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INTRODUCTION

Our perception of cancer has changed dramatically 

during the past 3 decades. For instance, it has been 

appreciated that tumors are not a purely clonal disorder, 

although in some cases they do evolve from a single 

(pre-)malignant cell [1-3]. It is now clear that established 

neoplasms do not consist only of transformed cells, but 

contain an abundant and heterogeneous non-transformed 

component, including stromal, endothelial and immune 

cells [4-6]. We no longer consider the metabolism of 

cancer cells as completely distinct from that of their 

normal counterparts [7-9]. We have shown that the survival 

of transformed cells can critically depend on adaptive 

responses that per se are non-tumorigenic, establishing 

the concept of non-oncogene addiction [10, 11]. We 

discovered mechanisms other than intrinsic apoptosis 

that may be harnessed for therapeutic applications, such 

as several forms of regulated necrosis [12-14]. Finally, 

we obtained evidence indicating that the host immune 

system can recognize (and sometimes react against) (pre-)

malignant cells as they transform, proliferate, evolve and 

respond to therapy, founding the theoretical grounds of 

anticancer immunosurveillance [15-17]. These conceptual 

shifts have profound therapeutic implications, some of 

which have already been translated into clinical realities. 

For instance, several anticancer agents that are now 

approved by the US Food and Drug Administration (FDA) 

and European Medicines Agency (EMA) for use in cancer 

patients inhibit tumor-associated angiogenesis, perhaps the 

best characterized interaction between malignant and non-

malignant components of the tumor microenvironment 

[18, 19].

Over the last decade, great efforts have been 

dedicated to the development of interventions that mediate 

antineoplastic effects by initiating a novel or boosting an 

existing immune response against neoplastic cells (Table 

1) [20-32]. This intense wave of preclinical and clinical 

investigation culminated with the approval of various 

immunotherapeutic interventions for use in humans 

(Table 2). In 2013, the extraordinary clinical success of 

immunotherapy was acknowledged by the Editors of 

Science Magazine with the designation of “Breakthrough 

of the Year” [33]. Nonetheless, we have just begun to 

unravel the therapeutic possibilities offered by anticancer 

immunotherapy. Clinical studies are being initiated at an 

ever accelerating pace to test the safety and efficacy of 
various immunotherapeutic regimens in cancer patients, 

either as standalone interventions or combined with 

other antineoplastic agents [34]. The hopes generated by 

this approach are immense, and several other forms of 

immunotherapy are expected to obtain regulatory approval 

within the next few years (Figure 1). 

Anticancer immunotherapies are generally classified 
as “passive” or “active” based on their ability to (re-)

activate the host immune system against malignant cells 

[35]. From this standpoint, tumor-targeting monoclonal 

antibodies (mAbs) and adoptively transferred T cells 

(among other approaches) are considered passive forms 

of immunotherapy, as they are endowed with intrinsic 

antineoplastic activity [23, 24, 36, 37]. Conversely, 

anticancer vaccines and checkpoint inhibitors exert 

anticancer effects only upon the engagement of the host 

immune system, constituting clear examples of active 

immunotherapy [22, 27, 28, 32, 38]. An alternative 

classification of immunotherapeutic anticancer regimens 
is based on antigen-specificity. Thus, while tumor-
targeting mAbs are widely considered antigen-specific 

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided the original author and source are credited. 

ABSTRACT

During the past decades, anticancer immunotherapy has evolved from a promising 
therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are 
now approved by the US Food and Drug Administration and the European Medicines 
Agency for use in cancer patients, and many others are being investigated as standalone 
therapeutic interventions or combined with conventional treatments in clinical 
studies. Immunotherapies may be subdivided into “passive” and “active” based on 
their ability to engage the host immune system against cancer. Since the anticancer 
activity of most passive immunotherapeutics (including tumor-targeting monoclonal 
antibodies) also relies on the host immune system, this classification does not properly 
reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer 
immunotherapeutics can be classified according to their antigen specificity. While some 
immunotherapies specifically target one (or a few) defined tumor-associated antigen(s), 
others operate in a relatively non-specific manner and boost natural or therapy-elicited 
anticancer immune responses of unknown and often broad specificity. Here, we propose 
a critical, integrated classification of anticancer immunotherapies and discuss the clinical 
relevance of these approaches.
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interventions, immunostimulatory cytokines or checkpoint 

blockers activate anticancer immune responses of 

unknown (and generally broad) specificity [27, 39-42]. 
Herein, we critically revise these classifications while 
discussing the clinical relevance of various forms of 

anticancer immunotherapy.

Passive immunotherapy

Tumor-targeting mAbs

Tumor-targeting mAbs are the best-characterized 

form of anticancer immunotherapy, and perhaps the most 

widely employed in the clinic [43-46]. The expression 

“tumor-targeting” refers to mAbs that (1) specifically 
alter the signaling functions of receptors expressed on 

the surface of malignant cells [47-49]; (2) bind to, and 

hence neutralize, trophic signals produced by malignant 

cells or by stromal components of neoplastic lesions [50, 

51]; (3) selectively recognize cancer cells based on the 

expression of a “tumor-associated antigen” (TAA), i.e., an 

antigen specifically (or at least predominantly) expressed 
by transformed cells but not (or at least less so) by their 

non-malignant counterparts [30, 52]. Tumor-targeting 

mAbs exist in at least 5 functionally distinct variants. 

First, naked mAbs that inhibit signaling pathways required 

for the survival or progression of neoplastic cells, but not 

of their non-malignant counterparts, such as the epidermal 

growth factor receptor (EGFR)-specific mAb cetuximab, 
which is approved by the US FDA for the treatment of 

head and neck cancer (HNC) and colorectal carcinoma 

(CRC) [47, 48, 53]. Second, naked mAbs that activate 

potentially lethal receptors expressed on the surface 

of malignant cells, but not of their non-transformed 

counterparts, such as tigatuzumab (CS-1008), a mAb 

specific for tumor necrosis factor receptor superfamily, 
member 10B, (TNFRSF10B, best known as TRAILR2 

or DR5) that is currently under clinical development [49, 

54]. Third, immune conjugates, i.e., TAA-specific mAbs 
coupled to toxins or radionuclides, such as gemtuzumab 

ozogamicin, an anti-CD33 calicheamicin conjugate 

currently approved for use in acute myeloid leukemia 

patients [55, 56]. Fourth, naked TAA-specific mAbs 
that opsonize cancer cells and hence activate antibody-

dependent cell-mediated cytotoxicity (ADCC) [44, 57-

59], antibody-dependent cellular phagocytosis [60], 

and complement-dependent cytotoxicity [61], such as 

the CD20-specific mAb rituximab, which is currently 
approved for the treatment of chronic lymphocytic 

leukemia (CLL) and non-Hodgkin lymphoma [62, 63]. 

Fifth, so-called “bispecific T-cell engagers” (BiTEs), 
i.e., chimeric proteins consisting of two single-chain 

variable fragments from distinct mAbs, one targeting a 

TAA and one specific for a T-cell surface antigen (e.g., 

blinatumomab, a CD19- and CD3 BiTE recently approved 

for the therapy of Philadelphia chromosome-negative 

precursor B-cell acute lymphoblastic leukemia) [64-69].

The therapeutic activity of opsonizing mAbs 

and BiTEs clearly relies on the host immune system, 

implying that these molecules should be considered 

active immunotherapeutics. Conversely, tumor-targeting 

mAbs of the first two classes are endowed with intrinsic 
antineoplastic activity, and have been considered for a 

long time as passive forms of immunotherapy. However, 

growing evidence indicates that the actual antineoplastic 

potential of these molecules does not simply reflect 
their direct tumor-inhibitory activity, but also involves 

(at least to some degree) the activation of an anticancer 

immune response. For instance, cetuximab does not only 

inhibit EGFR signaling [53], but also promotes ADCC 

[70], and mediates immunostimulatory effects [71, 72]. 

Similarly, bevacizumab, a vascular endothelial growth 

factor A (VEGFA)-neutralizing mAb approved for the 

treatment of glioblastoma multiforme, CRC, as well as 

cervical carcinoma, renal cell carcinoma (RCC) and lung 

carcinoma, not only exerts anti-angiogenic effects [50, 73], 

but also boosts tumor infiltration by B and T lymphocytes, 
[74, 75], while inhibiting CD4+CD25+FOXP3+ regulatory 

T cells (Tregs) [76]. Moreover, polymorphisms in the 

genes coding for the receptors mainly responsible for 

ADCC, i.e., Fc fragment of IgG, low affinity IIa, receptor 
(FCGR2A, also known as CD32) and FCGR3A (also 

known as CD16a), have been shown to influence the 
response of cancer patients to most tumor-targeting 

mAbs [77]. Thus, it is possible (although not formally 

demonstrated) that tumor-targeting mAbs operate as active 

immunotherapeutics. Irrespective of this possibility, 18 

distinct tumor-targeting mAbs are currently approved by 

the US FDA for use in cancer patients (source http://www.

Table 1: Currently available anticancer 

immunotherapies.

Paradigm Licensed*

Tumor-targeting mAbs YES

Adoptive cell transfer NO

Oncolytic viruses YES

DC-based interventions YES

DNA-based vaccines NO

Peptide-based vaccines YES

Immunostimulatory cytokines YES

Immunomodulatory mAbs YES

Inhibitors of immunosuppressive 
metabolism

NO

PRR agonists YES

ICD inducers YES

Others YES

Abbreviations. ICD, immunogenic cell death; DC, 

dendritic cell; mAb, monoclonal antibody; PRR, pattern 

recognition receptor. *in one of its forms for use in cancer 

patients, by the US Food and Drug Administration or 

equivalent regulatory agency worldwide.
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fda.gov) [45, 46], demonstrating the extraordinary success 

of this immunotherapeutic paradigm.

Adoptive cell transfer

The term “adoptive cell transfer” (ACT) refers to a 

particular variant of cell-based anticancer immunotherapy 

that generally involves: (1) the collection of circulating 

or tumor-infiltrating lymphocytes; (2) their selection/
modification/expansion/activation ex vivo; and (3) 

their (re-)administration to patients, most often after 

lymphodepleting pre-conditioning and in combination 

with immunostimulatory agents [23, 24, 78-80]. 

Other anticancer (immune)therapies involving the (re)

infusion of living cells, such as hematopoietic stem cell 

transplantation (HSCT), conceptually differ from ACT. 

ACT involves the (re-)introduction of a cell population 

enriched in potentially tumor-reactive immune effectors 

[23, 24, 81]. HSCT is employed as a means to reconstitute 

a healthy, allogeneic (and hence potentially tumor-

reactive) immune system in patients with hematological 

malignancies previously subjected to myelo- and 

lymphoablating treatments (which aim at eradicating 

the majority of neoplastic cells) [82]. Dendritic cell 

(DC)-based interventions should also be conceptually 

differentiated from ACT for two reasons. First, (re-)

infused DCs are not endowed with intrinsic anticancer 

activity, but act as anticancer vaccines to elicit a tumor-

targeting immune response [83, 84]. Second, DCs are 

not administered in the context of lympho/myeloablating 

chemo(radio)therapy [85-87]. 

Several strategies have been devised to improve the 

therapeutic potential of ACT [79, 80, 88]. For instance, 

genetic engineering has been employed to endow 

peripheral blood lymphocytes (PBLs) with features 

such as a unique antigen specificity [89], an increased 
proliferative potential and persistence in vivo [90-93], 

Figure 1: Anticancer immunotherapy. Several anticancer immunotherapeutics have been developed during the last three decades, 

including tumor-targeting and immunomodulatory monoclonal antibodies (mAbs); dendritic cell (DC)-, peptide- and DNA-based anticancer 

vaccines; oncolytic viruses; pattern recognition receptor (PRR) agonists; immunostimulatory cytokines; immunogenic cell death inducers; 

inhibitors of immunosuppressive metabolism; and adoptive cell transfer. 1MT, 1-methyltryptophan; APC, antigen-presenting cell; IDO, 

indoleamine 2,3-dioxigenase; IFN, interferon; IL, interleukin; IMiD, immunomodulatory drug; NLR, NOD-like receptor; TLR, Toll-like 

receptor.
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Table 2: Anticancer immunotherapeutics currently approved by regulatory agencies worldwide.

Paradigm Agent Indication(s) Year* Proposed mechanism of action

Dendritic cell-based 
immunotherapies

Sipuleucel-T Prostate carcinoma 2010
Priming of a PAP-specific 
immune response

Immunogenic cell 
death inducers

Bleomycin
Multiple hematological 
and solid tumors

<1995 DNA-damaging agent

Bortezomib
Mantle cell lymphoma 
Multiple myeloma

2003 Proteasomal inhibitor

Cyclophosphamide
Multiple hematological 
and solid tumors

<1995 Alkylating agent

Doxorubicin
Multiple hematological 
and solid tumors

<1995 DNA-intercalating agent

Epirubicin Breast carcinoma 1999 DNA-intercalating agent

Mitoxantrone
Acute myeloid leukemia
Prostate carcinoma

<1995 DNA-intercalating agent

Oxaliplatin Colorectal carcinoma 2002 DNA-damaging agent

Photodynamic 
therapy

Multiple hematological 
and solid tumors

1996
Induction of oxidative stress with 
damage to (intra)cellular membranes

Radiation therapy
Multiple hematological 
and solid tumors

<1995
DNA-damaging agent and 
oxidative stress inducer

Immunostimulatory 
cytokines

IL-2
Melanoma 
Renal cell carcinoma

<1995 Non-specific immunostimulation

IFN-α2a
Chronic myeloid leukemia 
Hairy cell leukemia 
Melanoma

1999 Non-specific immunostimulation

IFN-α2b Multiple hematological 
and solid tumors

<1995 Non-specific immunostimulation

Immunomodulatory 
mAbs

Ipilimumab Melanoma 2011
Blockage of CTLA4-dependent 
immunological checkpoints

Nivolumab Melanoma 2014
Blockage of PDCD1-dependent 
immunological checkpoints

Pembrolizumab Melanoma 2014
Blockage of PDCD1-dependent 
immunological checkpoints

Oncolytic viruses Oncorine H101 Head and neck cancer 2005 Selective lysis of malignant cells

Peptide-based 
vaccines

Vitespen Renal cell carcinoma 2008
Activation of a tumor-
specific immune response

PRR agonists

Bacillus Calmette-
Guérin

Non-invasive bladder 
transitional cell carcinoma

<1995 TLR2/TLR4 agonist

Imiquimod
Actinic keratosis 
Condylomata acuminata 
Superficial basal cell carcinoma

1997 TLR7 agonist

Mifamurtide Osteosarcoma 2009 NOD2 agonist

Monophosphoryl 
lipid A

Prevention of HPV-associated 
cervical carcinoma

2009 TLR2/TLR4 agonist

Picibanil

Gastric carcinoma
Head and neck cancer
Lung carcinoma
Thyroid carcinoma

<1995 TLR2/TLR4 agonist
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Tumor-targeting 
mAbs

Alemtuzumab Chronic lymphocytic leukemia 2001
Selective recognition/opsonization 
of CD52+ neoplastic cells

Bevacizumab

Colorectal carcinoma
Glioblastoma multiforme 
Cervical carcinoma
Lung carcinoma
Renal cell carcinoma

2004 VEGFA neutralization

Brentuximab 
vedotin

Anaplastic large cell lymphoma
Hodgkin's lymphoma

2011
Selective delivery of MMAE 
to CD30+ neoplastic cells

Blinatumumab Acute lymphoblastic leukemia 2014 CD3- and CD19-specific BiTE

Catumaxomab
Malignant ascites in patients
with EPCAM+ cancer

2009 CD3- and EPCAM-specific BiTE

Cetuximab
Head and neck cancer
Colorectal carcinoma

2004 Inhibition of EGFR signaling

Denosumab
Breast carcinoma
Prostate carcinoma
Bone giant cell tumors

2011 Inhibition of RANKL signaling

Gemtuzumab 
ozogamicin

Acute myeloid leukemia 2000
Selective delivery of calicheamicin 
to CD33+ neoplastic cells

Ibritumomab 
tiuxetan

Non-Hodgkin lymphoma 2002
Selective delivery of 90Y or 111In 
to CD20+ neoplastic cells

Panitumumab Colorectal carcinoma 2006 Inhibition of EGFR signaling

Pertuzumab Breast carcinoma 2012 Inhibition of HER2 signaling

Obinutuzumab Chronic lymphocytic leukemia 2013
Selective recognition/opsonization 
of CD20+ neoplastic cells

Ofatumumab Chronic lymphocytic leukemia 2009
Selective recognition/opsonization 
of CD20+ neoplastic cells

Ramucirumab
Gastric or gastroesophageal 
junction adenocarcinoma

2014 Inhibition of KDR signaling

Rituximab
Chronic lymphocytic leukemia
Non-Hodgkin lymphoma

1997
Selective recognition/opsonization 
of CD20+ neoplastic cells

Siltuximab Multicentric Castleman’s disease 2014 IL-6 neutralization

Tositumomab Non-Hodgkin lymphoma 2003
Selective recognition/opsonization 
of, or selective delivery of 90Y or 
111In to, CD20+ neoplastic cells

Trastuzumab
Breast carcinoma
Gastric or gastroesophageal 
junction adenocarcinoma

1998
Selective recognition/opsonization 
of, or selective delivery of mertansine 
to, HER2+ cancer cells

Others

Lenalidomide
Mantle cell lymphoma
Myelodysplastic syndrome 
Multiple myeloma

2005
IKZF degradation and 
immunomodulation

Pomalidomide Multiple myeloma 2013
IKZF degradation and 
immunomodulation

Thalidomide Multiple myeloma 2006
IKZF degradation and 
immunomodulation

Trabectedin
Soft tissue sarcoma
Ovarian carcinoma

2007
Reprogramming of tumor-
associated macrophages

Abbreviations: ACPP, acid phosphatase, prostate; BiTE, Bispecific T-cell engager; CTLA4, cytotoxic T lymphocyte-associated 
protein 4; EGFR, epidermal growth factor receptor; EPCAM, epithelial cell adhesion molecule; HPV, human papillomavirus; 
IL, interleukin; IKZF, IKAROS family zinc finger; KDR, kinase insert domain receptor; mAb, monoclonal antibody; MMAE, 
monomethyl auristatin E; NOD2, nucleotide-binding oligomerization domain containing 2; PDCD1, programmed cell death 1; 
PRR, pattern recognition receptor; RANKL, Receptor activator of NF-κB ligand; TLR, Toll-like receptor; VEGFA, vascular 
endothelial growth factor A. *year of first approval.
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an improved secretory profile [91], an elevated tumor-
infiltrating capacity [94, 95], and superior cytotoxicity 
[96]. The specificity of PBLs can be altered prior to 
(re-)infusion by genetically modifying them to express: 

(1) a TAA-specific T-cell receptor (TCR) [89, 97-99], 
or (2) a so-called “chimeric antigen receptor” (CAR), 

i.e., a transmembrane protein comprising the TAA-

binding domain of an immunoglobulin linked to one or 

more immunostimulatory domains [100-106]. The latter 

approach is advantageous in that it renders T cells capable 

of recognizing (and hence potentially killing) TAA-

expressing cells in an MHC-independent fashion. Several 

clinical trials have already demonstrated the therapeutic 

potential of CAR-expressing T cells, in particular (but not 

only) for patients affected by hematological malignancies 

[102, 107-111]. T cells expressing TAA-specific TCRs 
have also been shown to provide objective benefit to 
cancer patients [89, 97-99]. Conversely, in spite of 

promising preclinical findings [112-117], the adoptive 
transfer of purified natural killer (NK) cells to cancer 
patients has been associated with limited therapeutic 

activity [118-120]. To the best of our knowledge, the 

adoptive transfer of purified B lymphocytes has not yet 
been investigated in the clinic [121], possibly because B 

cells (or at least some subsets thereof) can exert potent 

immunosuppressive effects [122-125]. Of note, no ACT 

protocol is currently approved by the US FDA for use in 

cancer patients (source http://www.fda.gov).

Since (re-)infused T cells are endowed with intrinsic 

antineoplastic activity, ACT is generally considered as a 

passive form of immunotherapy. However, the survival, 

expansion, migration and cytotoxic activity of adoptively 

transferred T cells rely on several cytokines, some of 

which are supplied by the host immune system. Current 

ACT protocols involve indeed the administration of 

exogenous interleukins (ILs), including IL-2, IL-15 or IL-

21 [126-130], but these stimulate a cytokine cascade in the 

host that sustains the survival and activity of adoptively 

transferred cells. Thus, ACT may not represent a bona fide 
paradigm of passive immunotherapy.

Oncolytic viruses

The term “oncolytic viruses” refers to non-

pathogenic viral strains that specifically infect cancer cells, 
triggering their demise [131-133]. Oncolytic viruses must 

be conceptually differentiated from so-called “oncotropic 

viruses”, i.e., viruses that exhibit a preferential tropism for 

malignant cells but no (or very limited) cytotoxic activity 

[134, 135]. The antineoplastic potential of oncolytic 

viruses can be innate and simply originate from the so-

called cytopathic effect, i.e., the lethal overload of cellular 

metabolism resulting from a productive viral infection 

[136, 137]. As an alternative, these viruses can mediate an 

oncolytic activity because of (endogenous or exogenous) 

gene products that are potentially lethal for the host cell, 

irrespective of their capacity to massively replicate and 

cause a cytopathic effect [131, 132]. Of note, genetic 

engineering has been successfully employed to endow 

oncolytic virus with various advantageous traits, including 

sequences coding for (1) enzymes that convert an 

innocuous pro-drug into a cytotoxic agent [138-143]; (2) 

proteins that (at least theoretically) trigger lethal signaling 

cascades in cancer cells only [144-146]; or (3) short-

hairpin RNAs that target factors that are strictly required 

for the survival of transformed, but not normal cells [147, 

148]. Of note, no oncolytic virus has been approved by 

the US FDA for use in cancer patients (source http://

www.fda.gov). Conversely, a recombinant adenovirus 

(H101, commercialized under the name of Oncorine®) 

has been approved by the regulatory authorities of the 

People’s Republic of China for the treatment of HNC (in 

combination with chemotherapy) as early as in November 

2005 [149, 150].

As oncolytic viruses are endowed with intrinsic 

anticancer activity, they are generally viewed as passive 

immunotherapeutics. Moreover, several effectors of 

innate and adaptive immunity limit the efficacy of 
oncolytic therapy because they can neutralize viral 

particles before they reach neoplastic lesions [131, 

132, 151]. This is particularly true for the mononuclear 

phagocytic system of the liver and spleen, which is able 

to sequester large amounts of oncolytic viruses upon 

injection [152, 153]; the complement system, to which 

oncolytic viruses are particularly sensitive [154, 155]; 

and neutralizing antibodies, which can exist in patients 

prior to oncolytic virotherapy owing to their exposure to 

naturally occurring variants of the viral strains commonly 

employed for this purpose [156, 157]. This being said, 

accumulating preclinical and clinical evidence indicates 

that the therapeutic activity of oncolytic viruses stems, for 

the most part, from their ability to elicit tumor-targeting 

immune responses as they promote the release of TAAs in 

an immunostimulatory context. In support of this notion, 

oncolytic viruses engineered to drive the expression of 

co-stimulatory receptors [158-160] or immunostimulatory 

cytokines/chemokines [161-165] reportedly mediate 

superior antineoplastic effects as compared to their 

unmodified counterparts [131, 132]. Thus, conventional 
oncolytic viruses also appear to be active, rather than 

passive, immunotherapeutics.

Active immunotherapy

DC-based immunotherapies

Throughout the past 2 decades, remarkable efforts 

have been invested in the development of anticancer 

immunotherapeutics based on (most often autologous) DCs 

[28, 166, 167]. This intense wave of preclinical and clinical 

investigation reflects the critical position occupied by DCs 
at the interface between innate and adaptive immunity, 

and the ability of some DC subsets to prime robust, 
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therapeutically relevant anticancer immune responses 

[168]. Several forms of DC-based immunotherapy have 

been developed, most of which involve the isolation of 

patient- or donor-derived circulating monocytes and their 

amplification/differentiation ex vivo, invariably in the 

presence of agents that promote DC maturation, such 

as granulocyte macrophage colony-stimulating factor 

(GM-CSF) [28]. This is particularly important because 

immature DCs exert immunosuppressive, rather than 

immunostimulatory, functions [169-171]. Most often, 

autologous DCs are re-infused into cancer patients 

upon exposure to a source of TAAs, including (1) TAA-

derived peptides [172-175]; (2) mRNAs coding for one 

or more specific TAAs [176]; (3) expression vectors 
coding for one or more specific TAAs [177-180]; (4) bulk 
cancer cell lysates (of either autologous or heterologous 

derivation) [181-186]; (5) or bulk cancer cell-derived 

mRNA [187-191]. As an alternative, DCs are allowed to 

fuse ex vivo with inactivated cancer cells, generating so-

called dendritomes [192-197]. The rationale behind all 

these approaches is that DCs become loaded ex vivo with 

TAAs or TAA-coding molecules, hence becoming able to 

prime TAA-targeting immune responses upon reinfusion. 

Additional DC-based anticancer immunotherapies 

include the targeting of specific TAAs to DCs in vivo 

[169, 198-205], the use of DC-derived exosomes 

[206-208], and the (re-)administration of autologous 

or allogeneic DCs amplified, matured and optionally 
genetically modified ex vivo, but not loaded with TAAs 

[209-214]. In the former setting, TAAs are fused to 

mAbs, polypeptides or carbohydrates that selectively 

bind to DCs [169, 198-202, 215, 216], encapsulated 

in DC-targeting immunoliposomes [217, 218], or (3) 

encoded by DC-specific vectors [219-221]. In the latter 
scenarios, DCs or their exosomes are administered as a 

relatively non-specific immunostimulatory intervention 
[209-213]. Interestingly, one cellular product containing 

a significant proportion of (partially immature) DCs is 
currently licensed for use in cancer patients, namely 

sipuleucel-T (also known as Provenge®) (source http://

www.fda.gov). Sipuleucel-T has been approved by the 

US FDA and the EMA for the therapy of asymptomatic 

or minimally symptomatic metastatic castration-refractory 

prostate cancer as early as in 2010 [222-224]. However, 

the manufacturer of sipuleucel-T, Dendreon Co. (Seattle, 

WA, US), filed for bankruptcy in November 2014 (source 
http://dealbook.nytimes.com/2014/11/10/dendreon-maker-

of-prostate-cancer-drug-provenge-files-for-bankruptcy/?_
r=0). This reflects the disadvantageous cost-benefit ratio 
of such a cellular therapy, whose preparation requires a 

relatively elevated quantity of each patient’s peripheral 

blood mononuclear cells [25, 222, 223]. The safety and 

efficacy of many DC-based cellular preparations other 
than are sipuleucel-T are currently being investigated in 

clinical settings, with promising results [225].

Although DCs isolated from cancer patients have 

been shown to exert cytotoxic activity against malignant 

cells [226], DC-based immunotherapies mediate 

antineoplastic effects mainly because they engage the 

host immune system against malignant lesions [227, 228]. 

Thus, all forms of DC-based anticancer interventions 

constitute paradigms of active immunotherapy.

Peptide- and DNA-based anticancer vaccines

DCs and other antigen-presenting cells (APCs) 

are also targeted by peptide- and DNA-based anticancer 

vaccines [83, 84, 229-231]. In the former scenario, 

full-length recombinant TAAs or peptides thereof are 

administered to cancer patients, most often via the 

intramuscular, subcutaneous or intradermal route, together 

with one or more immunostimulatory agents commonly 

known as adjuvants (which potently promote DC 

maturation) [232-237]. The rationale behind this approach 

is that resident DCs (or other APCs) acquire the ability to 

present the TAA-derived epitopes while maturing, hence 

priming a robust TAA-specific immune response [32, 
238, 239]. The mechanisms underlying the priming of 

anticancer immune responses by peptide-based vaccines, 

and hence their efficacy, depend (at least in part) on their 
size [38]. Thus, while short peptides (8-12 amino acids) are 

conceived to directly bind to MHC molecules expressed 

on the surface of APCs, synthetic long peptides (25-30 

residues) must be taken up, processed and presented by 

APCs for eliciting an immune response [38]. Normally, the 

therapeutic activity of synthetic long peptides is superior 

to that of their short counterparts, especially when they 

include epitopes recognized by both cytotoxic and helper 

T cells or when conjugated to efficient adjuvants [38, 240, 
241]. This said, some commonly used immunostimulants 

such as the so-called incomplete Freund’s adjuvant (IFA) 

have recently been shown to limit the efficacy of peptide-
based anticancer vaccination [242], calling for the use of 

alternative immunostimulants. A peculiar type of peptide-

based vaccines is constituted by autologous tumor lysates 

complexed with immunostimulatory chaperones, most 

often members of the heat-shock protein (HSP) family 

[243]. This approach is advantageous in that it does not 

rely on a single TAA but (at least hypothetically) on all 

TAAs that bind to HSPs (including patient-specific neo-
TAAs) [243]. However, generating anticancer vaccines on 

a personalized basis is associated with considerable costs 

[243].

DNA-based anticancer vaccines rely on TAA-

coding constructs, be them naked or vectored (by viral 

particles, non-pathogenic bacteria or yeast cells) [32, 244-

246]. DNA-based vaccines either become a source of such 

TAA (as it is the case for bacterial and yeast vectors) or 

transform APCs or muscular cells to do so (as it is the 

case for naked constructs and viral vectors) [32, 244-247]. 

Theoretically, and especially in the presence of adequate 

adjuvants, this prompts resident DCs or other APCs to 

prime a TAA-targeting immune response [32, 183, 248, 
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249]. A particularly interesting approach in this context 

is represented by so-called “oncolytic vaccines”, i.e., 

oncolytic viruses genetically altered to code for a TAA 

[250-252]. Promising results have also been obtained 

with DNA-based vaccines administered per os [253-256]. 

In this setting, live-attenuated bacteria expressing a full-

length TAA are taken up by APCs in the intestinal mucosa, 

resulting in the priming of a robust, TAA-specific immune 
response in the so-called “mucosa-associated lymphoid 

tissue” [253-256].

Both peptide- and DNA-based vaccines have been 

associated with clinical activity in patients affected by 

various neoplasms [83, 84, 229-231, 257]. For instance, a 

peptide-based vaccine targeting the human papillomavirus 

type 16 (HPV-16) proteins E6 and E7 have been shown to 

promote complete, long-lasting responses in a significant 
fraction of patients with vulvar intraepithelial neoplasia 

[258]. Along similar lines, the administration of a 

multipeptide vaccine after single-dose cyclophosphamide 

(an immunogenic alkylating agent, see below) has been 

shown to prolong overall survival in a cohort of RCC 

patients [259]. No peptide- or DNA-based anticancer 

vaccine is currently approved by the US FDA and EMA 

for use in humans (sources http://www.fda.gov and 

http://www.ema.europa.eu/ema/). However, vitespen 

(Oncophage®), a heat shock protein 90kDa beta (Grp94), 

member 1 (HSP90B1)-based anticancer vaccine, has been 

approved in Russia for the treatment of RCC patients with 

intermediate risk of recurrence as early as in 2008 [257]. 

Moreover, three DNA-based anticancer vaccines have 

been licensed for veterinary use [260-263], one of which 

relies on a human TAA (i.e., tyrosinase) [263].

Similar to DC-based interventions, both peptide- and 

DNA-based anticancer vaccines mediate antineoplastic 

effects as they (re-)activate the host immune system 

against malignant cells, hence constituting active forms of 

anticancer immunotherapy.

Immunostimulatory cytokines

Taken as a family, cytokines regulate (via autocrine, 

paracrine or endocrine circuits) virtually all biological 

functions [264-267]. It is therefore not surprising that 

various attempts have been made to harness the biological 

potency of specific cytokines to elicit novel or reinvigorate 
pre-existent tumor-targeting immune responses [268-271]. 

The administration of most immunostimulatory cytokines 

to cancer patients as standalone therapeutic interventions, 

however, is generally associated with little, if any, clinical 

activity [272-275]. Thus, immunostimulatory cytokines 

are generally employed as adjuvants for other anticancer 

(immuno)therapeutics, either as recombinant molecules 

or encoded within expression vectors [276-284]. Notable 

exceptions include interferon (IFN)-α2b (also known 
as Intron A®), and IL-2 (also known as aldesleukin and 

Proleukin®), which mediate single agent therapeutic 

activity in patients affected by melanoma, a tumor type 

particularly sensitive to immunotherapy [274, 284]. IFN-

α2b is currently approved by the US FDA and EMA 
for the therapy of hairy cell leukemia (HCL), AIDS-

related Kaposi’s sarcoma, follicular lymphoma, multiple 

myeloma, melanoma, external genital/perianal warts 

(condylomata acuminata) and cervical intraepithelial 

neoplasms (both as a recombinant, unmodified protein, 
and as a pegylated variant), while IL-2 is licensed for 

the treatment of metastatic forms of melanoma and 

RCC. Moreover, IFN-α2a (also known as Roferon-A®) 

is approved for use in subjects with HCL and chronic 

phase, Philadelphia chromosome-positive chronic myeloid 

leukemia, upon minimal pretreatment (within 1 year of 

diagnosis). In Europe, IFN-α2a is also licensed for the 
treatment of melanoma. Of note, GM-CSF (also known 

as molgramostim, sargramostim, Leukomax®, Mielogen® 

or Leukine®) and granulocyte colony-stimulating 

factor (G-CSF, also known as filgrastim, lenograstim or 
Neupogen®) are approved by the US FDA and EMA for 

use in humans, but not as part of anticancer regimens [285-

288]. Nonetheless, GM-CSF has been shown to potentiate 

the clinical activity of several immunotherapeutics, 

including (but not limited to) peptide-based vaccines 

and immunomodulatory mAbs [259, 289]. Recombinant 

tumor necrosis factor α (TNFα) is also licensed by several 
regulatory agencies worldwide (but not by the US FDA), 

for the treatment of limb-threatening soft tissue sarcoma 

and melanoma [290-292]. However, in this setting 

TNFα is not employed as an immunostimulatory agent 
but administered in combination with melphalan (an 

alkylating agent) to increment the local concentration of 

the drug (and hence boost its cytotoxicity), and to promote 

the selective destruction of the tumor vasculature [293].

The antineoplastic activity of immunostimulatory 

cytokines is expected to depend on the host immune 

system, implying that they underlie a bona fide paradigm 

of active immunotherapy. However, the actual mode of 

action of immunostimulatory cytokines has not yet been 

fully explored. Moreover, some of these agents may 

promote a cytokine cascade with unwarranted, potentially 

lethal effects, and hence should be employed with caution.

Immunomodulatory mAbs

At odds with their tumor-targeting counterparts, 

immunomodulatory mAbs operate by interacting with 

(hence altering the function of) soluble or cellular 

components of the immune system [22, 294]. Thus, 

immunomodulatory mAbs are designed to elicit a novel 

or reinstate an existing anticancer immune response [27, 

295, 296]. So far, this has been achieved through four 

general strategies: (1) the inhibition of immunosuppressive 

receptors expressed by activated T lymphocytes, such as 

cytotoxic T lymphocyte-associated protein 4 (CTLA4) 

[297-299] and programmed cell death 1 (PDCD1, best 

known as PD-1) [39, 42, 300, 301], or NK cells, like 

various members of the killer cell immunoglobulin-like 
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receptor (KIR) family [302-304]; (2) the inhibition of 

the principal ligands of these receptors, such as the PD-1 

ligand CD274 (best known as PD-L1 or B7-H1) [300, 

305-307]; (3) the activation of co-stimulatory receptors 

expressed on the surface of immune effector cells [308] 

such as tumor necrosis factor receptor superfamily, 

member 4 (TNFRSF4, best known as OX40) [309-

313], TNFRSF9 (best known as CD137 or 4-1BB) [58, 

314, 315], and TNFRSF18 (best known as GITR) [316-

318]; and (4) the neutralization of immunosuppressive 

factors released in the tumor microenvironment, such as 

transforming growth factor β1 (TGFβ1) [319, 320].
The first of these approaches, which is commonly 

referred to as “checkpoint blockade”, has been shown to 

induce robust and durable responses in cohorts of patients 

with a variety of solid tumors [39, 300, 321-327]. As it 

stands, no less than three checkpoint-blocking mAbs are 

currently approved by international regulatory agencies for 

use in humans (source http://www.fda.gov): (1) the anti-

CTLA4 mAb ipilimumab (Yervoy™), which was licensed 

by the US FDA for use in individuals with unresectable 

or metastatic melanoma on 2011, March 25th [328-332]; 

the anti-PD-1 mAb pembrolizumab (Keytruda™), which 

received accelerated approval by the US FDA for the 

treatment of advanced or unresectable melanoma patients 

who fail to respond to other therapies on 2014, September 

4th [333-338]; and nivolumab (Opvido™), another PD-1-

targeting mAb licensed by the Japanese Ministry of Health 

and Welfare for use in humans on 2014, July 07th [339]. 

Based on the results of a recently completed Phase III 

clinical trial demonstrating that nivolumab significantly 
improves the progression-free and overall survival of 

patients with BRAFWT melanoma [340], the approval of 

this mAb by the US FDA is expected within the next 

few months. The safety and efficacy of ipilimumab, 
pembrolizumab, nivolumab and other checkpoint-blocking 

mAbs are being demonstrated in a steadily expanding 

panel of oncological indications [45, 46, 341, 342]. Of 

note, some co-stimulatory mAbs including urelumab 

and PF-0582566 (both of which target CD137) are also 

under clinical development, with promising results [46, 

341]. Preclinical data suggest that combining checkpoint 

blockers with co-stimulatory mAb mediates superior 

antineoplastic effects [294, 343, 344]. At least in part, this 

reflects the ability of co-stimulatory mAbs to promote NK 
cell functions [58, 345, 346]. In line with this notion, a few 

clinical trials testing checkpoint blockers in combination 

with urelumab or lirilumab (a KIR-inhibiting mAb) have 

just been initiated (source http://www.clinicaltrials.gov).

Designed to (re-)activate the host immune system 

against malignant cells, immunomodulatory mAbs 

constitute an established and clinically promising 

paradigm of active immunotherapy. Interestingly, despite 

their non-specific mechanism of action, the clinical 
efficacy of immunomodulatory mAbs (and in particular 
checkpoint blockers) may be profoundly influenced by the 

panel of (neo-)TAAs specific to each neoplasm [347].
Inhibitors of immunosuppressive metabolism

Indoleamine 2,3-dioxigenase 1 (IDO1) catalyzes 

the first, rate-limiting step in the so-called “kynurenine 
pathway”, the catabolic cascade that converts 

L-tryptophan (Trp) into L-kynurenine (Kyn) [348]. 

Although this enzyme was initially believed to mediate 

immunostimulatory effects (partly because inflammatory 
cues including IFNγ promote its expression in cells of the 
innate immune system) [349, 350], IDO1 mediates robust 

immunosuppressive effects, in both physiological (e.g., 

tolerance during pregnancy) and pathological (mostly 

oncological) settings [351-356]. IDO1 has been proposed 

to inhibit both innate and adaptive immune responses (1) 

by depleting immune effector cells of Trp, resulting in 

irresponsiveness to immunological challenges [352, 353, 

357-359]; (2) by favoring the accumulation of Kyn and 

some of its derivatives, which exert cytotoxic effects on 

immune effector cells while promoting the differentiation 

of Tregs [360-364]; or (3) through various indirect 

mechanisms mediated by IDO1-expressing DCs [124, 

365-371]. Evidence accumulated during the last decade 

indicates that both 1-methyltryptophan (an inhibitor 

of IDO1 and IDO2) and genetic interventions targeting 

IDO1 mediate antineoplastic effects while eliciting novel 

or reinvigorating existent anticancer immune responses 

[372-375]. No IDO1 inhibitor is currently approved by 

the US FDA for use in humans (source http://www.fda.

gov). However, the results of recent Phase I-II studies 

suggest that 1-methyl-D-tryptophan (an inhibitor of 

the IDO pathway also known as indoximod), other 

pharmacological blockers of IDO1 (such as INCB024360), 

and IDO1-targeting vaccines are well tolerated by cancer 

patients and mediate antineoplastic effects, at least in a 

subset of individuals [376-382].

Extracellular ATP mediates robust 

immunostimulatory functions as it recruits and activates 

APCs via purinergic receptor P2Y, G-protein coupled, 

2 (P2RY2) and purinergic receptor P2X, ligand-gated 

ion channel, 7 (P2RX7), respectively [383-386]. On the 

contrary, the degradation products of ATP (notably AMP 

and adenosine), have a pronounced immunosuppressive 

activity upon binding to adenosine A2a receptor 

(ADORA2A) and ADORA2B [387-389]. Two enzymes 

operates sequentially to degrade extracellular ATP, 

ectonucleoside triphosphate diphosphohydrolase 1 

(ENTPD1, best known as CD39), which converts ATP 

into ADP and AMP [390-392], and 5’-nucleotidase, ecto 

(NT5E, best known as CD73), which transforms AMP into 

adenosine [393, 394]. Some human neoplasms express 

increased amounts of CD39 and/or CD73, reflecting the 
evolutionary advantage conferred to cancer cells by the 

stimulation of adenosine receptors [395, 396]. Efforts have 

therefore been dedicated to the development of agents 

that would limit the extracellular availability of adenosine 
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or inhibit adenosine receptors [392, 397]. Preclinical 

evidence indicates that CD39- or CD79-targeting 

agents (mostly mAbs) mediate antineoplastic effects as 

standalone interventions and improve the efficacy of other 
anticancer agents [397]. The clinical development of these 

agents, however, has not yet been initiated. Conversely, 

ADORA2A antagonists are currently being tested in late-

stage clinical trials, but as a therapeutic option against 

Parkinsonism [397]. It will be interesting to determine the 

safety and efficacy of inhibitors of adenosine generation or 
signaling in cancer patients.

Although it remains unclear whether these agents 

truly operate by altering the microenvironmental 

availability of Trp and Kyn [398], the antineoplastic 

effects of IDO inhibitors critically rely on the host immune 

system, implying that this constitutes an instance of active 

anticancer immunotherapy [399]. This also applies to 

strategies aimed at limiting the extracellular availability 

of adenosine.

PRR agonists

Pattern recognition receptors (PRRs) are 

evolutionarily conserved proteins involved in the 

recognition of danger signals [400, 401]. PRRs include 

(but are not limited to) Toll-like receptors (TLRs) [402, 

403] and nucleotide-binding oligomerization domain 

containing (NOD)-like receptors (NLRs) [404, 405]. 

TLRs are transmembrane enzymatically-inactive 

proteins expressed by most APCs, including monocytes, 

macrophages and DCs, as well as by some types of 

epithelial cells [402, 403]. NLRs are expressed by a 

variety of cell types, including various components of the 

innate and adaptive immune system [404, 405]. Taken 

together, PRRs sense a wide panel of danger signals, 

including exogenous “microbe-associated molecular 

patterns” (MAMPs) like bacterial lipopolysaccharide 

(LPS) or muramyl dipeptide (MDP), and endogenous 

“damage-associated molecular patterns” (DAMPs), like 

the non-histone nuclear protein high-mobility group box 

1 (HMGB1) and mitochondrial DNA [406-410]. The 

activation of various PRRs ignites a signal transduction 

cascade with potent pro-inflammatory outcomes, including 
the activation of NF-κB [411-413], and the secretion of 
immunostimulatory cytokines, like type I IFNs and TNFα 
[413-415]. Moreover, PRR signaling favors the maturation 

of DCs as well as the activation of macrophages and 

NK cells [416]. Besides being critical for the response 

of the host to viral and bacterial challenges [402, 403], 

some PRRs play a key role in the (re)activation of 

anticancer immune responses by chemo-, radio- and 

immunotherapeutic interventions [15, 413, 417-422].

Thus, PRR agonists have spurred interest not 

only as adjuvants for conventional vaccines [423, 

424], but also as immunotherapeutic interventions that 

may mediate antineoplastic effects per se or boost the 

therapeutic activity of other anticancer agents [34, 48, 

425]. Three TLR agonists are approved by the US FDA 

for use in cancer patients: (1) the bacillus Calmette-

Guérin (BCG), an attenuated variant of Mycobacterium 
bovis that presumably operates as a mixed TLR2/

TLR4 agonist, which is currently used as a standalone 

immunotherapeutic  agent in subjects with non-invasive 

transitional cell carcinoma of the bladder [426]; (2) 

monophosphoryl lipid A (MPL), a TLR2/TLR4-activating 

derivative of Salmonella minnesota LPS currently 

utilized as adjuvant in Cervarix®, a vaccine for the 

prevention of HPV-16 and -18 infection [427]; and (3) 

imiquimod, an imidazoquinoline derivative that triggers 

TLR7 signaling, currently employed for the treatment 

of actinic keratosis, superficial basal cell carcinoma and 
condylomata acuminata [422, 426]. Of note, picibanil 

(a lyophilized preparation of Streptococcus pyogenes 

that operates as a TLR2/TLR4 agonist has been licensed 

for use in cancer patients by the Japanese Ministry of 

Health and Welfare (but not by the US FDA) as early 

as in 1975 [428, 429]; while mifamurtide (a synthetic 

lipophilic glycopeptide that activates NOD2) has been 

approved by the EMA for the treatment of osteosarcoma 

in 2009 [430-432]. Moreover, the safety and efficacy of 
several other PRR agonists are currently being evaluated 

in clinical trials [433-435]. These molecules include 

agatolimod (CpG-7909, PF-3512676, Promune®), an 

unmethylated CpG oligodeoxynucleotide that activates 

TLR9 [436]; polyriboinosinic polyribocytidylic acid 

(polyI:C, Ampligen™, Rintatolimod), a synthetic double-

strand RNA that signals via TLR3 [437]; and Hiltonol™, 

a particular formulation of polyI:C that involves 

carboxymethylcellulose and poly-L-lysine [48, 438].

Some malignant cells express PRRs [439-445], 

implying that PRR agonists may not be completely devoid 

of intrinsic tumor-modulating functions. Nonetheless, a 

large body of preclinical and clinical literature indicates 

that the antineoplastic effects of PRR agonists stem from 

their ability to engage the host immune system. Thus, PRR 

agonists constitute active immunotherapeutics.

Immunogenic cell death inducers

Some conventional chemotherapeutics, often 

employed at metronomic doses [446, 447], as well as 

some forms of radiation therapy, can kill malignant cells 

while stimulating them to release specific DAMPs in 
a spatiotemporally coordinated manner [15, 420, 448]. 

Such DAMPs bind to receptors expressed on the surface 

of APCs (including TLR4), and not only boost their 

ability to engulf particulate material (including TAAs 

and cancer cell debris) but also trigger their maturation/

activation [15, 418, 448, 449]. As a result, APCs acquire 

the ability to elicit a cancer-specific immune response that 
(at least in mice) is associated with the development of 

immunological memory [15, 450]. We have dubbed such 

a functionally atypical form of apoptosis “immunogenic 

cell death” (ICD) [15]. Importantly, ICD inducers exert 



Oncotarget12485www.impactjournals.com/oncotarget

optimal antineoplastic effects in immunocompetent, but 

not in immunodeficient, mice [15, 451-454]. However, the 
ability of a specific stimulus to trigger ICD can be properly 
assessed only by means of vaccination experiments 

involving immunocompetent mice and syngeneic tumor 

models [15, 455]. As it stands, a few FDA-approved 

therapies have been shown to constitute bona fide ICD 

inducers, including: doxorubicin, mitoxantrone and 

epirubicin (three anthracyclines currently employed 

against various carcinomas) [186, 449], bleomycin (a 

glycopeptide antibiotic endowed with antineoplastic 

properties) [456], oxaliplatin (a platinum derivative 

generally used for the therapy of colorectal carcinoma) 

[453, 457], cyclophosphamide (an alkylating agent 

employed against neoplastic and autoimmune conditions) 

[458-460], specific forms of radiation therapy [419, 461-
466], photodynamic therapy (an intervention that relies 

on the administration of a photosensitizing agent coupled 

to light irradiation) [448, 467, 468], and bortezomib (a 

proteasomal inhibitor used for the treatment of multiple 

myeloma) [469, 470].

These and other (hitherto experimental) ICD 

inducers have been viewed as conventional forms 

of anticancer therapy, exerting antineoplastic effects 

via cytostatic or cytotoxic mechanisms. However, 

accumulating evidence indicates that the full-blown 

therapeutic potential of these molecules relies on the 

host immune system [15, 471]. Thus, we propose to 

classify ICD inducers as a form of active anticancer 

immunotherapy.

Others

Other anticancer immunotherapies are approved by 

regulatory agencies worldwide for use in cancer patients 

or are currently being investigated for safety and efficacy 
in preclinical or clinical settings.

Lenalidomide (Revlimid®, also known as CC-

5013) and pomalidomide (Pomalyst®, also known as CC-

4047) are two derivatives of thalidomide (Thalomid®) 

originally developed in the 1990s to achieve improved 

potency in the absence of significant side effects [472]. 
Thalidomide was indeed marketed as an over-the-

counter sedative, tranquilizer, and antiemetic for morning 

sickness in various countries in the late 1950s, but was 

rapidly withdrawn following a peak of infants born with 

malformation of the limbs [473]. In spite of its pronounced 

teratogenic activity, thalidomide raised renewed interest 

as an inhibitor of TNFα secretion in the 1990s [474], and 
was approved by the US FDA (under a strictly controlled 

distribution program) for the therapy of erythema nodosum 

leprosum (a complication of leprosy etiologically linked 

to TNFα) in 1998 [475]. The combination of thalidomide 
with dexamethasone (a glucocorticoid) rapidly turned 

out to mediate therapeutic effects in patients with 

hematological malignancies, eventually resulting in the 

approval by the US FDA of this regimen for the treatment 

of newly diagnosed multiple myeloma [476]. Alongside, 

lenalidomide (which retains some degree of teratogenicity) 

was licensed for use in patients with multiple myeloma 

(also in combination with dexamethasone) and low or 

intermediate-1 risk myelodysplastic syndromes that harbor 

5q cytogenetic abnormalities (as a standalone intervention) 

[477-480]. Conversely, pomalidomide (which is devoid of 

teratogenic activity) has been approved for use in multiple 

myeloma patients only in 2013, when the approval of 

lenalidomide has been extended to mantle cell lymphoma 

(MCL) [481-483]. Although the effects of thalidomide, 

lenalidomide and pomalidomide, which are collectively 

referred to as “immunomodulatory drugs” (IMiDs), 

on the immune system have been characterized with 

increasing precision throughout the past two decades 

[484], the underlying molecular mechanisms remained 

obscure [485]. Recent findings indicate that the therapeutic 
activity of IMiDs depend, at least in part, on their ability 

to bind the E3 ubiquitin ligase cereblon (CRBN) and 

hence boost the proteasomal degradation of the B cell-

specific transcription factors IKAROS family zinc finger 
1 (IKZF1) and IKZF3 [486, 487]. Of note, CRBN, which 

is also involved in the teratogenic effects of thalidomide 

and lenalidomide [488], regulates the abundance of 

interferon regulatory factor 4, perhaps accounting for the 

immunomodulatory functions of IMiDs [489]. Although 

endowed with intrinsic antineoplastic activity, IMiDs 

should be considered active immunotherapeutics.

As they progress and respond to treatment, 

neoplastic lesions are infiltrated by a significant amount 
of lymphoid and myeloid cells, including CD8+ T 

lymphocytes, Tregs, tumor-associated macrophages 

(TAMs) and immunosuppressive B-cell populations 

[122-124, 490, 491]. Robust tumor infiltration by CD8+ 

T lymphocytes is generally associated with a good 

prognosis, especially when the intratumoral levels of 

Tregs are limited [124, 492]. Along similar lines, high 

intratumoral levels of TAMs with a “classically-activated” 

M1 phenotype (which exert tumoricidal functions, 

stimulate NK cells and secrete T
H
1-polarizing cytokines) 

generally correlate with improved disease outcome [491, 

493]. The contrary holds true when the myeloid tumor 

infiltrate contains high levels of “alternatively-activated” 
M2 TAMs or specific B-cell subsets, which can secrete 
not only immunosuppressive cytokines like IL-10 and 

TGFβ1, but also angiogenic mediators such as VEGFA 
and enzymes that remodel the extracellular matrix [491, 

493]. These observations prompted the development of 

immunotherapeutic regimens based on the depletion/

inhibition of Tregs or B lymphocytes, as well as on the 

conversion of M2 TAMs to their M1 counterparts.

Denileukin diftitox (also known as Ontak®) is 

a recombinant variant of IL-2 fused to the diphtheria 

toxin [494]. Owing to its selective cytotoxicity for cells 

expressing IL-2 receptor α (IL2RA, best known as 
CD25), denileukin diftitox has been approved by the US 
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FDA and EMA for the treatment of CD25+ cutaneous 

T-cell lymphoma in the early 2000s [494]. More recently, 

denileukin diftitox has been tested for its ability to 

improve the efficacy of various immunotherapies by 
efficiently depleting Tregs (which also express CD25) 
in patients affected by various neoplasms [495-497]. 

In some (but not all) these clinical settings, denileukin 

diftitox enhanced the efficacy of immunotherapy as it 
provoked a sizeable Treg depletion [496, 497]. However, 

denileukin diftitox has recently been ascribed with a 

number of immunosuppressive effects [498, 499]. This 

may explain why in some cases denileukin diftitox had no 

clinical activity [495], and casts doubts on the possibility 

to use such Treg-depleting agent as a routine anticancer 

immunotherapeutic. This said, several conventional 

antineoplastic agents commonly used in the clinic appear 

to deplete or inhibit Treg, which presumably contributes 

to their therapeutic activity (see below) [420, 421]. 

Along similar lines, at least part of the clinical activity 

of ibrutinib (PCI-32765), a small molecule inhibitor of 

bruton tyrosine kinase (BTK) recently approved by the US 

FDA for use in patients with MCL and CLL [500-502], 

may stem from its ability to target tumor-infiltrating B 
lymphocytes or myeloid cells [503]. A clinical trial testing 

this possibility in pancreatic cancer patients will soon be 

initiated (LC, personal communication).

Several immunotherapeutic agents exert 

antineoplastic effects by altering the relative proportion 

between M2 and M1 TAMs in favor of the latter [491]. 

These include: (1) tasquinimod, a second-generation 

orally active quinoline-3-carboxamide analog initially 

developed as an antiangiogenic agent [504, 505]; 

trabectedin (Yondelis®), a marine antineoplastic agent 

currently approved in Europe, Russia and South Korea 

for the treatment of soft tissue sarcoma and ovarian 

carcinoma [506, 507]; (3) inhibitors of chemokine (C-C 

motif) ligand 2/chemokine (C-C motif) receptor 2 (CCL2/

CCR2) signaling [508]; (3) mAbs specific for chemokine 
(C-X-C motif) receptor 4 (CXCR4) [509]; and (4) small 

molecule inhibitors and mAbs that suppress colony 

stimulating factor 1/colony stimulating factor 1 receptor 

(CSF1/CSFR1) signaling [510-512]. With the single 

exception of trabectedin (which was not developed as 

an immunotherapeutic agent), none of these strategies is 

currently approved by the US FDA or EMA for use in 

humans (sources http://www.fda.gov and http://www.

ema.europa.eu/ema/). However, several Phase II-III 

clinical trials are currently ongoing to establish the safety 

and efficacy of these active immunotherapeutic agents in 
patients with various solid tumors (source http://www.

clinicaltrials.gov).

Additional, hitherto experimental 

immunotherapeutic regimens act by stimulating the 

host immune system to mount a novel (or unleash an 

existing) immune response against malignant cells. These 

include: (1) strategies for the depletion of circulating 

myeloid-derived suppressor cells (MDSCs), a blood-

borne population of immature, immunosuppressive 

myeloid cells that generally accumulate in the course of 

tumor progression [513-516]; (2) mAbs that block CD47, 

one of the major antiphagocytic receptor expressed by 

malignant cells [517-519]; and (3) vaccines relying 

on the administration of cancer cell lines expressing 

immunostimulatory molecules (e.g., GM-CSF) upon 

inactivation or lysis [520].

CONCLUDING REMARKS

During the past three decades, immunotherapy 

has become a clinical reality [35, 78, 521], and 

an ever-increasing number of cancer patients are 

expected to receive, at some stage of their disease, 

an immunotherapeutic intervention [522, 523]. The 

observations presented above suggest that various 

immunotherapies previously classified as passive, 
including several (if not all) tumor-targeting mAbs, ACT 

and oncolytic viruses, may de facto constitute active forms 

of immunotherapy. Moreover, accumulating preclinical 

and clinical evidence indicates that therapeutically 

relevant anticancer immune responses invariably exhibit 

some degree of epitope spreading, i.e., they eventually 

target several TAAs even when they were initially directed 

against a single one [524, 525]. This is not surprising 

considering that malignant cells exhibit a high degree 

of genetic/genomic instability and hence are relatively 

prone to generate so-called “antigen loss variants” 

that would render TAA-specific immunotherapies 
completely ineffective with time [526-528]. Thus, even 

if immunotherapies that truly generate an anticancer 

response with a unique antigen specificity existed [529, 
530], they presumably would not mediate clinically 

relevant, long-term immune responses. In turn, this 

casts some doubts on the practical utility of classifying 

immunotherapies into “antigen-specific” or “non-specific”.
Recently, great attention has been given to 

the immunostimulatory effects of conventional 

chemotherapeutics [420, 421, 531, 532]. Indeed, several 

compounds that have been successfully used in the clinic, 

including the nucleoside analogs gemcitabine (which is 

approved by the US FDA for the treatment of pancreatic, 

ovarian, breast and non-small cell carcinoma) [533, 534] 

and 5-fluorouracil (which is licensed for use in patients 
affected by various neoplasms) [535, 536] have off-

target immunostimulatory effects, in particular when 

administered as low doses and according to metronomic 

schedules (while, similar to radiation therapy, they are 

generally immunosuppressive when given at high doses) 

[537, 538]. It is therefore tempting to speculate that most 

(if not all) anticancer agents that are truly beneficial to 
patients operate as active immunotherapeutics, stimulating 

the host immune system to mount an antigenically broad 

(and hence insensitive to antigen loss) response against 
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malignant cells. In support of this notion, an ever 

increasing number of combinatorial immuno(chemo)

therapeutic regimens is being designed and tested in 

clinical trials, with promising results [34]. This being 

said, only the adequate implementation of protocols 

to monitor immune system-related parameters among 

patients participating in clinical trials (immunomonitoring) 

will provide insights into this possibility [539-543]. Such 

protocols are inherently complex, calling for international 

efforts toward standardization [544]. Harmonized 

immunomonitoring procedures will undoubtedly guide the 

development of new (immuno)therapies, and facilitate the 

identification of novel prognostic or predictive biomarkers 
[544]. We are positive that the next clinical success of 

anticancer immunotherapy is just behind the door.
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