (2013).49

doi:http://www.ijsrp.org/research-paper-0513/ijsrp-p1750.pdf50

61. Gadkari, D.: Image quality analysis using glcm. Master’s thesis,51

University of Central Florida, The address of the publisher (December 52

2004). http://purl.fcla.edu/fcla/etd/CFE0000273 53

62. Ozdemir, M.A., Degirmenci, M., Izci, E., Akan, A.: Eeg-based emotion 54

recognition with deep convolutional neural networks. Biomedical 55

Engineering / Biomedizinische Technik 66(1), 43–57 (2021). 56

doi:10.1515/bmt-2019-0306 57

63. Lee, T.Y., Smieee, M.S.: Optimization of frontal-plane 58

electrocardiographic lead data in the 30° hexaxial system. Journal of 59

Electrocardiology 6(1), 31–43 (1973). 60

doi:10.1016/S0022-0736(73)80022-6 61

64. Dower, G.E., Yakush, A., Nazzal, S.B., Jutzy, R.V., Ruiz, C.E.: 62

Deriving the 12-lead electrocardiogram from four (easi) electrodes. 63

Journal of Electrocardiology 21, 182–187 (1988). 64

doi:10.1016/0022-0736(88)90090-8 65

65. Park, M.K., Guntheroth, W.G.: How to Read Pediatric ECGs vol. 847. 66

Elsevier Health Sciences, Philadelphia (2006). 67

https://www.elsevier.com/books/how-to-read-pediatric-ecgs/ 68

park/978-0-323-03570-5" 69

66. Boissonnat, J.-D., Cazals, F.: Smooth surface reconstruction via 70

natural neighbour interpolation of distance functions. Computational 71

Geometry 22(1), 185–203 (2002). 72

doi:10.1016/S0925-7721(01)00048-7 73

67. Song, Y., Zheng, S., Li, L., Zhang, X., Zhang, X., Huang, Z., Chen, J., 74

Wang, R., Zhao, H., Zha, Y., Shen, J., Chong, Y., Yang, Y.: Deep 75

learning enables accurate diagnosis of novel coronavirus (covid-19) 76

with ct images. IEEE/ACM Transactions on Computational Biology 77

and Bioinformatics, 1–1 (2021). doi:10.1109/TCBB.2021.3065361 78
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Figure 1 Representation of the proposed framework, includes five-step: (i) ECG image dataset acquisition, (ii) segmentation,

pre-image-processing, and image enhancement, (iii) application of GLCM and extractions of some of their properties (includes

statistical analysis), (iv) ECG hexaxial feature mapping process, and (v) designing, training, validating, and testing the proposed

deep network (*GLCM: Gray Level Co-occurrence Matrix, paper-based ECG report number: 211 with the label: COVID-19).

Figure 2 Examples of background removal processes: (a) segmented paper-based ECG image, (b) paper-based ECG image without

background lines, (c) binarized paper-based ECG image, and (d) eventual paper-based ECG image.

Figure 3 One-way ANOVA results within a box plot for each related GLCM features. All normalized GLCM features obtained

from binary ECG images were verified to be statistically significant relative to each other (p < 0.0001 for all binary groups). Each

group has a total of 4500 samples: 18-lead x 250 paper-based ECG reports (C: COVID-19, N: No-Findings).

Figure 4 ECG electrode location representations: (a) 3D representation of hexaxial and horizontal reference systems of 12-lead

ECG acquisition, (b) 2D mapping of 3D hexaxial (limb leads) and horizontal (precordial leads) reference systems on the coronal

plane; and an example of hexaxial feature mapping by using GLCM energies for (c) No-Finding class (Report Number: 182) and (d)

COVID-19 class (Report Number: 16).

Figure 5 Graphical representation of proposed architecture (Conv: Convolution, FC: Fully Connected, ReLU:Rectified Linear Unit).

Figure 6 Graphical representation of modified stratified k-fold cross-validation. The number of folds (k) was chosen as 5 in this

study. In each fold, the training size, validation size, and test size are 400, 100, and 100, respectively.

Figure 7 One-way ANOVA results for Negative and Positive comparison within a box plot using COVID-19 GLCM energies and

GLCM energies of other ECG groups. Normalized COVID-19 GLCM energies obtained from binary ECG images were verified to

statistically significant to each ECG group (p < 0.0001 for all cases). Each group has a total of 1494 samples: 18-lead x 83

paper-based ECG reports.

Figure 8 Graphs of training ACC (a, b, c), training Loss (d, e, f), validation ACC (g, h, i), and validation Loss (j, k, l) per Epoch

during the training and validation phases. The left column indicates trained with Alexnet for COVID-19 vs No-Findings

classification, the mid column indicates trained with modified Alexnet for COVID-19 vs No-Findings classification, and the right

column indicates trained with modified Alexnet for Negative vs Positive classification.

Figure 9 The ROC curves of COVID-19 vs No-Findings classification using AlexNet during (a) validation phase and (b) testing

phase, using proposed architecture during (c) validation phase and (d) testing phase, and the ROC curves of Positive vs Negative

classification using proposed architecture during (e) validation phase and (f) testing phase.

Figure 10 The best confusion matrices obtained during the testing phases: (a) fold-5 in Experiment 1 (COVID-19 vs No-Findings),

(b) fold-4 in Experiment 2 (COVID-19 vs No-Findings), (c) fold-1 in Experiment 3 (COVID-19 vs No-Findings), and (d) fold-5 in

Experiment 4 (Positive vs Negative).
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Table 1 Performance evaluation results of trained models.

Performance Evaluation Metrics

Folds ACC PRE REC SPE F1-S AUC Loss MSE TT

Experiment 1

COVID-19 vs No-Findings

via AlexNet

Fold-1 91.00 88.68 94.00 88.00 91.26 97.92 0.283 0.090 103.91

Fold-2 95.00 92.45 98.00 92.00 95.15 96.44 0.680 0.050 101.50

Fold-3 93.00 89.09 98.00 88.00 93.33 97.16 0.451 0.070 101.56

Fold-4 94.00 94.00 94.00 94.00 94.00 97.30 0.533 0.060 101.47

Fold-5 95.00 94.12 96.00 94.00 95.05 98.60 0.317 0.050 101.44

Average 93.60 91.67 96.00 91.20 93.76 97.48 0.453 0.064 101.98

Experiment 2

COVID-19 vs No-Findings

via Proposed Architecture

Fold-1 94.00 90.74 98.00 90.00 94.23 97.36 0.721 0.060 105.10

Fold-2 96.00 92.59 100.0 92.00 96.15 99.60 0.203 0.040 103.41

Fold-3 97.00 96.08 98.00 96.00 97.03 99.84 0.151 0.030 102.83

Fold-4 98.00 98.00 98.00 98.00 98.00 99.88 0.086 0.020 102.86

Fold-5 96.00 94.23 98.00 94.00 96.08 99.08 0.300 0.040 101.87

Average 96.20 94.33 98.40 94.00 96.30 99.15 0.292 0.038 103.21

Experiment 3

COVID-19 vs No-Findings

using only 2D ECG Spectral

Images

Fold-1 84.83 82.62 88.22 81.44 85.30 93.56 0.348 0.152 532.43

Fold-2 81.50 78.46 85.68 77.50 81.91 91.65 0.650 0.177 526.35

Fold-3 81.85 79.08 84.82 77.77 81.85 91.98 0.592 0.173 525.54

Fold-4 80.17 80.12 82.26 77.89 81.18 87.16 0.785 0.237 528.07

Fold-5 77.06 76.80 79.53 74.43 78.14 84.75 0.845 0.362 529.78

Average 81.08 79.42 84.10 77.81 81.68 89.82 0.644 0.220 528.43

Experiment 4

Negative vs Positive

via Proposed Architecture

Fold-1 92.00 88.89 96.00 88.00 92.31 94.08 0.831 0.080 106.95

Fold-2 95.00 92.45 98.00 92.00 95.15 98.04 0.297 0.050 103.28

Fold-3 91.00 88.68 94.00 88.00 91.26 95.00 0.520 0.090 103.43

Fold-4 94.00 90.74 98.00 90.00 94.23 94.06 0.663 0.060 103.71

Fold-5 93.00 92.16 94.00 92.00 93.07 93.70 0.827 0.070 102.23

Average 93.00 90.58 96.00 90.00 93.20 94.98 0.628 0.070 103.92

* Loss: Cross-Entropy Loss, TT: Training Time (sec), and all ACC, PRE, REC, SPE, F1-S, and ROC-AUC values are given as %.



Figures

Figure 1

Representation of the proposed framework, includes  ve-step: (i) ECG image dataset acquisition, (ii)
segmentation, pre-image-processing, and image enhancement, (iii) application of GLCM and extractions
of some of their properties (includes statistical analysis), (iv) ECG hexaxial feature mapping process, and
(v) designing, training, validating, and testing the proposed deep network (*GLCM: Gray Level Co-
occurrence Matrix, paper-based ECG report number: 211 with the label: COVID-19).



Figure 2

Examples of background removal processes: (a) segmented paper-based ECG image, (b) paper-based
ECG image without background lines, (c) binarized paper-based ECG image, and (d) eventual paper-based
ECG image.



Figure 3

One-way ANOVA results within a box plot for each related GLCM features. All normalized GLCM features
obtained from binary ECG images were veri ed to be statistically signi cant relative to each other (p <
0:0001 for all binary groups). Each group has a total of 4500 samples: 18-lead x 250 paper-based ECG
reports (C: COVID-19, N: No-Findings).



Figure 4

ECG electrode location representations: (a) 3D representation of hexaxial and horizontal reference
systems of 12-lead ECG acquisition, (b) 2D mapping of 3D hexaxial (limb leads) and horizontal
(precordial leads) reference systems on the coronal plane; and an example of hexaxial feature mapping
by using GLCM energies for (c) No-Finding class (Report Number: 182) and (d) COVID-19 class (Report
Number: 16).



Figure 5

Graphical representation of proposed architecture (Conv: Convolution, FC: Fully Connected, ReLU:Recti ed
Linear Unit).

Figure 6



Graphical representation of modi ed strati ed k-fold cross-validation. The number of folds (k) was chosen
as 5 in this study. In each fold, the training size, validation size, and test size are 400, 100, and 100,
respectively.

Figure 7

One-way ANOVA results for Negative and Positive comparison within a box plot using COVID-19 GLCM
energies and GLCM energies of other ECG groups. Normalized COVID-19 GLCM energies obtained from
binary ECG images were veri ed to statistically signi cant to each ECG group (p < 0:0001 for all cases).
Each group has a total of 1494 samples: 18-lead x 83 paper-based ECG reports.



Figure 8

Graphs of training ACC (a, b, c), training Loss (d, e, f), validation ACC (g, h, i), and validation Loss (j, k, l)
per Epoch during the training and validation phases. The left column indicates trained with Alexnet for
COVID-19 vs No-Findings classi cation, the mid column indicates trained with modi ed Alexnet for COVID-
19 vs No-Findings classi cation, and the right column indicates trained with modi ed Alexnet for Negative
vs Positive classi cation.



Figure 9

The ROC curves of COVID-19 vs No-Findings classi cation using AlexNet during (a) validation phase and
(b) testing phase, using proposed architecture during (c) validation phase and (d) testing phase, and the
ROC curves of Positive vs Negative classi cation using proposed architecture during (e) validation phase
and (f) testing phase.



Figure 10

The best confusion matrices obtained during the testing phases: (a) fold-5 in Experiment 1 (COVID-19 vs
No-Findings), (b) fold-4 in Experiment 2 (COVID-19 vs No-Findings), (c) fold-1 in Experiment 3 (COVID-19
vs No-Findings), and (d) fold-5 in Experiment 4 (Positive vs Negative).
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