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Abstract: Major depressive disorder (MDD) is the most recurrent mental illness globally, affecting
approximately 5% of adults. Furthermore, according to the National Institute of Mental Health
(NIMH) of the U.S., calculating an actual schizophrenia prevalence rate is challenging because of
this illness’s underdiagnosis. Still, most current global metrics hover between 0.33% and 0.75%.
Machine-learning scientists use data from diverse sources to analyze, classify, or predict to improve
the psychiatric attention, diagnosis, and treatment of MDD, schizophrenia, and other psychiatric
conditions. Motor activity data are gaining popularity in mental illness diagnosis assistance because
they are a cost-effective and noninvasive method. In the knowledge discovery in databases (KDD)
framework, a model to classify depressive and schizophrenic patients from healthy controls is
constructed using accelerometer data. Taking advantage of the multiple sleep disorders caused by
mental disorders, the main objective is to increase the model’s accuracy by employing only data
from night-time activity. To compare the classification between the stages of the day and improve
the accuracy of the classification, the total activity signal was cut into hourly time lapses and then
grouped into subdatasets depending on the phases of the day: morning (06:00–11:59), afternoon
(12:00–17:59), evening (18:00–23:59), and night (00:00–05:59). Random forest classifier (RFC) is the
algorithm proposed for multiclass classification, and it uses accuracy, recall, precision, the Matthews
correlation coefficient, and F1 score to measure its efficiency. The best model was night-featured
data and RFC, with 98% accuracy for the classification of three classes. The effectiveness of this
experiment leads to less monitoring time for patients, reducing stress and anxiety, producing more
efficient models, using wearables, and increasing the amount of data.

Keywords: depression; schizophrenia; machine learning; random forest; night-time

1. Introduction

Depression is the fourth disease causing disability worldwide, and in the U.S is the
second most prevalent illness, followed by hypertension [1,2]. Furthermore, the COVID-19
pandemic has aggravated this situation. Catherine K. Ettman et al. reported that de-
pressive feelings increased from 8.5% to 27.8% during the period in quarantine [3]. This
phenomenon could render depression the most prevalent disease causing serious expenses
for countries’ healthcare and severe health consequences for the population. Major depres-
sive disorder (MDD) is the most severe form of depression. To obtain an MDD diagnosis,
patients may present symptoms such as hopelessness, melancholy, sadness, low energy,
sleep disturbance, low appetite, and interference to ordinary activities such as work, study,
or home tasks for at least two weeks [4,5]. On the other hand, psychotic disorders have a
prevalence of 3.89 per 1000, representing a relatively low prevalence of illness [6]. However,
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schizophrenia is estimated to be the fifth cause of lost years among men, and the sixth for
women. Schizophrenia is a complex mental disorder distinguished by producing delusion
or hallucinations in patients [7]. It can qualify as negative, with depressive symptoms,
or positive, accompanied by aggressive behavior [8]. Schizophrenic patients present al-
terations in the prefrontal and parietal–temporal cortex, altering their verbal, memory,
functional, and processing speed [9]. Depression and schizophrenia commonly share symp-
toms, as several cases of schizophrenic patients suffer from depression simultaneously, and
unipolar depressive patients tend to deploy psychotic episodes [10]. The worst symptom of
depression and schizophrenia can be suicidal thoughts and attempts, and suicide. Around
700,000 people die every year because of suicide from depression, and for schizophrenic
patients, the rate may increase by 12 times [11–13]. Almost 80% of schizophrenic patients
suffer some activity disruption while sleeping or during the day [14]. In addition, the
prevalence of insomnia in adult patients with depressive disorder increases to 75% or 90%
if we count all the sleep disturbances [15,16]. In the process of mental illness diagnosis, the
Diagnostic and Statistical Manual of Mental Disorders (5th edition) is the most common
in occidental countries. However, the scientific and medical community has questioned
the relevance of this manual limited to describing mental disorders, relapsing the diagno-
sis in the experience of the medical care specialist, and its criteria [17]. New techniques
to reach precision in psychiatry have become the primary goal. In the psychiatry field,
the lack of measurement and patient monitorization is notable, and to solve it, precision
psychiatry has appeared [18]. Precision psychiatry involves distinct domains to improve
the diagnosis, prognosis, treatment, classification of illness, and the characterization and
measurement of mental disorders by applying techniques using neuroimaging, machine
learning, deep learning, and others [18,19]. For example, to analyze psychiatric behav-
ior, scientists use speech analysis, activity monitorization, facial expression recognition,
heart rate, medical-note analysis, and even social media publications [20]. Machine learn-
ing is the perfect combination of statistics and computer science, making it a promising
tool to decipher the complex information obtained in psychiatric patients [21]. However,
studies on mental illness multiclass classification are scarce, and there are even fewer
using motor activity signals to identify different mental disorders. Hugo G. Schnack et al.
used magnetic resonance images (MRIs) to extract features of gray matter densities, and
classified schizophrenia–healthy controls, bipolar disorder–schizophrenia, and bipolar
disorder–healthy controls using support vector machine models, with accuracy results
of 90%, 88%, and 59%, respectively, demonstrating the efficiency of MRI and machine
learning in identifying schizophrenic and bipolar disorder patients [22]. Wei Han et al.
proposed supervised convex non-negative matrix factorization to create a connectivity
pattern map from resting-state functional magnetic resonance imaging (rs-fMRI) in pa-
tients with schizophrenia. Using brain network connectivity maps from 21 patients with
schizophrenia and 25 patients with MDD, and a support vector machine classifier, they
accomplished an accuracy classification of 82.6% [23]. Other MRI approaches included
rest–activity rhythm data to correlate the anatomy of brain patients and their physical
behavior in daily activities [24,25]. The circadian rhythm in psychiatric patients is crucial
in diagnosis and treatment. Nevertheless, psychiatrists rarely use techniques or devices to
obtain reliable data about the patient’s rest–activity rhythm [26]. Therefore, the addition of
physical activity monitoring is essential for psychiatric evaluation. The systematic review
of Yuuki Tazawa et al. has confirmed the effectiveness of using actigraphy devices to
compare patients with mood disorder activity against healthy controls. They used statistics
such as p-value and standard deviation to demonstrate significant differences in activity
levels, particularly during night-time, wake after sleep, and morning wake [27]. Regarding
schizophrenia and actigraphy data, the systematic review of Zi Ying Wee et al. showed
differences in activity levels between schizophrenic patients and nonpsychotic disorders,
and even differences in activity patterns related to schizophrenia severity [28]. Further, the
correlation between activity data and psychopathology is evident and can help medical
practice in improving the patient status and reintegration to every-day activities [28]. Other
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approaches are monitoring activity levels while using antidepressant or antipsychotic medi-
cations, which can improve treatment and avoid lethal secondary effects [29]. Similarly, in a
statistical analysis of activity signals in healthy controls, and depressive and schizophrenic
patients, the results suggested that the activity of patients with schizophrenia tends to be
more structured and with lower energy levels, even compared with depressive ones [26].
Nevertheless, multiclass models to classify more than two psychiatric disorders are sparse;
commonly, classification is led with data from patients with one type of disorder and
healthy controls. Fewer models for multiclass classification in mental illness, such as the
ones mentioned above, employed data from MRIs, and compared with motor activity from
a wearable, it is a less invasive method, cheaper, and reduces stress in patients. Therefore,
the contribution of this paper is the multiclass classification of schizophrenic, depressive,
and healthy-control motor activity with an analysis of the different stages of the day, fol-
lowing the premise that, during the night, alterations in the physical movement of this
type of patient are more evident. In previous work, classifying depressive episodes using
activity signals improved performance using only night activity counts [30]. One of the
most important symptoms to avoid in patients with schizophrenia is an alteration of the
sleep–wake cycle because of the implications on everyday activities; additionally, it is the
best lapse to validate the efficacy of drugs used in this type of patient [31]. In addition,
suicidal ideation is highly associated with sleep–wakefulness and other sleep disturbances,
which makes it essential to look more into night-time episode research [32]. The final
objective of a data-mining process is following the knowledge discovery in databases
(KDD) framework, which establishes well-defined and concrete steps to obtain valuable
information from data, and it has been adequate for knowledge discovery in healthcare [33].
The article is structured following the steps of the KDD framework. First, Section 2 de-
scribes every step of extracting knowledge from data and assembling a model: selection,
preprocessing, transformation, data mining, and evaluation. Then, Section 3 reports the
evaluation outcomes of each model, and Section 4 describes the contribution in detail.

2. Materials and Methods

Machine learning (ML) is an abstraction of the feature data used to train it, as this is
the source of learning to predict or classify new samples in the future regarding supervised
algorithms [34]. Otherwise, an unsupervised model automatically makes a classification
or prediction using patterns in data without needing a training phase [35]. Given that
machine learning is a set of techniques currently used in the data-mining process to obtain
knowledge from data or databases, few methodologies or frameworks have been developed
to encourage good practices in data mining. Knowledge discovery from databases (KDD)
is a data-mining process with well-established stages: pre-KDD, selection, preprocessing,
transformation, data mining, interpretation/evaluation, and post-KDD [36]. Figure 1 shows
the main stages of the KDD process that led to obtaining the best model for multiclass
classification. It is an iterative and nonsequential process allowing for much flexibility to
obtain valuable information from data. In pre-KDD, the analysis of the pertinence and
importance of the project is conducted taking into account the final user point of view, and
post-KDD knowledge provides the final model description report. Table 1 briefly describes
the activities produced in every stage of this work. In related works seen in the literature
can be found similar steps to obtain classification models for psychiatric disorders, with a
higher tendency in binary classification. For example, Zhuozheng Wang et al. used elec-
troencephalography (EGG) and a 2D convolutional network for depression diagnosis and
achieved accuracy of 92% [37]. In a multiclass classification of major depressive disorder,
bipolar disorder, schizophrenia, and generalized anxiety disorder, Caroline Wanderley
Espinola et al. reached 75.27% accuracy using a random forest classifier with 300 trees [38].
Another relevant work using the same activity data used in this paper was published by
Rohit Kumar Bondugula et al., who achieved 86.60% accuracy in a bidirectional recurrent
neural network (BRNN) for the binary classification of schizophrenic patients and healthy
controls [39].
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Figure 1. Data-mining process used in this paper to classify depressive, schizophrenic, and healthy-
control episodes.

Table 1. KDD steps and activities involved in this work.

KDD Process

Pre-KDD

Precision psychiatry using ML algorithms’
principal objectives of treatment response

analysis, early identification, suicide
prevention, real-time monitoring, and

subclassified actual mental disorders [33]. In
addition, ML models avoid generic diagnoses,
providing new classifications of individuals by

their features [40].

Selection
The Depresjon and Psykose datasets contain

monitor-activity counts of patients with
depression and schizophrenia, respectively.

Preprocessing
All patients’ activity count data are

concatenated into a single matrix, standardized,
transposed, and grouped by hours.

Transformation

After hourly segmentation, data are grouped
into subsets following the day stage: morning
(06:00–11:59), afternoon (12:00–17:59), evening

(18:00–23:59), and night (00:00–05:59).

Data Mining
Classification of depressive, schizophrenic, and
control episodes is performed with a random

forest classifier.

Interpretation/evaluation

Precision, recall, F1 score, MCC, and accuracy
measure every model’s effectiveness to identify

healthy, schizophrenic, and depressive
episodes concerning the day stage.

Post-KDD It is not limited to this written report.

2.1. Selection

Clinical actigraphy use began in the 1990s. These sensors became popular, and their
use in psychiatry quickly brought new implications and directions to the field [28]. The
Depresjon and Psykose datasets contain motor activity data sensed using Actiwatch, Cam-
bridge Neurotechnology Ltd, England, model AW4 on the right wrist of every patient
and control [41,42]. This actigraph contains a piezoelectric sensor to measure acceleration,
tension, or force. Measurement occurs when an external factor applies pressure on the
piezoelectric mass, and this force generates an electrical response [43]. The AW4 Actiwatch
has a frequency sampling of 32 Hz and a sensitivity of 0.05 g, and its configuration counts
the voltage produced by the device every minute. The final activity count per minute
is proportional to the intensity of the movement. The Psykose dataset contains activity
data from 22 patients with a schizophrenia diagnosis and 32 healthy controls: one comma-
separated values (CSV) file for each participant with the timestamp, date, and activity
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count column [41]. With the same structure, the Depresjon dataset contains CSV files
with the data of 23 depressive patients and the same 32 healthy controls [42]. In addition,
both datasets include patient information such as age, gender, days of monitorization,
treatment, and specifications around the mental disorder. The severity of the symptoms
caused by depression was measured using the Montgomery–Asberg depression rating scale
(MADRS). Five of the depressive patients were hospitalized during the data extraction [42].
For measuring the psychopathology of schizophrenic patients, researchers used the Brief
Psychiatric Rating Scale (BPRS) [41]. Enrique Garcia-Ceja et al. collected and published
the Depresjon dataset for free use with the experimental results. In the same way, Petter
Jakobsen et al. published the Psykose dataset with a fully opened license for research and
educational purposes [41,42].

Every CSV contained an array of activity levels for approximately 13 days. Figure 2
shows the mean activity level for every minute during the 24 h of the day, starting at 00:00
for healthy, depressive, and schizophrenic patients.

Figure 2. Plot of the mean activity level during all monitored days from every type: schizophrenic
patients, depressive patients, and healthy controls. It starts at 00:00, and every point corresponds to
one of the 1440 min in one day.

This plot shows differences in the three subjects’ activity levels. During the entire
day, activity levels perdure differently, with the schizophrenia signal being the one with
lower activity levels, and depression being similar to the healthy-control signal but with
less intensity.

2.2. Preprocessing

Once all files from every class had been grouped into one dataset, the next step was
to normalize or standardize the data. Machine-learning data standardization is essential
to obtain better results with ML algorithms. Depending on the nature of the data, the
method to normalize was selected; in this case, standardization with standard deviation
was the best option to avoid the increment of noise using other methods such as min–max
normalization. Equation (2) is the Zscore formula, where x is every activity count, mu is
the mean of all activity counts of the class, and sigma is its standard deviation.

Zscore =
x− µ

σ
(1)

This process converts the original activity signal into, Zscore,improving the compa-
rability among the data and converting the mean to zero. After standardization, all data
were concatenated into one matrix with timestamp, time, and activity level columns, and
2,106,734 rows. This matrix data were transposed and segmented into hourly lapses to
obtain comparable instances. In this process, the matrix then contained rows of 60 activity
counts corresponding to a specific hour of the day. Lastly, the hours were grouped by day
stage: night, morning, afternoon, and evening.
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2.3. Transformation

Data segments needed to be transformed by signal characterization following two main
processes, feature extraction and feature selection. Feature extraction focuses on obtaining
significant features that effectively describe the original signal. It can be related to signal
domain transformation, statistical or central tendency metric extraction, dimensionality
reduction, and other pattern-searching techniques. On the other hand, feature selection
directly implicates dimension reduction by selecting only the most meaningful features
through different methods, such as a predictive model that looks for the best feature
combinations to produce the classification [44].

2.3.1. Feature Extraction

The main goal in this phase is feature extraction from every hourly lapse of the
activity signal. In related works, Swapnil Sayan Saha et al. used an accelerometer signal
for human action recognition (HAR), and demonstrated that extracting quantitative and
statistical features achieved better fall detection and HAR with 97% and 93% accuracy,
respectively [45]. Qi Wei Oung et al. also focused their research on human movement in the
healthcare field for the more specific detection of freezing of gait (FoG), a severe symptom
of Parkinson’s patients. Their research concentrated on extracting mathematical features
from the time and frequency domains using the signal of a three-axis accelerometer and
obtaining a model with 99.96% accuracy, classifying FoG [46]. On the basis of these feature
extraction methods and their results, this work is focused on extracting central tendency
measures and other statistical moments in the time domain. From this procedure, 23
features per hour were obtained, reducing the 60 activity original counts to only 23 features
describing the activity levels every hour. Every feature description by its equation is shown
in Table 2.

Table 2. Features extracted from hourly segments of motor activity signals.

Name Equation

Mean x = 1
n ∑n

i=1 xi

Sum sum = ∑n
i=1 xi

Maximum Maximal value

Minimum Minimal value

Median x̃ = (n+1)
2

Standard deviation Sx =
√

∑n
i=1(xi−x)2

n−1

First decile D1 = value o f [ n+1
10 ]th data

Second decile D2 = value o f [ 2(n+1)
10 ]th data

First quantile Q1 = 1
4 (n + 1)thterm

Third decile D3 = value o f [ 3(n+1)
10 ]th data

Fourth decile D4 = value o f [ 4(n+1)
10 ]th data

Second quantile Q2 = 2
4 (n + 1)th term

Sixth decile D6 = value o f [ 6(n+1)
10 ]th data

Seventh decile D7 = value o f [ 7(n+1)
10 ]th data

Third quantile Q3 = 3
4 (n + 1)th term

Eighth decile D8 = value o f [ 8(n+1)
10 ]th data
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Table 2. Cont.

Name Equation

Ninth decile D9 = value o f [ 9(n+1)
10 ]th data

Kurtosis K = 1
n

∑n
i=1(xi−x)4

S4
x

Mean absolute deviation MAD = 1
n ∑n

i=1|xi − x|

Standard error of mean SEx = Sx√
n

Skewness S = 1
n

∑n
i=1(xi−x)3

S3
x

Variance s2 = ∑n
i=1(xi−x)2

n−1

Unique distinct elements count

where n is the size of sample, xi is an item of the sample, S4
x is the fourth standardized

moment, and S3
x is the third standardized moment.

2.3.2. Feature Selection

This process focuses on reducing noisy features from the feature space, increasing
the accuracy of the model, improving the algorithm’s performance, and improving data
storage for future applications [47]. The most used methods to eject feature selection are
correlation analysis, supervised and unsupervised classification algorithms, univariate
analysis, recursive feature elimination, forward elimination, feature importance, principal
component analysis, and genetic algorithms [48].

In this work, recursive feature elimination with cross-validation (RFE-CV) and random
forest classifier (RFC) selected the number of features and their best combination. First,
REF-CV recursively trained an RFC algorithm with all the dataset’s original features and
calculated the model’s accuracy through testing its classification. This process was repeatd
until the last feature, and in every loop, features negatively affecting the model’s accuracy
were eliminated. Table 3 shows the set of best features per day-stage dataset.

Table 3. Motor activity level proportion per class.

Day Stage No. Features Features

00:00–05:59 5 min, quantile10, quantile20,
quantile25, quantile30

06:00–11:59 7 min, median, quantile10,
quantile20, quantile25,
quantile30, quantile40

12:00–17:59 8

max, min, quantile10,
quantile20, quantile25,
quantile30, quantile40,

quantile60

18:00–23:59 6
min, quantile10, quantile20,

quantile25, quantile30,
quantile40

2.4. Data Mining

KDD’s data mining process step focuses on selecting the best machine-learning algo-
rithm, testing the models, and obtaining classification results. The first step is choosing the
algorithm, and on the basis of documentation, RFC implementations achieved high accu-
racy in movement classification, mental-illness machine-learning diagnosis, and activity
recognition [49,50]. The random forest classifier (RFC) is an ensemble machine-learning
algorithm employing regression and decision trees for classifications. It characterizes by
producing decision tree classifiers with subsamples of the original dataset to increment the
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accuracy of the model at the same time while avoiding overfitting [51]. RFC configuration
for the classification of schizophrenic, depressive, and control episodes was:

• 900 trees in the forest;
• at least three samples were required to split a node;
• to be at a leaf node, the minimum required six samples;
• the maximal number of leaf nodes in a tree was 90;
• not bootstrapping the samples used the entire dataset to construct every tree.

These hyperparameters were selected from a grid search with a cross-validation
method. However, the grids had been calculated with a previous random search to know
the best ranges for every parameter. RFC is a supervised model, which means that it needs
to learn from the data before producing classifications with it. Table 4 shows the instances
used for training and testing every subset of data according to the day stage. In addition
to the typical evaluation of 70–30 for training and testing the model, cross-validation was
implemented fivefold. It is helpful in corroborating how accurate the model is and how it
would perform in practice.

Table 4. Motor activity level proportion per class.

Day Stage Training Instances Testing Instances Features

00:00–06:00 6116 2622 5

06:00–12:00 5051 2165 6

12:00–18:00 4809 2061 8

18:00–00:00 4761 2041 7

K-fold cross-validation splits the data into k subsets or folds. In this process, the ML
model trains with k− 1 folds and then evaluates the performance with the remaining folds.
Cross-validation (CV) repeats this process for all the k folds with a different subset of data
for testing.

Figure 3 shows the process for fivefold cross-validation; it was implemented for every
day-stage model. In other words, the data were divided into a random 80–20%,and the
model was evaluated with five different testing subsets.

Figure 3. The fivefold cross-validation uses resampling data to create five different datasets to
evaluate the model’s performance. Sets 1 to 5 proportions are 80% of the data for training the model
and the rest 20% for testing it.

2.5. Evaluation

There are four primary metrics to evaluate the performance of a model to classify
classes: true positive (TP), true negative (TN), false positive (FP), and false negative(FN).
These metrics are commonly used in binary classifications, but the same metrics can be
calculated by summarizing the values corresponding to the same columns or rows in multi-
class classification. These metrics also calculate precision, recall, F1 score, and accuracy.

precision =
TP

TP + FP
(2)
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Precision Equation (2) means the proportion of correct positive predictions, that is,
how many predictions are correct from a specific class.

recall =
TP

TP + FN
(3)

Recall in Equation (3) calculates the proportion of actual correctly identified positives,
that is, from all the true samples, how many are correct as of the specific class.

F1score = 2
(precision)(recall)
precision + recall

(4)

F1score Equation (4) combines the recall and precision metrics in a harmonic mean,
and calculates the classification’s general efficiency.

MCC =
TN ∗ TP− FN ∗ FP√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5)

Matthews Correlation Coefficient (MCC) calculates the association between the pre-
dicted classification and the actual data; its value range was from −1 to 1, where −1 is
noncorrelation, and 1 indicates total correlation. MCC in Equation (5) summarizes the
results exposed on a confusion matrix and uses the four basic metrics regarding the model
precision. In this case, MCC was calculated using multiclass classification, taking one class
as positive and the rest as negative, and then summarizing the results of every class to
obtain a single value per model.

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Lastly, accuracy in Equation (6) obtains the fraction of correct predictions. It is used to
evaluate the cross-validation technique with multiclass classification.

3. Results

Every RFC model was trained with 70% of the data, and the remaining 30% were used
to test its performance.

To visualize the results obtained from every model classification, a confusion matrix
was calculated for every model. Figure 4A shows the proportion of correct classifications
for each class using activity data from 00:00 to 05:59.

Figure 4B–D show the classification performance for the rest of the data separated by
day stage: 06:00–11:59, 12:00–17:59, and 18:00–23:59, respectively.

There was a data imbalance for every class in the confusion matrices, as shown in
Figure 4. There were more samples of healthy controls than schizophrenic and depressive
ones; for that reason, the MCC metric was considered to measure how well the model
classified despite the imbalanced data.

For every day-stage model,fivefold CV was performed following the previous descrip-
tion; from this process, the maximal, minimal, and overall accuracy of the classification
was obtained. Table 5 shows these accuracies per model.

Additionally, precision, recall, F1 score, and MCC provided more detail about the
model performance during classification instead of focusing only on accuracy. Table 6
shows the results for every metric, class, and model. In multiclass classification, the specific
evaluation per class helps in examining how well the model classifies one class against
the others.

Moreover, the ROC curve was calculated for every time segment model. The ROC
curve plots the true-positive rate against the false-positive rate and measures, and gives
a general model representation to diagnose. Since this is a multiclass classification, one
technique is needed to calculate the ROC curve for every class, such as a binary classification.
Predictions were calculated using “one vs. rest”; in this way, the evaluated class was
positive, while the rest meant negative. Figure 5 shows the ROC curve for each model.
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The blue line means healthy control, green is depression, and orange is the capability for
classifying schizophrenia.

Table 5. Fivefold cross-validation results using accuracy as the evaluation metric.

Model Accuracy

Nighttime (00:00–05:59)
Maximum 98.62%
Minimum 97.25%

Overall 98.24%

Morning (06:00–11:59)
Maximum 88.44%
Minimum 87.47%

Overall 87.97%

Afternoon (12:00–17:59)
Maximum 81.63%
Minimum 80.27%

Overall 80.92%

Evening (18:00–23:59)
Maximum 91.26%
Minimum 88.97%

Overall 89.84%

A) B)

C) D)

Figure 4. Confusion matrices by time segment. (A) Night-time; (B) morning; (C) afternoon;
(D) evening. Note: 0 means healthy control, 1 depressive, and 2 schizophrenic episodes.
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Table 6. Data-mining results by model of day segment and class.

Day Stage Precision Recall F1 Score MCC

Night 00:00–06:00
0 0.98 0.99 0.98

0.961 0.98 0.96 0.97
2 0.98 0.98 0.98

Morning 06:00–11:59
0 0.87 0.95 0.91

0.811 0.94 0.85 0.89
2 0.88 0.80 0.84

Afternoon 12:00–17:59
0 0.78 0.91 0.84

0.691 0.81 0.70 0.75
2 0.87 0.72 0.79

Evening 18:00–23:59
0 0.87 0.96 0.91

0.821 0.90 0.84 0.87
2 0.94 0.83 0.88

Note: 0 means healthy control, 1 depressive, and 2 schizophrenic episodes.

A) B)

C) D)

Figure 5. ROC curve plots by time segment. (A) Night-time; (B) morning; (C) afternoon; (D) evening.
Note: 0 means healthy control, 1 depressive, and 2 schizophrenic episodes.

The experimentation in this article was executed using Python version 3.8.8. The main
tools used were Pandas for data manipulation and early stages of the data-mining process,
and scikit-learn for the machine-learning stage and the evaluation of the models. The
hardware used was an Apple M1 processor with 16 GB RAM. The most exhaustive process
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for computational resources was the grid search to define the best hyperparameters for the
RFC model using all data; it took around 56 min to finish all the random combinations.

4. Discussion and Conclusions

The multiclass classification of mental illness using ML is sparse; commonly, models
perform binary classification between disease and healthy controls. The main idea of
this work was to assemble an efficient model to classify more than one mental disorder
against healthy controls using motor activity and RFC. This paper proposed an RFC model
for thee multiclass classification of schizophrenia, depression, and healthy controls using
night-time activity level data with accuracy of 98%. The experimental results proved
the model’s effectiveness in identifying episodes of depression and schizophrenia, and
healthy controls using RFC against previous related work where more computationally
expensive algorithms were used, for instance, CNN and BRNN, with a significant increase
in accuracy. Previous works such as Han W. et al. model used magnetic resonance imaging
to classify depression and schizophrenia, achieving 82.6% accuracy [23]. In comparison,
the model proposed in this paper improves the classification accuracy and uses a less
invasive method to acquire the data, namely, a bracelet with an accelerometer. In addition,
another multiclass model using MRI, presented by Schnack et al., achieved 90% accuracy
in identifying bipolar disorder, schizophrenia, and healthy controls using gray matter
features. Activity data collection using wearables is one of the best cost-effective and
noninvasive options. The effectiveness of monitoring night-time activity in mental health
for its correlation to sleep disorders and daily retardation provides more meaningful
information compared to the entire day [30]. In addition, this specific model can assist
in diagnosis, analyze treatment effectiveness and the circadian rhythm, and even help
patients’ primary caregivers. Nightt-ime monitoring in psychiatric patients regards the
improvement of their lifestyle by observing the evolution of treatment, identifying sleep
disturbances, or recognizing the disease using only this specific lapse of data. According to
Berle et al., the motor signal of depressive and schizophrenic patients shows a statistical
difference during the night, agreeing with these results. Therefore, further data analysis
with schizophrenic and depressive data, and even relating it with the treatments can clarify
and improve outcomes [26]. The process described in this paper to obtain the best model
can be helpful in other types of signal data analysis, standardization, and statistical feature
extraction on the time domain, and selecting the best features can improve the classification
of models. The standardization step is especially essential for ML algorithms, as it provides
the same importance or influence to all the data features, and helps the model in converging
more easily and being computationally faster. In synergy with the standardization, RFC
achieved high accuracy for the night-time model, and the rest of the models obtained 80%
or more correct classifications. From the confusion matrices and ROC curve plots, it can be
determined that healthy control activity patterns are more easily classified. However, data
classes for every model training and evaluation are not balanced; data from healthy controls
represent at least 50% of the total data classes, but in this experimentation, any resampling
method could have been used. Future work implementing techniques to balance data may
increase the accuracy and allow for the model to correctly classify all classes in the same
terms. Feature extraction following the methodology of Qi Wei Oung et al. could develop a
transformation to the frequency domain, and obtain features in both the time and frequency
domains to improve the accuracies of classification [46]. Following the ROC curve plots, the
green line representing depression against control and schizophrenic data remained with
the lowest values, except in the morning model with 0.90 of the area. In this model, the best
classification against the others was depression, which may inquire about specific activity
patterns of retardation during wake-up and the starting of activities around depression
patients. In addition, this model can provide information about sleep disorders or sleeping-
pill treatment efficacy. For the rest of the models, it was easier to detect schizophrenic
than depressive episodes. Most schizophrenic patients are hospitalized for an average of
24 years, which affects their daily routines. However, for specialists, it could be interesting
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to notice data patterns concerning the morning and afternoon models. Since it is more
challenging to differentiate schizophrenic from control and depressive episodes, it may be
related to circadian rhythm alteration. The datasets used in this paper did not have records
of activities per patient. In the future, this kind of data could provide more information
about day stages and render the segmentation more accurate in identifying specific patterns
while, for example, sleeping, taking treatment pills, and sleeping during the day. Lastly, the
hyperparameters used in this experimentation could be taken to classify other data types,
evaluate the algorithm’s configuration, and verify that they are optimal in another kind
of problem.
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