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Feature extraction is an important step in the process of electroencephalogram

(EEG) signal classification. The authors propose a “pattern recognition” approach

that discriminates EEG signals recorded during different cognitive conditions. Wavelet

based feature extraction such as, multi-resolution decompositions into detailed and

approximate coefficients as well as relative wavelet energy were computed. Extracted

relative wavelet energy features were normalized to zero mean and unit variance and

then optimized using Fisher’s discriminant ratio (FDR) and principal component analysis

(PCA). A high density EEG dataset validated the proposed method (128-channels)

by identifying two classifications: (1) EEG signals recorded during complex cognitive

tasks using Raven’s Advance Progressive Metric (RAPM) test; (2) EEG signals recorded

during a baseline task (eyes open). Classifiers such as, K-nearest neighbors (KNN),

Support Vector Machine (SVM), Multi-layer Perceptron (MLP), and Naïve Bayes (NB) were

then employed. Outcomes yielded 99.11% accuracy via SVM classifier for coefficient

approximations (A5) of low frequencies ranging from 0 to 3.90Hz. Accuracy rates for

detailed coefficients were 98.57 and 98.39% for SVM and KNN, respectively; and for

detailed coefficients (D5) deriving from the sub-band range (3.90–7.81Hz). Accuracy

rates for MLP and NB classifiers were comparable at 97.11–89.63% and 91.60–81.07%

for A5 and D5 coefficients, respectively. In addition, the proposed approach was

also applied on public dataset for classification of two cognitive tasks and achieved

comparable classification results, i.e., 93.33% accuracy with KNN. The proposed

scheme yielded significantly higher classification performances using machine learning

classifiers compared to extant quantitative feature extraction. These results suggest

the proposed feature extraction method reliably classifies EEG signals recorded during

cognitive tasks with a higher degree of accuracy.

Keywords: feature extraction, feature selection, machine learning classifiers, electroencephalogram (EEG)

INTRODUCTION

Clinicians use the electroencephalogram (EEG) as a standard neuroimaging tool for the study
of neuronal dynamics within the human brain. Data extracted from EEG results reflect the
process of an individual’s information processing (Grabner et al., 2006). Recent technological
advances have increased the scope of EEG recording abilities by using dense groups of electrodes
including arrays of 128, 256, and 512 electrodes attached to the cranium. Visual inspection of these

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2017.00103
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2017.00103&domain=pdf&date_stamp=2017-11-21
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:hafeezullah.amin@utp.edu.my
mailto:aamir\protect _saeed@utp.edu.my
https://doi.org/10.3389/fncom.2017.00103
https://www.frontiersin.org/articles/10.3389/fncom.2017.00103/full
http://loop.frontiersin.org/people/172053/overview
http://loop.frontiersin.org/people/391972/overview


Amin et al. EEG Signals Analysis

massive data sets is cumbersome (Übeyli, 2009) for existing EEG-
based analysis techniques. Hence, optimized feature extraction of
relevant EEG data is essential to improve the quality of cognitive
performance evaluations, especially since it directly impacts a
classifier’s performance (Iscan et al., 2011). In addition, more
expressive features enhance classification performance; hence,
feature extraction has become the most critically significant step
in EEG data classification.

Several researchers investigated “Quantitative-EEG” (QEEG)
for the evaluation of neural activity during cognitive tasks. They
used time and frequency domain features such as, entropy, power
spectrum, autoregressive coefficients, and individual frequency
bands, etc. (Doppelmayr et al., 2005; Zarjam et al., 2012).
Frequency characteristics depend on neuronal activity and are
grouped into several bands (delta, theta, alpha, beta, and gamma;
Amin and Malik, 2013) that have been linked to cognitive
processes.

Several feature extraction methods have been reported in the
literature. These include time-frequency domain and the wavelet
transform (WT) (Iscan et al., 2011). WT-based analysis is highly
effective for non-stationary EEG signals compared to the short-
time Fourier transformation (STFT). Moreover, wavelet-based
features, including wavelet entropy (Rosso et al., 2001), wavelet
coefficients (Orhan et al., 2011), and wavelet statistical features
(mean, median, and standard deviations) have been reported
for the evaluation of normal EEG patterns and for clinical
applications (Yazdani et al., 2009; Garry et al., 2013). However,
significant gaps in the literature exist regarding cognitive load
studies and approaches to pattern recognition. Many studies
employedmultiple cognitive tasks such as, multiplication, mental
object rotation, mental letter composing, and visual counting
(Xue et al., 2003). These tasks are simple in nature and may
not induce a high enough load to activate correlative cognitive
neuronal networks that generate detectable electrical potentials.
Furthermore, from a pattern recognition perspective, several
studies excluded “feature normalization” and “feature selection”
steps (Xue et al., 2003; Daud and Yunus, 2004), while many
others used very few instances (observations) as input for
classifiers that query the output of classification algorithms
(Lin and Hsieh, 2009; Guo et al., 2011). In addition, some
studies failed to cross validate their proposed classification
procedures.

The present study utilized “Raven’s Advance Progressive
Metric” (RAPM)—commonly used to measure inter-individual
differences in cognitive performance—as its standard
psychometric cognitive task to stimulate EEG data (Raven,
2000; Neubauer and Fink, 2009). RAPM requires higher
cognitive processing resources and reasoning ability to perform
its tasks, which are non-verbal psychometric tests that require
inductive reasoning considered an indicator of cognitive
performance (Raven, 2000). The authors propose a “pattern
recognition” approach comprising feature extraction, feature
normalization, feature selection, feature classification, and cross
validation (Figure 5). Wavelet coefficients were extracted using
the discrete wavelet transform (DWT) as well as relative sub-
band energies, which were then standardized to zero mean and
unit variance. The feature selection process utilized statistical

methods including Fisher’s discriminant ratio (FDR) and
principal component analysis (PCA) to eliminate non-significant
features, which, in turn, optimized the “features” data set. As
for classification, we employed K-nearest neighbors (KNN),
Support Vector Machine (SVM), Multi-layer Perceptron (MLP),
and Naïve Bayes (NB) to optimize the “features” set even further
for our purpose of EEG pattern classification. Results were then
compared with existing quantitative methods to confirm rather
robust outcomes. Two EEG datasets were used to validate the
proposed method. Dataset I comprise complex cognitive task
(class 1) and baseline eyes open (class 2) task; while dataset II
comprises two cognitive tasks: mental multiplication (class 1)
and mental letter composing (class 2).

Section Materials and Methods describes materials and
methods, followed by section Experimental Results and
Discussion, which presents results and discussion, followed by
section Limitations and concluding remarks.

MATERIALS AND METHODS

This section provides details of experimental tasks and the
dataset used in this study. In addition, we briefly describe
the classification algorithms employed and the DWT, as
well as the computations used for wavelet and relative
energy.

Raven’s Advance Progressive Matric Test
(RAPM)
Raven’s Advance Progressive Matric Test (Raven, 2000) is
a non-verbal tool that measures levels of an individual’s
intellectual ability. It is commonly used to explicitly measure
two components of general cognitive ability (Raven, 2000): “the
ability to draw meaning out of confusion, and the ability to
recall and reproduce information that has been made explicit and
communicated from one to another.” The RAPM test comprises
48 patterns (questions) divided into two sets (I and II). Set-
I contains 12 practice patterns and Set-II contains 36 patterns
used to assess cognitive ability. As shown in Figure 1, each
pattern contains a 3 × 3-cell structure where each cell contains a
geometrical shape, except for the empty right-bottom cell. Eight
multiple options are presented as solutions for the empty cell. A
score of “1” is assigned for each correct answer and a score of “0”
for an incorrect answer. The processing time is 10 and 40min for
sets I and II, respectively.

Description of Dataset I
Procedures adopted for the recording and preprocessing of EEG
data are found in our previous studies [7, 8]. After preprocessing,
we divided the dataset into two classes as follows: Class 1 included
EEG data from eight experimental subjects recorded during their
RAPM task performances; Class 2 included EEG data recorded
with eyes-open (EO) from the same eight subjects’. As mentioned
in the RAPM task description, each subject completed 36 patterns
within a specified period. Hence, these EEG recordings were
time-marked for the onset of RAPM pattern display, and again
at the end of a subject’s response, specifically when pressing a
button indicating a solution. Each subject’s EEG recording was

Frontiers in Computational Neuroscience | www.frontiersin.org 2 November 2017 | Volume 11 | Article 103

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Amin et al. EEG Signals Analysis

FIGURE 1 | A simple Raven’s style pattern (Amin et al., 2015b).

segmented according to the number of patterns solved. Each EEG
segment was also considered an observation; thus, producing
36 observations per subject. However, a few patterns went
unanswered (unsolved) by some subjects, which EEG segments
were excluded from the analysis. We observed 280 observations
for Class 1. To maintain a balance between classes, EO and EC
(eyes-closed) data for each subject were segmented according to
the number of attempted RAPM patterns. As a result, EO data
also included 280 observations for Class 2.

Description of Dataset II
EEGdataset utilized in this study was originally reported by Keirn
and Aunon (1990) and publically available for reuse. The EEG
data was recorded by placing electrodes over C3, C4, P3, P4, O1,
and O2 positions according to 10–20 montage and referenced to
linked mastoids, A1 and A2. The impedances of all the electrodes
were kept below 5 k�. The data were digitized at 250Hz with
a Lab Master 12-bit A/D converter mounted on a computer.
Seven participants, 21–48 years old, recorded EEG data during
cognitive tasks. The data was recorded for duration of 10 s in
each trial and each task was repeated five times (for more detail
of dataset, see Keirn and Aunon, 1990 original work). For this
study, we tested our proposed approach on two cognitive tasks
employed from Keirn and Aunon’s dataset and described below.

Mental Multiplication Task
The participants were given nontrivial multiplication problems,
such as, multiply two multi-digit numbers, and were asked to
solve them without vocalizing or making any other physical
movements.

Mental Letter Composition Task
In this task, the participants were asked to mentally compose a
letter to a friend or relative without vocalizing.

The Discrete Wavelet Transform (DWT)
Discrete Wavelet Transform decomposition includes successive
high and low pass filtering of a time series with a down-
sampling rate of 2. The high pass filter [g (n)] is the discrete
“mother” wavelet and the low pass filter [h (n)] is its mirror
version (Subasi, 2007). The “mother” wavelet [Daubechies
wavelet (db4)] and corresponding scaling function are shown in
Figure 2.

Outputs from initial high pass and low pass filters are
called “approximations” and “detailed” coefficients (A1
and D1), respectively. A1 is disintegrated further and the
procedure repeated until reaching a specified number of
decomposition levels (see Figure 3; Jahankhani et al., 2006;
Subasi, 2007).

The scaling [ ϕj, k (n)] and wavelet functions [ ψj, k (n)] both
depend on low pass and high pass filters, respectively. These are
denoted as follows:

φj,k (n) = 2−j/2h
(

2−jn− k
)

(1)

ψj,k (n) = 2−j/2g
(

2−jn− k
)

(2)

Where n = 0, 1, 2, . . . , M − 1; j = 0, 1, 2, . . . , J − 1; k =
0, 1, 2, . . . , 2j − 1; J = 5; and

M is the length of the signal (Gonzalez and Woods, 2002).
Approximation coefficients (Ai) and detailed coefficients

(Di ) at the ith level are determined as follows (Orhan et al., 2011):

Ai = 1√
M

∑

n

x (n) .φj,k (n) (3)

Di = 1√
M

∑

n

x (n) .ψj,k (n) (4)

Relative and Total Wavelet Sub-band
Energy
Wavelet energy for each decomposition level (i = 1, . . . , l) is
determined as follows:

EDi =
N

∑

j=1

∣

∣Dij
∣

∣

2
, i = 1, 2, 3, . . . , l (5)

Where l = 5, reflects the level of decompositions

EAi =
N

∑

j=1

∣

∣Aij

∣

∣

2
, i = l (6)

Therefore, fromEquations (5) and (6), total energy can be defined
as:

ETotal =





l
∑

i=1

EDi + EAl



 (7)
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FIGURE 2 | Mother wavelet and scaling function (db4).

FIGURE 3 | DWT sub-band decomposition.

The normalized energy values represent relative wavelet energy
(see Figure 4 for an example of total and relative sub-band
energy).

Er =
Ej

ETotal
, (8)

Where Ej = EDi=1,...,5 or EAi=5 .

Classification Algorithms
Machine learning classifiers used in this study are now briefly
described.

A classifier utilizes values for independent variables (features)
as input to predict the corresponding class to which an
independent variable belongs (Pereira et al., 2009). A classifier
has a number of parameters that require training from a training
dataset. A trained classifier will model the association between
classes and corresponding features and is capable of identifying
new instances in an unseen testing dataset. We employed the
following classification methods to demonstrate the effectiveness
of this study’s proposed technique.

Support Vector Machine (SVM)
The SVM is a supervised learning algorithm that uses a kernel
trick to transform input data into higher dimensional space,
after which it segregates the data via a hyper-plan with maximal
margins. Due to its ability to manage large datasets, the algorithm
is widely used for binary classification problems in machine
learning. For more details on SVM, see (Hsu et al., 2003).

Multilayer Perceptron (MLP)
MLP is a non-linear neural network based method comprising
three sequential layers: input, hidden and output, respectively,
where the hidden layer transmits input data to the output
layer. However, the MLP model can cause over-fitting due to
insufficient or excessive numbers of neurons. For our purposes,
we employed the MLP model with five hidden neurons.

Naïve Bayes (NB)
The NB classifier provides simple and efficient probabilistic
classification based on Bayes’ theorem, which posits that
extracted features are not dependent. The NB model uses (i) a
maximum probability algorithm to determine the class of earlier
probabilities, and (ii) a feature’s probability distribution from a
training dataset. Results are then employed with a maximized
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FIGURE 4 | EEG signal energy and relative sub-band energy.

posteriori decision tree to find the specific class label for a new
test instance (Han et al., 2011).

k-Nearest Neighbor (k-NN)
The k-nearest neighbor is a supervised learning algorithm that
identifies a testing sample’s class according the majority class of
k-nearest training samples; i.e., a class label is allocated to a new
instance of themost common class amongst KNN in the “feature”
space. In this study, k value was set to three. See (Pereira et al.,
2009; Han et al., 2011) for details on k-NN, SVM, MLP, and NB
machine learning classifiers.

K-fold Cross Validation
All classification models in the present work were trained and
tested with EEG data and then confirmed using k-fold cross
validation, which is a commonly used technique that compares
(i) performances of two classification algorithms, or (ii) evaluates
the performance of a single classifier on a given dataset (Wong,
2015). It has the advantage of using all instances in a dataset

for either training or testing, where each instance is employed
for validation exactly once. For our purposes, we used 10-
fold cross-validation to train and test extracted features for all
classifiers.

The Proposed Scheme
Figure 5 summarizes the proposed feature extraction scheme,
which comprises the following steps:

Steps:

a. Feature Extraction

1. Decomposition of EEG signal into sub-bands using DWT
2. Computation of each sub-band’s relative energy

Repeat steps 1 and 2 for all channels for each subject and for
each segment (question)

b. Feature Visualization and Standardization

1. Standardization of extracted features to zeromean and unit
variance
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FIGURE 5 | Proposed scheme for feature extraction and classification of EEG signals.

c. Feature Selection

1. Application of FDR to the “features” set followed by sorting
features in descending order according to the power of
discrimination

2. Selection of subset features above the FDRmedian of sorted
features as listed in step 1

3. Transforming selected subset features to principal
components followed by sorting in descending order
according to principal value

4. Selection of principal components up to 95% variance
5. Reconstruction of corresponding feature vectors

Repeat steps 1 to 5 for all sub-bands in the “features” set
d. Feature Classification

1. Classification of selected feature sets via KNN, SVM, MLP
and NB

2. Evaluation of classifier performances with 10-cross
validation and assessing degrees of accuracy, sensitivity
and specificity

Repeat steps 1 and 2 for each sub-band of the “features” set

Feature Extraction
The EEG signal was decomposed into sub-band frequencies by
using the discrete DWT with Daubechies 4 Wavelet to level
5. Approximate and detailed coefficients were then computed
(see Figure 6 for example). Table 1 presents one channel’s sub-
band relative energy percentage and frequency range for a
single experimental subject. Total and relative sub-band energies
were then computed from extracted wavelet coefficients. We
calculated relative wavelet energy(ErD1,ErD2, . . . ,ErA5) by using
Equation (8).

We computed relative energy features for all experimental
subjects and for all data collected from all channels. Accordingly,
for dataset I, the feature matrix describing relative energy for
a single subject in each EEG condition and for each sub-band
(detailed or approximated) becomes:

Relative Energy Feature Matrix (
−→
Fr ) = [ErA5(280×128)]

Where, the number of channels is 128; the number of instances
in each class is 280; ErA5 represents relative energy at
approximation coefficients A5 (0–3.90Hz). Similarly, feature
matrices for D2–D5 coefficients were identically represented for
each class and each experimental subject.

Feature Visualization and Normalization
Feature visualization is an important step before the application
of any normalization method. Features should be visualized to
check the distribution of feature values (Figure 7). In this study,
features were standardized as follows:

x́ = x− µ

σ
(9)

Where x is the original feature value; µ is the mean; and σ is the
standard deviation of the “features” set, respectively, and x́ is the
normalized feature value.

Feature Selection
The main objective of the feature selection step in pattern
recognition is to select a subset from large numbers of
available features that more robustly discriminate for purposes
of classification (Theodoridis et al., 2010). In this study, FDR and
PCA were used to optimize features selection.

FDR is an independent type of class distribution and a
quantifier of the discriminating power of individual features
between classes. Ifm1 andm2 are mean values, and σ 2

1 and σ 2
2 are

respective variances for a feature in both classes, FDR is defined
as:

FDR = (m1 −m2)
(

σ 2
1 − σ 2

2

) (10)

PCA (Abdi andWilliams, 2010) selects for mutually uncorrelated
features; hence, it avoids redundancy in the feature set. In a
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FIGURE 6 | A5 and D1–D5 components of an experimental subject’s EEG signal during a cognitive task.

TABLE 1 | Frontal lobe F3 channels.

Levels Wavelet energy % Wavelet coefficients Frequency bands (Hz)

1 0.66 D1 62.50–125

2 2.31 D2 31.25–62.50

3 7.63 D3 15.62–31.25

4 10.77 D4 7.81–15.62

5 21.55 D5 3.90–7.81

5 57.12 A5 0–3.90

Relative energy sub-band percentages and frequency range.

feature set (X), containing (l) features of (N) examples each, such
that (xi ǫ Rl, i = 1, 2,..., N), PCA aims to linearly transform the
feature set and thus obtain a new set of samples (y), in which
components of (y) are uncorrelated per Equation (12).

y = ATx (11)

Where (A) is a transformation matrix or arrangement of singular
vectors that correspond to significant singular values.

The PCA process requires a number of steps:
Step 1: Covariance matrix (S) of feature matrix (X) is

estimated:

S =
N

∑

i=1

xix
T
i (12)

Step 2: Singular value decomposition (SVD) is applied to (S) as
well as to (l) singular values and singular vectors (λi) and (aiǫRl);
then (i = 1, 2,..., l) are computed. Singular values are organized
in descending order (λ1 ≥ λ2 ≥ ··· ≥ λl), after which correct
pairing of singular values with corresponding singular vectors
are ensured. In addition, (m) largest singular values are selected.
Normally, (m) is selected to include a certain percentage of total
energy (95%). Singular values (λ1 ≥ λ2 ≥ ··· ≥ λm) are called (m)
principal components. Respective (column) singular vectors (ai, i
= 1, 2,...,m) are then used to construct the transformationmatrix:

A = [a1 a2 a3 . . . am ] (13)

Each l-dimensional vector in the original space (X), is
transformed to an m-dimensional vector (y), via transformation
(y = ATx). In other words, the ith element of (y), i.e. [y(i)], is the
projection of (x) on [ai (y (i) = AT

i x)].

Feature Classification
The optimized “features” set was visualized by using probability
distribution functions (PDFs) and the ROC curve to check for
any overlapping in each selected feature for both classes (see
Figure 8: EO vs. RAPM). Each selected feature yields a partial
overlap and ROC values that are >0.9 or close to 1.0, which
confirm the discriminating power of the selected “features” set.
Finally, the classifiers, KNN, SVM, MLP, and NB, were employed
for the discrimination of both classes.
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FIGURE 7 | Feature visualization of one sample within a dataset using normal probability and histogram.

EXPERIMENTAL RESULTS AND
DISCUSSION

Experimental Setup
According to the 10-fold cross validation process, we divided
the dataset into 10 subsets of equal instances with nine subsets
employed for classifier training and one subset for classifier
testing. The process was repeated 10 times so that each subset was
tested for classification. Classifier performance was measured for
accuracy, sensitivity, specificity, precision, and the Kappa statistic
(Amin et al., 2015a), each defined as follows:

Accuracy = Total no. of correctly classified instances

Total numbers of instances
× 100

(14)

Sensitivity = True Positive

True Positive + False Negative
× 100 (15)

Specificity = True Negative

True Negative + False Positive
× 100 (16)

Precision = True Positve

True Positive + False Positive
× 100 (17)

Kappa (k) =
(

Po − PCe
)

(1− PCe )
(18)

Where Po represents the probability of overall agreement
between label assignments, classifier and true process; and PCe
denotes the chance agreement for all labels; i.e., the sum of the
proportion of instances assigned to class multiplies in proportion
to true labels of that specific class in the data set.

Classification Results
We used DWT to extract relative wavelet energy features for D1–
D5 and A5 for both EEG datasets, where dataset I contained
two conditions (EO and RAPM) and dataset II contained two
cognitive tasks, i.e., mental multiplication task and mental letter

composing task. The extracted features were reduced to optimum
number of features by using FDR and PCA. We further applied
machine learning algorithms, i.e., SVM with RBF kernel, MLP
with five hidden layers, KNN with k = 3, and NB to classify
the extracted features to all decomposition levels (D2–D5 and
A5). The detail coefficient D1 reflects high frequency (62.5–
125Hz) components, thus considered as noise and excluded from
classification.

Results of Dataset I
The performance of SVM and KNN classifiers showed 99.11
and 98.21% accuracies each for A5 approximation coefficients,
and 98.57 and 98.39% accuracies for D5 details coefficients,
respectively, as shown in Tables 2, 3. This impressive
performance at level 5 reflects low frequency (0–3.90Hz)
and above low frequency (3.90–7.81Hz) cognitive domination
tasks. MLP and NB classifier accuracies were 97.14 and 89.63%,
respectively, for approximated coefficients and 91.60 and 81.07%
for detailed at level 5. Results for other performance parameters,
i.e., sensitivity, specificity, precision, and the Kappa statistic,
were also impressive. Subject-wise classification accuracies for
complex cognitive task (RAPM) vs. eyes open (EO) baseline
are presented in Tables 4, 5. The mean and standard deviation
of accuracies with KNN, SVM, MLP, and Naïve classifiers for
approximation coefficients (0–3.90Hz) are 96.25 ± 2.47, 97.14
± 1.60, 97.14 ± 1.43, and 96.07 ± 1.19; and detailed coefficients
(3.90–7.81Hz) are 94.10 ± 2.69, 95.35 ± 2.62, 97.32 ± 1.42, and
93.92± 2.83, respectively.

Results of Dataset II
For classification of two cognitive tasks, i.e., mental
multiplication task and mental letter composing task, MLP
and SVM classifiers achieved 89.17% and 86.67% accuracies each
for A5 approximation coefficients, and KNN and MLP classifiers
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FIGURE 8 | (A) Distributions with partial overlap between pdfs of both classes—(eyes open and RAPM); (B) Corresponding ROC Curve where 0 denotes complete

overlap and 1 indicates complete separation.

TABLE 2 | Approximation coefficients (0 – 3.90Hz) for cognitive tasks.

Classifier Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

AUC Precision

(%)

Kappa

Statistic

KNN, k = 3 98.21 96.88 99.63 0.98 99.64 0.96

SVM, RBF 99.11 99.28 98.93 0.99 98.93 0.97

MLP, N = 5 97.14 96.48 97.83 0.98 97.86 0.94

Naïve 89.63 88.24 90.77 0.94 91.07 0.78

Relative wavelet energy classification results for level 5.

TABLE 3 | Detailed coefficients (3.90 – 7.81Hz) for cognitive tasks.

Classifier Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

AUC Precision

(%)

Kappa

Statistic

KNN, k = 3 98.39 98.22 98.56 0.98 98.56 0.96

SVM, RBF 98.57 97.89 99.28 0.98 99.28 0.96

MLP, N = 5 91.60 88.70 94.98 0.92 95.36 0.89

Naïve 81.07 82.71 79.59 0.82 78.57 0.79

Relative wavelet energy classification results for level 5.

achieved 93.33 and 92.50% accuracies for D5 details coefficients,
respectively, as shown in Tables 6, 7. These results indicate that
the proposed approach is strong enough to perform on public
dataset for classification of cognitive tasks. Comparison of the
proposed approach with previous work on the same dataset is
presented in Table 8.

DISCUSSION

This study used a “pattern recognition” based approach to
classify EEG signals that were recorded during resting and

TABLE 4 | Approximation coefficients (0 – 3.90Hz) for subject wise classification

accuracy.

KNN SVM MLP BN

Subject 1 97.14 100 97.14 97.14

Subject 2 98.57 98.57 98.57 95.71

Subject 3 94.28 97.14 94.28 95.71

Subject 4 92.85 95.71 95.71 94.28

Subject 5 92.85 97.14 98.57 95.71

Subject 6 100 98.57 97.14 95.71

Subject 7 97.14 95.71 97.14 95.71

Subject 8 97.14 100 98.57 98.57

Mean 96.25 97.86 97.14 96.07

STD 2.47 1.60 1.43 1.19

Relative wavelet energy classification results for level 5.

active cognitive states of consciousness. Using SVM, MLP, KNN,
and NB classifiers for both conditions, we classified extracted
relative wavelet energy features for D2–D5 and A5. Classification
results were not prominently evident for all decomposition levels.
Results for the relative energy of approximation and detailed
coefficients at level 5 showed the highest performances for
cognitive task dominations at low frequency (0–3.90Hz) and
above low frequency (3.90–7.81Hz; Tables 2, 3, 7, 8).

These results indicate that relative wavelet energy for low
frequency (0–3.90Hz) and above low frequency bands (3.90–
7.81Hz) is a useful feature for EEG classification of cognitive
tasks as well as separation of baseline (eyes open) and complex
cognitive task. These results confirm DWT’s ability to compactly
represent EEG signals and compute total and relative energy
levels for different frequency bands. The normalization process
reduced the non-Gaussianity of extracted features. Furthermore,
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TABLE 5 | Detailed coefficients (3.90 – 7.81Hz) for subject wise classification

accuracy.

KNN SVM MLP BN

Subject 1 90.00 91.42 97.14 91.42

Subject 2 95.71 97.14 95.71 98.57

Subject 3 94.28 95.71 95.71 95.71

Subject 4 90.00 98.57 98.57 92.85

Subject 5 94.28 95.71 97.14 91.42

Subject 6 95.71 91.42 100 91.42

Subject 7 95.71 95.71 97.14 92.85

Subject 8 97.14 97.14 97.14 97.14

Mean 94.10 95.35 97.32 93.92

STD 2.69 2.62 1.42 2.83

Relative wavelet energy classification results for level 5.

TABLE 6 | Approximation coefficients (0 – 3.90Hz) for cognitive tasks (mental

multiplication vs. mental letter composing).

Classifier Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

AUC Precision

(%)

Kappa

statistic

KNN, k = 3 82.50 80.95 84.21 0.85 85 0.84

SVM, RBF 86.67 87.93 85.48 0.89 85 0.87

MLP, N = 5 89.17 89.83 88.52 0.90 88.33 0.89

Naïve 78.33 77.42 79.31 0.79 80 0.77

Relative wavelet energy classification results for level 5.

TABLE 7 | Detailed coefficients (3.90 – 7.81Hz) for cognitive tasks (mental

multiplication vs. mental letter composing).

Classifier Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

AUC Precision

(%)

Kappa

statistic

KNN, k = 3 93.33 91.94 94.83 0.92 95 0.93

SVM, RBF 90 87.50 92.86 0.92 93.33 0.90

MLP, N = 5 92.50 90.48 94.74 0.94 95 0.91

Naïve 84.17 82.54 85.96 0.85 96.67 0.83

Relative wavelet energy classification results for level 5.

the use of the proposed feature selection approach minimized
non-significant features from a “features” set before feeding it to
classifiers, which reduces computational cost.

Results of Dataset I are not exactly comparable with previous
work except the authors’ own work published in 2015 in
which the same EEG data was used as described in dataset
I. However, dataset II is a publicly available dataset, which
is used to compare with previous work done on the same
dataset. The notion reflected by the studies is the discriminatory
performance levels (accuracy) achieved by various quantitative
analytical approaches to classify two different cognitive activities
using EEG signals, for example mental multiplication and
mental letter composing(Liang et al., 2006; Zhang et al.,
2010; Vidaurre et al., 2013; Dutta et al., 2018). These studies
employed the EEG data originally reported by Keirn and Aunon

(1990) and applied different feature extraction and classification
algorithms. Here, the authors reported the results of previous
studies for comparison of only two cognitive tasks, i.e., mental
multiplication and mental letter composing, for example 81.5%
classification accuracy reported by Keirn and Aunon (1990)
for classification of mental multiplication from mental letter
composing (see Table 8 for a detailed summary of these methods
and results as reported in the literature). The cited authors
reported low classification accuracy rates and used complex
classification models such as, neural network or kernel-based
classifiers. Our proposed scheme, as demonstrated in the present
study, yielded higher accuracy rates with a SVM and KNN,
indicating superior discriminatory performances when assessing
mental tasks. In addition, the present study achieved high
classification accuracy than our previous study using the same
EEG dataset. Therefore, the proposed method employed feature
normalization and optimization modalities that appear to have
yielded a more efficient and reliable solution.

LIMITATIONS

There are some limitations in the present study, which should
be highlighted for future research. The authors used dataset
from their previous study and a small public dataset. However,
a large public dataset can validate the robustness of the proposed
method for EEG signals classification. In addition, EEG recorded
during a cognitive task is relatively easy to separate from
a baseline EEG than EEG signals recorded in two different
cognitive tasks. In future study, we will extend the application of
the proposed method to clinical datasets, such as, classification of
ictal vs. inter-ictal or normal EEG patterns.

CONCLUSION

The authors presented a pattern recognition based approach for
classification of cognitive tasks using EEG signals. The DWT
was applied to EEG signals for decomposition. Classification
results were superior to our previous study (Amin et al.,
2015a) for dataset I as well as previous work done on dataset
II. The experimental results validated the proposed scheme.
These outcomes suggest promising potential for the method’s
application to clinical datasets as a beneficial adjunct for
discrimination between normal and abnormal EEG patterns, as
it is able to cope with variations in non-stationary EEG signals
via the localization characteristic of the WT (Rosso et al., 2001).
Finally, in this study, the combination of DWT with FDA and
PCA techniques provide a robust feature extraction approach for
classification of cognitive tasks using EEG signals.
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TABLE 8 | Comparison of the proposed approach with previous work using EEG dataset recorded by Keirn and Aunon (1990).

Author Methods Accuracy

Keirn and Aunon,

1990

Spectral density estimated and classified with Bayes quadratic classifier 81.5

Liang et al., 2006 Feature extracted with autoregressive coefficients with SVM classifier. Here average classification accuracy is reported using

1-against-1 SVM for multiplication task

54.77

Zhang et al.,

2010

EEG Power estimated with Fourier transform and classified using Fisher discriminant analysis 72.4

Vidaurre et al.,

2013

Feature extracted using autoregressive and classified with SVM classifier 73

Hariharan et al.,

2014

Feature extracted using Stockwell transform and classified with KNN 84

Hendel et al.,

2016

Signal energy was estimated with DWT and features were classified with SVM classifier. Here reported averaged

classification accuracy for multiplication task

84.73

Dutta et al., 2018 Feature extracted with combination of multivariate empirical mode decomposition (MEMD) and phase space reconstruction

and classified using LS-SVM with RBF Kernel

83.33

This study DWT used with computed relative sub-band energy features; features were standardized; Fisher’s discriminant ratio;

principal component analysis were adopted for optimized feature selections; SVM, MLP, KNN and Naïve Bayes classifiers

used for classification

93.33

Here, the results were compared for two class problem (mental multiplication vs. mental letter composing).
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