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Diabetic retinopathy (DR) is a common retinal vascular disease, which can cause severe visual impairment. It is of great clinical
signifcance to use fundus images for intelligent diagnosis of DR. In this paper, an intelligent DR classifcation model of fundus
images is proposed.Tis method can detect all the fve stages of DR, including of no DR, mild, moderate, severe, and proliferative.
Tis model is composed of two key modules. FEB, feature extraction block, is mainly used for feature extraction of fundus images,
and GPB, grading prediction block, is used to classify the fve stages of DR. Te transformer in the FEB has more fne-grained
attention that can pay more attention to retinal hemorrhage and exudate areas. Te residual attention in the GPB can efectively
capture diferent spatial regions occupied by diferent classes of objects. Comprehensive experiments on DDR datasets well
demonstrate the superiority of our method, and compared with the benchmark method, our method has achieved
competitive performance.

1. Introduction

Diabetic retinopathy (DR) is an ocular complication caused
by diabetes. It is a leading cause of visual impairment and
even blindness. It has become a major medical problem
worldwide [1, 2]. However, up to now, there is no efective
treatment for this disease. Studies have shown that early
diagnosis and timely treatment of diabetic retinopathy are
helpful to prevent blindness. Tis goal can be achieved
through regular screening programs [3]. As a result, many
national health agencies are promoting DR screening, which
is efective in reducing blindness due to DR [4]. Digital
fundus images are the most widely used imaging mode for
ophthalmologists to screen and identify the severity of DR,
and it can show the severity of the disease. However, due to
the lack of ophthalmologists, DR screening is a heavy burden
for many underdeveloped countries. For this reason, au-
tomatic classifcation technology for DR severity has become
a trend in diagnosis.

With the development and application of artifcial intel-
ligence technology, deep learning [5] is playing a more and
more important role in the feld of medical image analysis. In
recent years, the convolutional neural network (CNN) has been
successfully applied to medical image classifcation [6, 7],
medical image segmentation [8, 9], medical image registration
[10, 11], medical image fusion [12, 13], and medical image
report generation [14, 15] because it can learn highly com-
plicated representations in a data-driven way. Although CNN
shows great potential in medical image analysis, it also has
some limitations. Local receptive felds such as convolution
operations limit the capture of long-range pixel relationships.
Inspired by the success of transformers in NLP, Alexey Dos-
ovitskiy et al. [16] proposed the vision transformer (ViT),
which takes image classifcation as a sequence prediction task
for image patch sequences, to capture the long-range corre-
lation of input image. In addition, recent research shows that
compared with CNN, ViT is more in line with the prediction
error of mankind [17, 18].
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Te biggest challenge of DR severity classifcation is that
the classifcation accuracy of fundus disease images is more
precise than other image categories. It shows that the dif-
ferences of DR lesion points between main adjacent classes
are very subtle, and it is difcult to distinguish. Although the
attention module in ViT plays an important role in object
classifcation, if the attention modules are simply super-
imposed, the performance of the model will decrease. In
addition, ViT ignores the diferent spatial regions occupied
by diferent kinds of objects. Motivated by the previously
mentioned observations, we propose a deep network model
to identify and classify DR, which consists of two key
modules: FEB and GPB. Te FEB module extracts the fea-
tures of the image by the ViT model. Te token in the ViT
model has more fne-grained attention and pays more at-
tention to the retinal hemorrhage area. Te GPB module
efectively captures the diferent spatial regions occupied by
objects from diferent classes and generates class-specifc
features for each class by referring to a simple spatial at-
tention score. By integrating the previous modules, our
network can more accurately classify DR lesions of the
diferent degrees.

To sum up, our contributions are as follows:

(i) Extracting fundus image features via vision trans-
former’s excellent modeling ability.

(ii) Using the residual attention module to make use of
the individual spatial attention of each object class
so as to improve the accuracy of DR classifcation.

(iii) Experiments on DDR datasets show that this
method has achieved good results in DR classif-
cation tasks. Specifcally, our method achieves the
best performance on grading 0, 2, 3, and 4.

2. Related Works

2.1.PathologicalAnalysis of theDRSeverity. DR classifcation
refers to the classifcation of retinal fundus images according
to the severity of DR. In the fundus image, the bright region
where the blood vessels converge is the optic disc, while the
dark region on the other side is the fovea. Mild DR appears
as dark red dots, which are small hemorrhages or small red
dot-like microaneurysms. Moderate DR is the addition of
some yellow lesions to the small red lesions, and some
yellow-white punctate hard exudates appear. Severe DR adds
some white cotton-like soft exudates to the red and yellow
lesions, which have various types of shapes, from small spots
to large plaques.Temore such lesions, the more serious DR
will be. Proliferative DR refers to the formation of new
retinal blood vessels in or around the optic disc. It can cause
vitreous hemorrhage and retina hemorrhage, and in severe
cases, it can lead to retinal detachment. All these changes will
be refected in the fundus image.

According to the international classifcation of DR [19],
DR can be divided into fve stages. Tey are class 0 (no DR),
class 1 (mild DR), class 2 (moderate DR), class 3 (severe DR),
and class 4 (proliferative DR). Figures 1(a)–1(e) show the
fve stages of DR, respectively [20]. As we all know, the image
quality has a great infuence on deep learning models.

However, in clinical practice, due to exposure and other
reasons, low-quality images are inevitable. Terefore, as
shown in Figure 1(f ), the DDR dataset [20] divided the
fundus images that do not meet the quality standard into
class 5 (ungradable).

2.2. Deep Learning in Medicine Images. With the rapid de-
velopment of artifcial intelligence (AI) technology, deep
learning (DL) methods have been widely used in various
tasks related to medical images and have achieved re-
markable results. In the medical feld, the types of images to
be processed usually include X-ray, ultrasound, computed
tomography (CT), and magnetic resonance imaging (MRI)
[21, 22]. Te processing tasks include image classifcation,
object recognition, image segmentation, image reconstruc-
tion, and so on.

Medical image classifcation can assist doctors in diag-
nosing diseases. Esteva et al. [23] directly used 130,000
clinical image data to train the model based on the Inception
v3 backbone network. Te results showed that it was better
than human experts. At the same time, the experiment
proves that ordinary CNN can also produce good prediction
results on large-scale and high-quality annotation data sets.
Yi et al. [24] proposed a novel graph regularized NMF al-
gorithm called NMF-LCAG that handles the adaptive graph
learning issue in NMF. Compared with other related al-
gorithms, the accuracy of the NMF-LCAG algorithm can be
improved by at least 1%∼3% in most cases. To achieve ef-
fcient and rapid diagnosis of patients with COVID-19, Li
et al. [25] proposed a computer-aided diagnosis algorithm
based on ensemble deep learning. Te experimental results
show that the algorithm has good classifcation performance
for COVID-19’s disease patients, common pneumonia pa-
tients, and normal control groups and can signifcantly
improve the performance of deep neural networks in
multiclass prediction tasks.

It is of great signifcance in clinical treatment to accu-
rately detect or identify lesions in medical images.Te object
recognition task is divided into two stages and one stage.Te
two-stage algorithm is represented by the R-CNN series
[26–28], and the one-stage algorithm is most representative
of the YOLO series [29–32]. Andrew Ng’s group proposed
the CheXnet algorithm [33], which is a 121-layer con-
volutional neural network. Tis algorithm can automatically
detect pneumonia from chest X-rays. Te accuracy rate is
even higher than that of radiologists. Aoki et al. [34]
completed the detection and probability prediction of
erosion and ulcer lesions in wireless capsule endoscopy
based on CNN for the frst time. Te detection accuracy
reached 88.2%. In addition, properly improving the sensi-
tivity of the model in clinical application will help doctors to
reduce the missed detection rate.

Te purpose of the medical image segmentation is to
provide a reliable basis for clinical diagnosis and patho-
logical research.Te fully convolutional network (FCN) [35]
was frst used for segmented tasks. Although the fnal output
layer has correct semantics, it is short of detailed infor-
mation. U-Net [36] borrowed the idea of FCN, designed a
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more elegant image segmentation framework, and realized
richer and more detailed segmentation results. In order to
achieve precise segmentation of retinal blood vessels, Guo
et al. [37] proposed a lightweight network named SA-Unet
that achieves state-of-the-art performance on DRIVE and
CHASE_DB1 datasets.

In addition, DL is also widely used in medical image
reconstruction [38, 39], medical image report generation
[40], and other tasks. Deep learning provides important
theoretical basis and technical support for intelligent
medicine. However, there are still many problems with
intelligent medical imaging. For example, the lack of high-
quality labelled training samples and the model obtained by
deep learning is poorly interpretable.

2.3. Deep Learning in DR Classifcation. Accurate classif-
cation of medical images is an important means to assist
clinical care and treatment. In recent years, DL has made
remarkable achievements in medical image analysis, making
DR-assisted diagnosis more reliable and efcient.

Bravo and Arbelez Pablo [41] investigated the perfor-
mance of diferent preprocessing methods, designed a
classifcation model based on the VGG16 architecture, and
achieved an average classifcation accuracy of 50.5% in DR

classifcation. A multi-cell architecture [42], which can
gradually increase the depth of the deep neural network and
the input image resolution, improves classifcation accuracy
while reducing training time. To fully utilize images in
diferent stages of deep learning, they also propose a mul-
titask learning strategy. To solve the problem of lack of data,
a deep learning architecture was proposed in [43], and the
MESSIDOR dataset was used to train and test their archi-
tecture. Methods by developing the convolution layer and
maximum pool layer in the frst eight layers and the full
connection layer in the last three layers, the AlexNet ar-
chitecture is simply modifed. Te model is suitable for
smaller datasets and provides acceptable accuracy. Golub
et al. [44] put forward a method to identify and classify DR.
Tis method could not only segment any retinal region of
the fundus image but also evaluate the quality of the original
image. In order to simulate the diagnosis process, a double-
stream binocular network is proposed in [45] to capture
subtle correlations between the left eye and the right eye, and
its advantages over monocular methods are demonstrated
on the EyePACS dataset. Zhang et al. [46] designed source-
free transfer learning (SFTL) for DR detection, which utilizes
unannotated retinal images and only employs a source
model throughout the training process. On the EyePACS
dataset, it achieved 91.2% accuracy, 0.951 sensitivity, and

(a) (b) (c)

(d) (e) (f )

Figure 1: Example fundus images from the DDR dataset. (a) Healthy, which is labelled as class 0; (b) mild, which is labelled as class 1;
(c) moderate, which is labelled as class 2; (d) severe, which is labelled as class 3; (e) proliferative, which is labelled as class 4; (f ) ungradable,
which is not up to quality standards to be used for model training and is labelled as class 5.
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0.858 specifcity. [47] discusses existing DR detection and
classifcation techniques, their advantages and disadvan-
tages, and available DR datasets. Te research achievements
and progress in the feld of DR detection are introduced in
detail.

Although all these algorithms are devoted to extracting
the features of lesions, there is still a problem of insufcient
recognition performance of lesion, especially for small le-
sions. Tere are several reasons: (1) only high-resolution
images can detect small pathological tissues, so the reso-
lution of retinal images is very high. (2) Compared with
other types of image, the classifcation accuracy of DR le-
sions is more accurate. Moreover, too small lesion points
make the diferences of DR lesion points between adjacent
classes very subtle, which make it difcult to distinguish. (3)
Identifying a severe class with a large local receptive feld
may lead to gradient disappearance or explosion problems.
(4) Te calculation cost of DR images is high, and it is
difcult to train the model.

2.4. Visual Transformer in Medicine Images. Following the
unprecedented success in natural language tasks, trans-
formers [48] have also made great achievements in image
recognition tasks recently. Te ViTmodel has become very
popular in various computer vision tasks including image
classifcation [16], image detection [49], image segmentation
[50], and so on. In the feld of natural image recognition, ViT
and its derived instances have achieved state-of-the-art
performance on several benchmark datasets.

Recently, the ViT has been successfully applied in
medical image classifcation. Yu et al. [51] proposed the
MIL-ViT model, which was frst pretrained on a large
dataset of fundus images, and then fne-tuned on the
downstream task of retinal disease classifcation. MIL-
based headers are used in the MIL-ViT system and can be
used with ViT in a plug-and-play way. Experiments on
APTOS2019 and RFMiD2020 datasets show that the per-
formance of MIL-ViT is better than that of the baselines
based on CNN. Most data-driven methods regard DR
classifcation and lesion detection as two independent
tasks, which may not be optimal, because errors may be
propagated from one stage to the next. To handle these two
tasks together, it is proposed in [52] to the lesion aware
transformer (LAT), which consists of an encoder-based
pixel relationship and a decoder of the lesion-aware
transformer. In particular, they take advantage of the
transformer decoder to express lesion detection as a weakly
supervised lesion localization problem. Te LATmodel has
achieved the performance of the state of the art on the
Messidor-1, Messidor-2, and EyePACS datasets. Yang et al.
[53] proposed a hybrid structure consisting of the con-
volutional layer and the transformer layer to classify fundus
diseases on OIA datasets. Similarly, Wu et al. [54] and
AlDahoul et al. [55] also verifed that the ViTmodel is more
accurate than the CNN model in DR classifcation. As can
be seen from the previous references, most methods di-
rectly use the original ViTmodel as a plug-and-play way to
improve classifcation performance. Based on the previous

observations, we think that using ViT as the backbone
network to integrate domain-specifc contexts can improve
DR classifcation performance.

Apart from medical image classifcation, ViT is widely
used in medical image segmentation [56], medical image
detection [57], medical image reconstruction [58], medical
image synthesis [59], and medical image report generation
[60] and other tasks. However, some studies [61] have shown
that the transformer is highly dependent on massive data,
and its performance can surpass CNN only after training on
large datasets. Most medical images have small public
datasets and few labels, which limit the application of
transformers in this feld.

3. Methods

In this section, we frst briefy outline our proposed network
and then explain the key network components of the net-
work in detail. Finally, the loss function of the designed is
given.

3.1. Overview. Classifcation is usually based on diferences
or distinctions between categories. Diabetic retinopathy
develops from mild to severe, and there is correlation be-
tween adjacent classes. For example, the severe DR stage
follows the moderate DR stage, and the moderate DR stage
follows the mild DR stage. Keeping this in mind, we propose
a classifcation model that distinguishes fve classes of DR
through the ability of the ViT network to capture subtle
changes and the discriminative ability of CSRA’s diferent-
category features. Te model outputs fve probability scores
(which sum to 1), corresponding to the fve classes of DR.
Te DR classifcation network architecture we designed is
shown in Figure 2. It is composed of two key modules, FEB
and GPB. FEB is mainly used for image feature extraction,
while GPB is mainly used for classifcation prediction.

Te proposed approach is presented as an algorithm in
Algorithm 1.

3.2. FeatureExtractionBlock. As mentioned previously, the
FEB is mainly used for extracting features from images.
Te standard transformer accepts 1-D token embedded
sequences as input. To process a 2D image, we reshape the
image x with the original shape [H × W × C] into a se-
quence of fattened 2D patches xP ∈ RN×(P2C), where
(H, W) represents the resolution of the original image, C

represents the number of channels, (P, P) represents the
resolution of each patch, and N � HW/P2 represents the
number of patches. Te transformer uses the same vector
dimension D for all its layers, so we use a linear mapping
layer to map the image patches to the D dimension.
Similar to the [class] character in the BERT model,
learnable embedding z00 � xclass is added before the block
embedding sequence. Te output state embedded in the
transformer encoder is treated as an image representation.
Te processing of this process is shown in the following
equation:
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z0 � xclass; x
1
pE; x

2
pE; · · · ; x

N
p E􏽨 􏽩 + Epos,

E ∈ R P2C( )×D
, Epos ∈ R

(N+1)×D
,

(1)

where E is the weight vector of the linear mapping layer and
Epos is the positional embedding, which is directly added to
the image patch embedding. Te purpose of position em-
bedding is to preserve the position information of diferent
blocks, and the resulting sequence of embedded vectors is
used as the input of the transformer encoder.

Figure 3 shows the network structure of the transformer
encoder [16]. It consists of a stack of six identical encoding
layers, each of which has two encoding sublayers. Te frst
encoding sublayer is a multihead attention layer, while the
second encoding sublayer is a position-wise feed-forward
network. Residual connection is used between the two
encoding sublayers, and the output of each encoding sub-
layer is normalized by the Layer Norm. Terefore, each
sublayer can be represented as LN(Sublayer(x)), where
Sublayer(x) is a function of the sublayer itself. For the
convenience of residual connection, the output dimensions
of all sublayers in the model are dmode l � 512. In the
transformer, the attention function maps the queries, keys,
and value vectors into an output vector, which is packaged
into matrices Q, K, and V, respectively. Attention is de-
scribed in the following equation:

Attention(Q, K, V) � softmax
QK

T

��
dk

􏽰􏼠 􏼡V. (2)

Te multihead attention mechanism performs L dif-
ferent learnable linear mappings on the queries, keys, and
value vectors and maps them into vectors of dimensions dk,
dk, and dv, respectively. Te head and multihead are de-
scribed as follows:

headi � Attention QW
Q
i , KW

K
i , VW

V
i􏼐 􏼑. (3)

MultiHead(Q, K, V) � Concat head1, . . . , headh( 􏼁W
O

, (4)

where the parameter matrix WQ
i ∈ R

dmode l×dk ,
WK

i ∈ R
dmode l×dk , WV

i ∈ R
dmode l×dv , and WO ∈ Rhdv×dmode l .

3.3.GradingPredictionBlock. Fundus image classifcation is
a challenging computer vision task for practical applica-
tions. To capture the diferent spatial regions occupied by
objects from diferent classes more efciently, we introduce
a class-specifc residual attention algorithm [62] in GPB.
With spatial attention scoring, the class-specifc residual
attention (CSRA) generates specifc features for each class
and then uses average pooling on these features for feature
fusion.

Flatten Patch + Position
Embedding

Transform
Encoder

Feature
Matrix

1×1 conv

1×1 conv

1×1 conv

Score tensor 1

Score tensor 2

Score tensor H

Residual Attention
T1 = 1

Residual Attention
T2 = 2

Residual Attention
TH = ∞

+

… … …

0

1

2

3

4Preprocessed Image

Feature
Extraction

Block

Grading
Prediction

Block

Figure 2: Pipeline of the proposed method.

Require: Fundus Images and Labels (X, Y), where Y� { y/y∊ {0, 1, 2, 3, 4}}
Input: fundus images x ∊X

(1) Initialize the network parameters
//Feature Extraction Block (FEB)

(2) Image division Patch, that is, x is divided into 9 patches of fxed size.
(3) Linear Projection of Flatted Patches, which fattens the patch into a row vector and maps it to the specifed dimension through a

Linear Projection.
(4) Patch + Position Embedding, which generates a CLS token, then splices it to the input path embedding and generates position

information for each patch. Patch + Position Embedding is added directly as a new input token.
(5) Transformer Encoder, repeat stacking Encoder Block L times for image feature extraction.

//Grading Prediction Block
(6) For the extracted feature matrix I, multiple fractional tensors are generated via diferent 1× 1 convolutions.
(7) Tese class features are fused by average pooling.
(8) For the fused features, the classifcation result is obtained through an FC classifer.

Output: Trained model predicts probability class corresponding to ∀y for an input x

ALGORITHM 1: Training the classifcation of the DR model.
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As shown in Figure 4, the feature matrix x ∈ Rd×h×w of
the input image is extracted by the FEB. Here, d, h, and W
represent the dimension, height, and width of the feature
matrix, respectively, and we assume that d is 2048, h is 7, and
W is 7. Firstly, the feature matrix x is decoupled into a
position feature matrix group x1, x2, . . . , x49 (xj ∈ R2048).
Ten, a fully connected layer (1× 1 convolution) is used as
the classifer. Note that each class has its own specifc fully
connected layer classifer, and the parameter of the classifer
mi corresponding to the ith class is mi ∈ R2048.

Te CSRA score is defned in [62] by the following
equation:

s
i
j �

exp TxT
j mi􏼐 􏼑

􏽐
49
k�1 exp TxT

kmi􏼐 􏼑
, (5)

where T (>0) is the temperature control factor and si
j is the

probability that class i appears at the position j.
Te CSRA fi for the class i is given by the following

equation:

f
i

� g + λa
i
. (6)

Here, ai is a class-specifc feature vector and ai � 􏽐
49
k�1 si

kxk.
λis a hyperparameter (setting λ� 0.3), g � 1/49􏽐

49
k�1 xk.

According to [62], the dot product of the CSRA fi of the
ith class and the classifer mi corresponding to this class
obtain the fnal logical output, as shown in the following
equation:

􏽢y≜ y
1
, y

2
, . . . , y

C
􏼐 􏼑 � m

T
1 f

1
, m

T
2 f

2
, . . . , m

T
Cf

C
􏼐 􏼑. (7)

Here, C is the number of classifcation categories.

3.4. Loss Function. In this paper, the binary cross-entropy
(BCE) loss function given in (8) is used to calculate the loss
between prediction y and label 􏽢y of ground truth. Te
stochastic gradient descent (SGD) method is used to opti-
mize the loss function.

L � − 􏽘
N

i�1
yilog􏽢yi + 1 − yi( 􏼁log 1 − 􏽢yi( 􏼁. (8)

4. Experiments and Results’ Discussion

4.1. Datasets. Te DDR dataset is provided by Ocular
Disease Intelligent Recognition (ODIR-2019) for lesion
segmentation and lesion detection [20]. Tis dataset consists
of 13,673 fundus images from 147 hospitals, covering 23
provinces in China. For DR classifcation tasks, the division
of the training set, validation set, and test set is provided on
DDR, of which 6835 are used for training, 2733 are used for
validation, and the remaining 4105 are used for testing. Te
DR images in DDR are divided into six classes: no DR, mild
nonproliferative DR, moderate nonproliferative DR, severe
nonproliferative DR, proliferative DR, and ungradable.

Te IDRiD dataset (Te Indian Diabetic Retinopathy
Image Dataset) is the frst database representing the Indian
population [63]. It is a dataset consisting of typical DR and
normal retinal structures and is divided into three parts,
namely, segmentation, classifcation, and location. Among
them, classifcation consists of 516 original color fundus
images which are divided into the train set (413 images) and
test set (103 images). In addition, this dataset provides in-
formation on the disease severity of DR and diabetic macular
edema for each image. Tis makes it ideal for the devel-
opment and evaluation of image analysis algorithms for the
early detection of DR.

4.2. Implementation Details. In order to prepare more
trainable data, we do some operations on the original im-
ages. In this paper, the pretrained backbone model pa-
rameters are used, and the training is fne-tuned on the used
datasets. Limited by the memory received, the large images
are randomly resized 512× 512 sizes. In addition, we apply
random horizontal fips, vertical fips, and random rotation
as forms of data augmentation to reduce overftting. Our
framework is implemented by PyTorch 1.6 and runs on
NVIDIA Quadro RTX 6000 GPU with 24GB of memory.
Table 1 highlights the hyperparameters used in training.

4.3.EvaluationMetrics. We select the following indicators to
evaluate the performance of the classifcation model. Tese
indicators are calculated according to equations (9)–(13): (9)

Norm
Multi-Head
Attention MLP+ Norm

L ×

+

Figure 3: Transform encoder.
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precision, which means the proportion of samples that are
correctly classifed as positive; (10) recall/sensitivity, which is
the probability that the DR image of the lesion is not missed
as negative; (11) specifcity, which is the probability that a
DR image with normal specifcity will not be misjudged as
positive; (12) accuracy represents the correct proportion of
model classifcation; (13) F1-score, which is the harmonic
mean between precision and recall. Tese initial metrics are
added to a confusionmatrix of multiclassifcation. Equations
(14)–(17) make it possible to extend the defnitions of these
performance indicators to N classes. Tis work uses the
following indicators (macro-average): accuracy, sensitivity,
specifcity, and F1-score to evaluate the DR classifcation
process.

Precision �
TP

TP + FP
, (9)

Recall �
TP

TP + FN
, (10)

Specificity �
TN

TN + FP
, (11)

Accuracy �
TP + TN

TP + FP + FN + TN
, (12)

F1 − score �
2 ∗ Precision ∗ Recall

(Precision + Recall)
, (13)

TP for class k � Ak,k, (14)

FP for class k � 􏽘
n

i�0
Ai,k

⎛⎝ ⎞⎠ − Ak,k, (15)

FN for class k � 􏽘
n

i�0
Ak,i

⎛⎝ ⎞⎠ − Ak,k, (16)

TN for class k � 􏽘
n

i�0
􏽘

n

j�0
Ai,j

⎛⎝ ⎞⎠ − 􏽘
n

i�0
Ai,k − 􏽘

n

i�0
Ak,i + Ak,k,

(17)

where TP (true positive) represents the positive samples
predicted by the model to be in a positive class, TN (true
negative) represents the negative samples predicted by the
model to be in the negative class, FP (false positive) rep-
resents the negative samples predicted to be positive by the
model, and FN (false negative) indicates the positive sample
predicted by the model as a negative class.

In addition, the area under the curve (AUC) of the
receiving operating characteristic (ROC) curve is employed,
which is also recognized as a metric of fundus image grading
in previous research. Te AUC refects the performance of
the data predicted positively and also characterizes the ef-
fectiveness of the model. Te higher the AUC value, the
better the efect of model classifcation.

+

ai

x g

f i yi

mi

Spatial pooling

Average pooling

λ

Figure 4: CSRA model.

Table 1: Te DR model training hyperparameters.

Hyperparameters Valor
Optimizing function SGD optimizer
Momentum 0.9
Weight decay 5×10−4

Epochs 20
Batch size 32
Initial learning rate 1× 10−3

Dropout 0
Classifer 0.01
Number of classes 5 and 6 classes
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4.4. Evaluation of the Model Performance. In this work, the
DR classifcation method in 5 severity categories from 0 to 4
is proposed. An additional category (class 5), similar to [20],
is related to images presenting artifacts, which prevent clear
evaluation of information generated. A second experiment
was performed to exclude images with artifacts (class 5). To
evaluate the performance of our model, we trained and
tested it on DDR and IDRiD datasets. Figure 5 is the loss
curve of our model training process on the DDR dataset. It
can be seen that the loss decreases with the increase in
training times. In the frst 6 epochs, the loss value of the test
set and the train set decreases signifcantly. Te loss value of
the test set does not decrease after the 7th epoch and the
train set after the 9th epoch, and the model training tends to
be saturated. From the change of the loss curves, it can be
seen that there is little diference between the train loss and
the test loss, which means that our model does not show
overftting.

For the prediction classifcation model, we hope that the
more accurate the prediction results of the model, the better.
Tat is, the larger the value of TP and TN in the confusion
matrix, the better and the smaller the value of corresponding
FP and FN. However, confusing the matrix will calculate the
number. With a large amount of data, it is difcult to directly
judge whether the model is good or bad. Besides, accuracy is
not a good indicator for unbalanced data sets. Terefore, on
the basic statistical results of the confusion matrix, we in-
troduced fve metrics: precision, recall, specifcity, F1-score,
and accuracy.

Te six classifcation confusion matrices and the fve
classifcation confusion matrices obtained by this method
are shown in Tables 2 and 3, respectively. From the two
tables, it can be seen that although there are misclassifca-
tions between classes, most of them are classifed into ad-
jacent classes. Most of the data fall on the diagonal line. In
addition, most of the data fall on the diagonal line, which
also proves that this algorithm is suitable for DR image
classifcation.

Tables 4 and 5 present the metrics obtained from this
work, separated by class and database. It was observed that in
both results, in cases with no DR and proliferative stage
classes, the DR model has a high classifcation index. It can
be analyzed that the model can distinguish the categories
with distinct characteristics. In the intermediate classes
(from 1 to 3), the classifcation index of the DR model is not
high. Tis is because there are no obvious diferences be-
tween the characteristics of these categories, and it is easy to
be confused with nearby categories. Comparing the results
in Tables 4 and 5, the results obtained show that including
ungradable category (class 5) improves accuracy in all
categories. Tis also refects that the image quality plays an
important role in the classifcation of the model.

Te ROC curve and AUC value are used to evaluate the
performance of our model. As shown in Figure 6, the AUC
values of class 0, class 1, class 2, class 3, class 4, and class 5
were 0.9980, 0.6129, 0.9509, 0.9455, 0.9741, and 0.9293,
respectively. Our model performed well enough in class 0,
class 2, class 3, class 4, and class 5. However, the per-
formance of class 1 was not satisfactory. In addition to the

possible reasons we have analyzed previously, the serious
imbalance of the amount of data is also a very important
factor. After all, the total sample size in the DDR dataset is
13673, while the sample size of class 1 is only 630. To solve
this problem, we tried to resample the data and retrain the
model by binary classifcation. Te AUC of class 1 can
reach 0.9430. In this way, if it is just a simple DR
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Figure 5: Loss curves on the train set and test of DDR.

Table 2: Confusion matrix on the DDR dataset for DR classif-
cation model.

Actual label
Predict label

0 1 2 3 4 5
0 1847 5 28 0 0 0
1 65 79 42 0 1 2
2 576 34 639 14 28 53
3 6 1 17 38 8 1
4 9 0 87 2 152 25
5 3 0 6 0 12 325
Bold font indicates the best result in each column.

Table 3: Confusion matrix on the DDR dataset for the IDRiD
classifcation model.

Actual label
Predict label

0 1 2 3 4
0 20 0 14 0 0
1 2 3 0 0 0
2 3 0 29 0 0
3 0 0 9 10 0
4 1 0 2 0 10
Bold font indicates the best result in each column.

Table 4: Performance measures of the DR classifcation model for
DDR.

Class Precision Recall Specifcity F1-score Accuracy
0 0.7329 0.9824 0.0208 0.8395 0.8280
1 0.6639 0.4180 0.0276 0.5130 0.9635
2 0.7607 0.4754 0.2159 0.5852 0.7793
3 0.7037 0.5352 0.0081 0.6080 0.9881
4 0.7562 0.5527 0.0315 0.6387 0.9581
5 0.8005 0.9393 0.0057 0.8644 0.9752
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screening, the binary classifcation model can be used in
clinical applications for mild patients. If you want to
evaluate the risk level of patients and image quality, you
can use the multiclass model.

4.5. Comparing with Other Methods. Comparing the ac-
curacy and average accuracy (AA) of our method with
previous work reported on the DDR dataset (Table 6), our
method ranks frst in class 1, class 2, class 3, class 4, class 5,
and AA. Our model achieved an accuracy of 0.9635 on
class 1. Te state-of-the-art performance is achieved
among all models, which is almost 4 times the accuracy of
the second-best DenseNet-121 model (0.2275). Tis shows
that our model has made great improvement on the most
difcult part to identify mild DR, and our model has also
achieved the best performance in class 2, class 3, and class
4. Te performance has greatly improved. For the pur-
poses of image quality control, our model has also been
improved by 3.30% compared with the second-best VGG-
16 model. For the AA metric, our model achieved a
performance of 0.9154, which was 30.35% higher than the
second-best DenseNet-121 model. However, our model
does not perform as well as other models at level 0. Our
model is not set manually, but the optimal threshold is
obtained according to the Youden index. It can be

speculated that the reason is that the model made con-
cessions in order to reduce the rate of missed detection
and improve overall performance. In conclusion, com-
pared with other benchmark models, the model which is
based on ViT and CSRA is highly competitive in DR
severity classifcation.

4.6. Ablation Studies on the DDR Dataset. In this paper, the
infuence of each component in the network is studied by
an ablation experiment. First, we replace the transformer
with a diferent backbone to verify the infuence of FEB on
our model. Ten, CSRA is replaced by MLP, and there was
no change in the FEB module, to verify the infuence of
GPB on our model. At last, on the basis of keeping the
existing model unchanged, we set the diferent number of
heads of CSRA in GPB to verify the infuence of CSRA
parameters setting on the overall performance of the
model. Tables 7 and 8 detail the sensitivity, specifcity,
accuracy, and AUC values obtained from diferent ex-
periments and can be compared.

(1) Analyze the efect of FEB: frst of all, the FEB part
takes ResNet50 as the backbone to extract image
features. Compared to this design, our model im-
proves sensitivity by nearly 2%, specifcity by nearly
4%, accuracy by nearly 3%, and AUC by more than
6%. Ten, the FEA part uses ResNet101 as the
backbone of extracting image features. Compared
with this design, the sensitivity and specifcity of our
model are only slightly improved, and the accuracy
and average AUC values are increased by over 1%,
respectively.

(2) Analyze the efect of GPB: next, we keep the FEB
module unchanged and replace it with MLP by
CSRA. Compared with this design, the sensitivity
and accuracy of our model are improved by more
than 2%, the specifcity by more than 4%, and the
AUC value by nearly 4%, respectively. As can be seen
from Table 8, our model has achieved the best
performance in all the evaluation indexes.

(3) Analyze the efect of attention heads in GPB:
according to the research results of [62], we set the
head to 2 by default. In order to verify the infuence
of attention heads on our model and keep the
existing model unchanged, the number of CSRA
heads is set to 1, 4, and 6, respectively. It can be seen
from the experimental results in Table 8 that our
parameter setting achieves the best performance
(Head� 2).

Table 5: Performance measures of the DR classifcation model for IDRiD.

Class Precision Recall Specifcity F1-score Accuracy
0 0.7692 0.5882 0.1818 0.6667 0.8058
1 1.0000 0.6000 0.0200 0.7500 0.9806
2 0.5370 0.9063 0.0612 0.6744 0.7282
3 1.0000 0.5263 0.0968 0.6897 0.9126
4 1.0000 0.7692 0.0323 0.8696 0.9709
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Figure 6: Te ROC and AUC per category for DR classifcation on
the DDR dataset.
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5. Conclusions

According to the data of the International Diabetes Fed-
eration, diabetes is one of the fastest-growing global health
emergencies in the 21st century. By 2030, it is estimated that
643 million people will have diabetes (accounting for about
11.3% of the global population) [1]. DR is one of the
common chronic complications of diabetes. Due to the
diferent stage of DR severity, it can be divided into fve
stages from mild to severe. In this paper, we design a new
network to classify the fundus images of DR diferent stages
by using vision transformers and residual attention. Te
model is trained and tested on two publicly available fundus
image datasets (DDR dataset and IDRiD dataset). Te ex-
perimental results show that compared with the existing fve
DR classifcation benchmark methods, the proposed model
has better performance. However, limited by the number of
labelled samples and the imbalance of data, there is still a lot
of room for improvement in the identifcation and classi-
fcation of mild DR, which leads to the defciency of our
network. Terefore, in future work, we will continue to
improve the network structure and further modify the
learning strategy to achieve better classifcation performance
of DR severity.
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