
  

  

Classification of EEG signals for detection of 

epileptic seizures based on wavelets and 

statistical pattern recognition 

  

  

D. Gajic, Z. Djurovic, S. Di Gennaro and Fredrik Gustafsson 

  

  

Linköping University Post Print 

  

  

 

 

N.B.: When citing this work, cite the original article. 

  

  

Original Publication: 

D. Gajic, Z. Djurovic, S. Di Gennaro and Fredrik Gustafsson, Classification of EEG signals 

for detection of epileptic seizures based on wavelets and statistical pattern recognition, 2014, 

Biomedical Engineering: Applications, Basis and Communications, (26), 2, 1450021. 

http://dx.doi.org/10.4015/S1016237214500215 

Copyright© 2014 World Scientific Publishing Co. 

http://www.worldscientific.com/ 

 

Postprint available at: Linköping University Electronic Press 

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-110540 
 

http://dx.doi.org/10.4015/S1016237214500215
http://www.worldscientific.com/
http://www.worldscientific.com/
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-110540
http://twitter.com/?status=OA Article: Classification of EEG signals for detection of epileptic seizures based on wavel... http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-110540 via @LiU_EPress %23LiU


1 
 

Classification of EEG Signals for Detection of Epileptic Seizures Based 

on Wavelets and Statistical Pattern Recognition 

Dragoljub Gajic,
1, 2,* 

Zeljko Djurovic,
1
 Stefano Di Gennaro,

2
 Fredrik Gustafsson

3 

1
Department of Control Systems and Signal Processing, School of Electrical Engineering, 

University of Belgrade, Serbia 

2
Department of Information Engineering, Computer Science and Mathematics, University of 

L’Aquila, Italy 

3
Department of Electrical Engineering, Linkoping University, Sweden 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
*
Correspondence: dragoljubgajic@gmail.com  

mailto:dragoljubgajic@gmail.com


2 
 

Abstract: The electroencephalogram (EEG) signal is very important in the diagnosis of epilepsy. 

Long-term EEG recordings of an epileptic patient contain a huge amount of EEG data. The 

detection of epileptic activity is, therefore, a very demanding process that requires a detailed 

analysis of the entire length of the EEG data, usually performed by an expert. This paper 

describes an automated classification of EEG signals for the detection of epileptic seizures using 

wavelet transform and statistical pattern recognition. The decision making process is comprised 

of three main stages: (a) feature extraction based on wavelet transform, (b) feature space 

dimension reduction using scatter matrices, and (c) classification by quadratic classifiers. The 

proposed methodology was applied on EEG data sets that belong to three subject groups: a) 

healthy subjects, b) epileptic subjects during a seizure-free interval, and c) epileptic subjects 

during a seizure. An overall classification accuracy of 99% was achieved. The results confirmed 

that the proposed algorithm has a potential in the classification of EEG signals and detection of 

epileptic seizures, and could thus further improve the diagnosis of epilepsy. 

 

Keywords: Epilepsy Diagnosis, Seizure Detection, Scatter Matrices, Dimension Reduction, 

Quadratic Classifiers 

  

1. Introduction 

 

Epilepsy is a common brain disorder that, according to an estimate of the World Health 

Organization, affects almost 60 million people around the world. Approximately one in every 

100 persons will experience a seizure at some time in their life [1]. Epilepsy is characterized by 

the recurrent and sudden incidence of epileptic seizures which can lead to dangerous and 

possibly life-threatening situations [2]. The seizures are the result of a transient and unexpected 

electrical disturbance of the brain and excessive neuronal discharge that is evident in the 

electroencephalogram (EEG) signal representative of the electrical activity of the brain. 

Consequently, the EEG signal has been the most utilized signal in clinical assessments of the 
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state of the brain and detection of epileptic seizures, and is very important for a proper diagnosis 

of epilepsy. 

The detection of epileptic seizures by visual scanning of a patient’s EEG data usually collected 

over a few days is a tedious and time-consuming process. In addition, it requires an expert to 

analyze the entire length of the EEG recordings, in order to detect epileptic activity. A reliable 

automatic classification and detection system would ensure an objective and facilitating 

treatment and significantly improve the diagnosis of epilepsy as well as long-term monitoring 

and treatment of patients. For example, long-term treatment with antiepileptic drugs, which may 

cause cognitive or other neurological side effects, could be reduced to a targeted short-acting 

intervention [3]. Therefore, there is a strong demand for the development of such automated 

systems, due to both huge amounts and increased usage of long-term EEG recordings for proper 

evaluation and treatment of neurological diseases, including epilepsy. The possibility of the 

expert misreading the data and failing to make a proper decision would also be narrowed down 

[4, 5]. 

Many automated EEG signal classification and seizure detection systems, using different 

approaches, have emerged in recent years. Among such studies, Gotman [6] presented a 

computerized system for detecting a variety of seizures, while Qu and Gotman [7] proposed the 

use of the nearest-neighbor classifier on EEG features extracted in both time and frequency 

domains to detect the onset of epileptic seizures. Gigola et al. [8] applied a method based on the 

evolution of accumulated energy using wavelet analysis for the prediction of epileptic seizure 

onset from intracranial epileptic EEG recordings, while Adeli et al. [9], Guler et al. [10] and 

Ubeyli et al. [11] discussed the potential of nonlinear time series analysis in seizure detection. 

Artificial neural network-based detection systems for diagnosis of epilepsy have been proposed 

by several researchers [11, 12, 13]. The method put forward by Weng and Khorasani [14] uses 

the features proposed by Gotman and Wang [15], namely, average EEG amplitude, average 

EEG duration, variation coefficient, dominant frequency and average power spectrum, as inputs 

to an adaptive structured neural network. The method proposed by Pradhan et al. [16] uses a 
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raw EEG signal as an input to a learning vector quantization network. Nigam and Graupe [17] 

proposed a new neural network model called LAMSTAR (large memory storage and retrieval) 

network and two time-domain attributes of EEG; namely, relative spike amplitude and spike 

rhythmicity have been used as inputs for the purpose of detecting seizures. The algorithm 

proposed by Kiymiket al. [18] uses a back propagation neural network with periodogram and 

autoregressive (AR) features as inputs for automated detection of epileptic seizures. Ghosh-

Dastidar et al. [19] discussed a classification methodology based on wavelet analysis and both 

radial basis function and Levenberg-Marquardt backpropagation neural network. Srinivasan et 

al. [20] presented an algorithm based on approximate entropy as an input to an artificial neural 

network classifier, while Subasi [21] used wavelet analysis and mixture of experts, in addition 

to the artificial neural network, to classify EEG signals and detect seizures. 

Due to quite a low understanding of the mechanisms underlying the problem, most existing 

methods suffer from low accuracy, a high rate of false alarms and missed detections [22]. In 

addition, due to a lack of reliable standardized data, most reported EEG analysis-based 

algorithms are performed on a small number of datasets, which often demonstrate good 

accuracy for selected EEG segments but are not robust enough to adjust to EEG variations 

commonly encountered in a hospital setting [20]. In this research, however, a larger number of 

EEG data sets, which belong to three subject groups, were used: a) healthy subjects (normal 

EEG), b) epileptic subjects during a seizure-free interval (interictal EEG), and c) epileptic 

subjects during a seizure (ictal EEG). The EEG signal classification and seizure detection 

problem was modeled as a three-group classification problem that could be of great clinical 

significance. An automated system able to accurately differentiate between normal and interictal 

EEG signals can be used to diagnose epilepsy, while a system that can accurately differentiate 

between interictal and ictal EEG signals can be used to detect seizures in a clinical setting. 

Therefore, the classification algorithm must be able to classify all three groups accurately and at 

the same time be robust with respect to EEG signal variations across various mental states and 

subjects. The improvement of the classification accuracy is mainly based on the design of both 
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an appropriate feature space, by identifying combinations of all extracted features that increase 

the inter-class separation, and classifiers that can accurately classify all three groups of EEG 

signals based on the selected and reduced feature space. Real EEG recordings were applied to 

test algorithm performance and the results indicated that the algorithm has a potential to be 

applied within an automatic epilepsy diagnosis system. 

 

2. Materials and Methods 

 

2.1. Materials 

 

The EEG data used were a subset of EEG data corresponding to both normal and epileptic 

subjects, made available by Dr. Ralph Andrzejak from the Epilepsy Centre at the University of 

Bonn [23]. Three EEG data sets from three different groups were analyzed: healthy subjects 

with normal EEG data, epileptic subjects during a seizure-free interval with interictal EEG data, 

and epileptic subjects during a seizure with ictal (epileptic) EEG data. Each data set recorded 

with a 128-channel amplifier system contained 100 single-channel EEG segments sampled at 

173.61 Hz, each of 23.6 sec duration. These segments were selected and cut out from the 

continuous multi channel EEG recordings after visual inspection for artifacts (e.g. due to muscle 

activity or eye movement). In addition, the segments had to fulfill a stationarity criterion 

described in detail in Andrzejak et al. [23]. The first EEG data set corresponding to healthy 

subjects was taken from the surface EEG recordings of five healthy subjects, who were relaxed 

in an awaken state, using the standardized electrode placement technique. The second and third 

data sets obtained from five different epileptic subjects during a seizure-free and seizure 

interval, respectively, were taken from the intracranial EEG recordings during presurgical 

diagnosis.  
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Figure 1 - Implanted intracranial electrodes. 

 

The type of epilepsy was diagnosed as temporal lobe epilepsy with the epileptogenic focus 

being the hippocampal formation. A schematic of intracranial electrode placement is shown in 

Fig. 1 [23]. The depth electrodes were implanted symmetrically into the hippocampal 

formations and the strip electrodes were implanted onto the lateral and basal regions of the 

neocortex. The EEG segments were selected from all the recording sites exhibiting ictal activity. 

Each EEG segment was considered as a separate EEG signal resulting in a total of 300 EEG 

data segments.  

 

Figure 2 - Segments of EEG data: (a) Normal, (b) Interictal, (c) Ictal. 

 

0  1 2 3 4 5
-200

0

200
(a)

0  1 2 3 4 5
-200

0

200

A
m

p
li

tu
d

e 
(m

ic
ro

 v
o

lt
)

(b)

0  1 2 3 4 5
-2000

0

2000

Time (second)

(c)



7 
 

As an example, the first five seconds of all three different EEG data segments are magnified and 

shown in Fig. 2. Interictal EEG data can contain only occasional transient waveforms, as 

isolated spikes, spike trains, sharp waves or spike-wave complexes, while ictal EEG data are 

composed of a continuous discharge of polymorphic waveforms of variable amplitude and 

frequency, spike and sharp wave complexes, rhythmic hypersynchrony, or electrocerebral 

inactivity observed over a duration longer than the average duration of these abnormalities 

during interictal periods, as shown in Fig. 2. [24]. 

There are five broad spectral sub-bands of the EEG signal which are generally of clinical 

interest: delta (0 - 4 Hz), theta (4 - 8 Hz), alpha (8 - 16 Hz), beta (16 - 32 Hz) and gamma waves 

(32 - 64 Hz). Higher frequencies are often more common in abnormal brain states such as 

epilepsy (i.e. there is a shift of EEG signal energy from lower to higher frequency bands before 

and during a seizure). These five frequency sub-bands provide more accurate information about 

neuronal activities underlying the problem and, consequently, some changes in the EEG signal, 

which are not so obvious in the original full-spectrum signal, can be amplified when each sub-

band is considered independently. That was the basic premise of this research. Most of the 

features were extracted from each sub-band separately, after wavelet decomposition of the full-

spectrum EEG signal, as well as reconstructed in all five sub-bands using the inverse wavelet 

transform. For example, the difference between normal and interictal EEG data is more apparent 

in Fig. 3, where only theta sub-bands are presented, than in Fig. 2 where the same but full-

spectrum signals are shown. On the other hand, ictal EEG data are easier to distinguish, mainly 

due to higher amplitudes. 
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Figure 3 - Theta sub-bands of EEG data: (a) Normal, (b) Interictal, (c) Ictal. 

 

2.2. Methods 

 

An automated classification of EEG signals for the detection of epileptic seizures based on 

wavelet transform and statistical pattern recognition is proposed. The first step of this method is 

to obtain a set of features after wavelet transform of EEG data, including energy, entropy, and 

standard deviation of both wavelet coefficients and the EEG signal in different frequency bands 

of clinical interest. The second step is to perform dimension reduction of the feature space using 

scatter matrices. Finally, two quadratic classifiers are designed, which are able to distinguish all 

three groups of the EEG signals of interest from each other. The entire structure of the algorithm 

is shown in Fig. 4. 

 

0  1 2 3 4 5
-200

0

200

(a)

0  1 2 3 4 5
-200

0

200

(b)

A
m

p
li

tu
d

e
 (

m
ic

ro
 v

o
lt

)

0  1 2 3 4 5
-1000

0

1000

(c)

Time (second)



9 
 

 

Figure 4 - Proposed classification algorithm. 

 

2.2.1. Wavelet transform 

 

Abnormalities in EEG data during serious neurological diseases such as epilepsy are too subtle 

to be detected using conventional techniques that usually transform mostly qualitative 

diagnostic criteria into a more objective quantitative signal feature classification problem. The 

techniques that have been applied to address this problem include the analysis of EEG signals 

for the detection of epileptic seizures using the autocorrelation function, time domain features, 

frequency domain features, time frequency analysis, nonlinear time series analysis, and wavelet 

Wavelet transform 
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transform. However, the results of various studies have demonstrated that the wavelet transform 

is the most promising method for extracting features from EEG signals [4, 9, 25, 26, 27, 28, 29, 

30]. As such, the wavelet transform was used to extract features from EEG signals. 

The wavelet transform, as a linear time-frequency transform, represents an efficient analytical 

tool in signal processing, pattern recognition and classification, and is suitable for analysis of 

transient and non-stationary phenomena as well as noise reduction. As a class of functions, it 

has the ability to localize information in both time and frequency [31]. Therefore, the wavelet 

transform has been utilized widely in biomedical signal processing [32, 33, 34]. In discrete 

wavelet analysis, a multi-resolution description is used to decompose a given signal ( )x t  into 

increasingly finer detail based on two sets of basis functions [35], the wavelets and the scaling 

functions, as follows: 

         0 0

0

0

/2 /22 2 2 2
j j j j

j j

k j j k

x t k ta k d k t k 




                     (1) 

where functions ( )t  and ( )t  are the basic scaling and mother wavelet, respectively. In the 

above expansion, the first summation represents an approximation of  x t  based on the scale 

index of 0j , while the second term adds more detail using larger j (finer scales). The coefficients 

in this wavelet expansion are called the discrete wavelet transform (DWT) of the signal  x t . 

When the wavelets are orthogonal, these coefficients can be calculated by 

     /2  2 2j j

ja k x t t k dt




                                              (2) 

     /22 2j j

jd k x t t k dt




                                              (3) 

where ( )ja k  and ( )jd k  are the wavelet approximation and detail coefficients, respectively. In 

the DWT, the frequency axis is divided into dyadic intervals towards the lower frequencies, 

while the bandwidth length decreases exponentially. The wavelet packet (WP) transform is a 
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generalization of the DWT in which decomposition is undertaken in both directions (lower and 

higher frequencies). This general decomposition offers a greater range of possibilities for signal 

analysis than the discrete wavelet decomposition. In the WP tree, each node is recognized by the 

decomposition level (scale) l with respect to the WP tree root and the frequency band  f. The 

ability of the wavelet transform in adaptive time-scale representation and decomposition of a 

signal into different frequency sub-bands presents an efficient signal analysis method without 

introducing a calculation burden [36]. Based on wavelet coefficients obtained after the wavelet 

transform, the signal can be reconstructed in each of the previously derived sub-bands and its 

time-domain features in different sub-bands can be studied separately. 

 

2.2.2. Feature space reduction 

 

After an appropriate signal analysis (e.g. wavelet transform used in this research), as well as 

feature extraction, the feature vector 1 2[ , ]nY y y y   is derived. Its dimension should be 

reduced since the dimension n  is often too large and the design of classifiers for a large 

dimension suffers from various difficulties. Those are mostly numerical problems that involve 

operation with high-order matrices. At the same time, a classifier in n -dimensional space is 

very difficult to analyze and almost impossible to imagine. Thus, it is helpful to define a matrix 

A  whose dimension is n m  and in which the number of columns m  is smaller than the 

number of rows n , such that the initial vector Y , following linear transformation 
TZ A Y , is 

projected onto the vector Z  whose dimension m  is significantly smaller (e.g. 2 or 3 when it is 

possible to visualize classifiers in two- or three-dimensional space). Obviously, such 

transformation results in a loss of some information contained in the original vector Y  but the 

classification procedure is simplified. The selection of the matrix A  is a trade-off between the 

desired level of simplicity of the classification procedure and the inevitable loss of information 

due to dimension reduction [37]. 
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The reduction matrix A  can be determined in several different ways using different approaches. 

Among them, the most often applied approach is the Karhunen-Loeve Expansion method [38], 

which, depending on the area of application, is also referred to as Principal Component Analysis 

(PCA). The main idea behind these methods is to determine the direction in which the scattering 

of the random vector is the greatest, through analysis of a covariance matrix. It is assumed that 

this is the most informative direction and that, in the case of dimension reduction, it should be 

preserved because it carries the largest amount of information. However, such an approach is 

not always convenient for some applications including the one discussed here. Figure 5 shows 

the realizations of a random two-dimensional vector. The Karhunen-Loeve Expansion method 

would, based on calculated eigenvectors and eigenvalues, determine the principal components 

1z  and 2z . Since the eigenvalue that corresponds to the component 1z  is higher than the 

corresponding value of the component 2z , following dimension reduction the dimension of the 

component 2z  would be sacrificed and 1z  would be retained.  

 

Figure 5 - Two different approaches to dimension reduction. 

 

However, the samples shown in Fig. 5 form two clusters, represent measurement data obtained 

under different conditions and fall into two different categories. If the entire dimension 

reduction procedure is only one step of a larger process whose goal is the ultimate classification 

of measurements, then dimension reduction must address the separability of the categories 

created after reduction. Figure 5 clearly shows that it is more beneficial to preserve another 
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principal component, 2z , even though its eigenvalue is considerably lower, because following 

the projection of the original vectors onto the axis 2z  there will be no overlapping of 

corresponding probability density functions. In this way it is possible to achieve good 

classification even in a space with reduced dimensions.  

The procedure that both reduces dimensions and addresses the separability of classes is known 

as scatter matrices-based dimension reduction [38] and its essence can be described as follows: 

It is assumed that N  vectors of n -dimensional features ,  1, ,iY i N  , are available in the 

form 1 2[ ]i i i inY Y Y Y . In the present case, n  represents the number of extracted features after 

wavelet analysis of the EEG signal and N  is the number of EEG data segments analyzed. It is 

further assumed that the elements of this data set can be divided into a certain number of 

classes, c . The number of classes in the present case is three (normal, interictal and ictal EEG 

data). In other words, the initial data set  ,  1, , iX i N   can be divided into c  subsets of the 

form  ( ) ,   1, ,  , 1, ,k

i kX i N k c    . It is then assumed that the reduction matrix A  of 

dimensions n m  is such that linear transformation 
TZ A Y  of each of the vectors from the 

initial data set is projected onto the corresponding m -dimensional vector Z . Consequently, the 

vector Z  set can be classified into c  subsets  ( ) ( ) ,  1, , ,  1, ,k T k

i i kZ A Y i N k c     . 

Corresponding mathematical expectation vectors and covariance matrices can be added to each 

of these subsets, or classes: 

     ( ) ( ) ( ),  Σ
T

k k k

k k k kM E Z E Z M Z M                                  (4) 

where E   is the mathematical expectation operator. In practice, however, because the 

corresponding joint probability density functions are usually not known, these mathematical 

expectations are most often approximated by sample estimation: 
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  ( ) ( ) ( )

k

1 1k

1 1
 ; Σ

N

k kN N
T

k k k

k j j k j k

j jk

M Z Z M Z M
N  

                         (5) 

It is also possible to estimate a priori probabilities of occurrence of certain classes within the 

data set:  

,  1, ,k
k

N
P k c

N
                                                            (6) 

Based on such estimates, within-class wS  and between-class bS  scatter matrices are generated 

as follows: 

  0 0 0

1 1 1

Σ ;  ; 
c c c

T

w k k b k k k k k

k k k

S P S P M M M M M P M
  

               (7) 

In statistical discriminant analysis, within-class and between-class scatter matrices are used to 

formulate criteria of class separability. A within-class scatter matrix shows the scatter of 

samples around their respective class expected vectors, while a between-class scatter matrix is 

the scatter of the expected vectors around the mixture mean. If the members of different classes 

are recognizable and if no mixing of members of different classes occurs, the elements of the 

within-class matrix should be as small as possible, while the elements of the between-class 

matrix should be as large as possible. There are different approaches that address these two 

requirements. The following criterion is adopted in this research: 

 1

1 2 1J tr S S                                                                 (8) 

where tr   is the trace of the quadratic matrix, while the matrix 1S  is usually bS  , and the 

matrix 2S  is either wS  or w bS S  (as in this paper). This criterion is a function of an unknown 

reduction matrix A  and the proper selection of such matrix A  that can maximize it. The 

criterion is designed to minimize the matrix 2S  and maximize 1S . The literature shows that its 

maximum value is obtained if the matrix A  is generated as: 

1 2[Ψ Ψ Ψ ]mA                                                              (9) 
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where 1Ψ , ,Ψm  are the eigenvectors of the matrix 
1

2 1S S
: 

 1

2 1 Ψ Ψ ,  1, ,i i iS S i m                                                  (10) 

which correspond to the highest eigenvalues of the same matrix: 1 2 1m m n         , 

where 2S  is the within-class scatter matrix and 1S  is the between-class scatter matrix of the 

original feature vector Y . This procedure was applied to obtain the results discussed in Section 

3. 

An interesting question regarding such a procedure is whether the information lost due to the 

reduction of the original n -dimensional vector Y  into the space of the m -dimensional vector 

Z  can be quantified in some way. The answer can be found in the eigenvalues ,  1, ,i i n    of 

the matrix  1

2 1S S
. Namely, each component of the eigenvectors Ψi  carries the amount of 

information that corresponds to the measure of the appropriate eigenvalue i . Since this 

procedure retains only those components whose eigenvalues are among the m  highest values, 

while the remaining n m  coordinates are cut off, the relative measure of the retained 

information can be computed as follows: 

  1

1

100%

m

ii

n

ii

l m












                                                        (11) 

In view of its significance, ( )l m  may be referred to as an informativity index. Based on its 

definition, the value of the informativity index ranges from 0% for 0m   to 100% for m n . 

This index shows the level of success of dimension reduction, or the extent of information saved 

following dimension reduction. Experience suggests that the results of dimension reduction with 

an informativity index higher than 85% is deemed satisfactory [37], as in the present case.  

Even though the percentage of information lost during feature dimension reduction might be 

high (i.e. more than 10%), this does not necessarily mean that we lose that much information 

needed for successful classification (e.g. as shown in Fig. 5). Proper dimension reduction 
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improves the separability between classes and thus makes it easier for the classifiers to correctly 

classify the data at a later stage. In addition, without dimension reduction another very 

important feature of the proposed algorithm is lost, and that is the visualization of results and 

thus easier interpretation since any classifier in 25-dimensional space is very difficult to analyze 

and almost impossible to imagine. 

 

2.2.3. Design of classifiers  

 

As shown in Fig. 4, following dimension reduction, the obtained random vector Z  is classified. 

The use of classifiers with a quadratic discriminatory function is proposed. Since the expected 

end result of this algorithm is the classification of EEG data into one of three categories 

(normal, interictal or ictal), the structure of the algorithm shown in Fig. 4 suggests sequential 

application of two classifiers. The first step is to decide whether the obtained vector Z  belongs 

to an ictal (epileptic) EEG or an EEG which is not ictal. If the EEG is not ictal, the next step is 

to choose between a normal EEG and an interictal EEG. During the design of a quadratic 

classifier, the goal is to design the classifier ( )Z  in the form: 

  0

T Th Z Z QZ V Z v                                                  (12) 

where ,Q V  and 0v  are the unknown m m  matrix, 1m vector and scalar, respectively, 

which uniquely define the classifier. Based on the sign of the classifier for the given vector Z , 

the algorithm decides whether this vector originates from the first class, 1  (e.g. interictal and 

ictal EEG data together), or the second class, 2  (e.g. normal EEG): 

  0 20T Th Z Z QZ V Z v Z                                      (13) 

  0 10T Th Z Z QZ V Z v Z                                       (14) 
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where 1  and 2  are the classes under consideration and  h Z  is called the quadratic 

discrimination function.  ,Q  V  and 0v  are the matrix, vector and scalar, respectively. In the 

case of m -dimensional space, Eq. (13) and Eq. (14) can be interpreted as a linear equation 

 

( 1)

2

0 0

1 1 1 1 1

 

m m

m m m m

ij i j i i i i i i

i j i i i

h Z q z z v z v l v z v



    

                                (15) 

where 
ijq  and iv  are the components of Q  and V , respectively. Each of the new variables, ,il  

represents a product of two 'z s, and   is the corresponding q . Since Eq. (15) is a linear 

discriminant function, one can apply the optimum design procedure for a linear classifier [38], 

[39], resulting in     

   
1

1 1 1 2 2 11 /2
            1 ( )

T

q mm m
V v v sK s K D D 




         

                   (16) 

where iD  and iK  are the expected vector and covariance matrix of 
T

T TW L Z     with 

 ( 1) / 2m m m   variables. Since the 'l s are products of the 'z s, iK  includes the third and 

forth order moments of Z . The expected values and variances of  h W  are 

     0 0( )| |T T

i i q i q iE h W V E W v V D v                                      (17) 

    2 ( )| ( ) |T T T

i i q i i i q q i qVar h W V E W D W D V V K V                        (18) 

Let  2 2

1 2 1 2, , ,f      be any criterion to be minimized or maximized, to determine the 

optimum qV  and 0v . The derivatives of f  with respect to qV  and 0v  are then 

2 2

1 2 1 2

2 2

1 2 1 2q q q q q

f f f f f

V V V V V

   

   

       
   

        
                           (19) 

2 2

1 2 1 2

2 2

0 1 0 2 0 1 0 2 0

f f f f f

v v v v v

   

   

       
   

        
                            (20) 

On the other hand, it follows from Eq. (17) and Eq. (18) that 
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2 2

0 0

2 ,    ,    0,    1i i i i
i q i

q q

K V D
V V v v

      
   

   
                                (21) 

Equating Eq. (19) and Eq. (20) to zero, after a short calculus the optimum 
qV  Eq. (16) can be 

computed, where the parameter s  in the range 0 1s   needs to be chosen as 

2

1

2 2

1 2

/

/ /

f
s

f f



 

 

    

                                                    (22) 

Once the functional form of f  is selected, the optimum value of 0v  is derived as the solution of 

1 2

0
f f

 

 
 

 
                                                         (23) 

If we assume a criterion in the form 

2 2

1 1 2 2

2 2

1 1 2 2

P P
f

P P

 

 





                                                        (24) 

which measures the between-class scatter (around zero) normalized by the within-class scatter, 

optimum 
qV  and 0v  are derived as 

   
1

1 1 2 2 2 1( )qV PK P K D D


                                          (25) 

     
1

0 1 1 2 2 2 1 1 1 2 2 1 1 2 2( )T T

qv V PD P D D D PK P K PD P D


                  (26) 

It is allowed to add a constant real value to scalar 0v  in order to minimize the number of 

misclassified patterns.  

 

3. Results 

 

3.1. Wavelet Transform and Feature Extraction 

 

The five EEG sub-bands of clinical interest: delta, theta, alpha, beta and gamma, span the 0-64 

Hz frequency range. All higher frequencies are usually considered as noise. Due to the sampling 
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frequency of 173.61 Hz and in accordance with the Nyquist sampling theorem, the maximum 

useful frequency of the EEG data in this research is 86.81 Hz, or half the sampling frequency. In 

comparison to the Fourier transform, wavelet decomposition does not allow the extraction of 

specific frequency bands without additional filtering. Thus, in order to correlate the wavelet 

decomposition with the above mentioned five sub-bands, the frequency content of the EEG 

signal segments was restricted to the 0-64 Hz band by convolving the signal with a low-pass 

finite impulse response (FIR) filter.  

 

 

Figure 6 - Scaling function   and wavelet function   of 4
th

 order Daubechies wavelet. 

 

The selection of an appropriate wavelet and the number of decomposition levels is also very 

important in any analysis of signals using the wavelet transform. After the performance of 

different wavelets was compared, it was decided to finally implement the 4
th
 order Daubechies 

wavelet that is orthogonal and has scaling and wavelet functions as shown in Fig. 6. The 

number of decomposition levels was chosen based on the five sub-bands. The previously 

filtered EEG signal segments were decomposed into four levels. The wavelet coefficients were 

computed for all five different sub-bands of clinical interest based on Eqs. (2)-(3). Selection of 

the right features is among the most important components in the design of proper classifiers 

since even the best classifier will perform very poorly if the features are not selected well. 

Given that the computed wavelet coefficients are a good representation of the signal in both 
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time and frequency, almost all extracted features used later in dimension reduction and 

classification are based on them.  

Apart from the mean and standard deviation of the wavelet coefficients in each sub-band, as 

typical statistical features, the entropy S (as a statistical measure of randomness) and the 

relative wavelet energy RWE  in each sub-band were also computed based on previously 

derived wavelet coefficients, which are in the case of the delta sub-band calculated by Eqs. (27)-

(28), respectively, as shown in Fig. 7 for all 300 EEG signal segments. 

   2

4log ( )
k

S a k                                                       (27) 

4
22 2

4 4

1

, ( ) , ( ) ( )tot j

k j k ktot

E
RWE E a k E d k a k

E


 



                      (28) 

 
Figure 7 - Relative wavelet energy and entropy of wavelet coefficients in delta sub-band. 
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In order to make the entire classification algorithm more robust and at the same time increase its 

accuracy, five additional features in the time domain were computed. Applying the inverse 

wavelet transform, the EEG signal was reconstructed and its standard deviation in each sub-

band computed. A representative example of an interictal EEG signal in all five sub-bands of 

interest, after inverse wavelet transform, is shown in Fig. 8.  

 
Figure 8 - Decomposition of band-limited EEG into five sub-bands (i.e. 4 levels) using 4

th
 

order Daubechies wavelet. 

 

In total, 25 features were extracted from all 300 EEG signal segments using the MATLAB 

software package and thus a 25-dimensional feature space Y was created. Even though a few of 

these features carry good information about their class (e.g. the two shown in Fig. 7), none of 

them in combination with any other is still enough for a successful classification without further 

processing as described in the following section. 
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3.2. Feature Space Reduction and Classification 

 

The next step in the proposed algorithm (Fig. 4) is to define the reduction matrix A  and suitable 

classifiers using the set of 300 25-dimensional feature vectors

1 2 25[ ] ,   1,2, ,300T

i i i iY y y y i    previously extracted from all three EEG data groups (i.e. 

100 feature vectors from each subject group) that resulted in three subsets 

(1) (2) (3),   ,  ,  1, ,100i i iY Y Y i   . The superscripts (1), (2) and (3) denote normal, interictal and ictal 

EEG data, respectively. In order to reduce dimensions and according to Eqs. (4)-(7), all the 

necessary statistics were computed and resulted in (25 1) -dimensional mean vectors 1 2, M M  

and 3M  and (25 25) -dimensional within-class scatter matrix -dimensional within-class 

scatter matrix wS  and between-class scatter matrix bS . In order to minimize the criterion in Eq. 

(8), eigenvalues and eigenvectors were computed for the matrix
1( )w b bS S S . The 

eigenvectors 1Ψ  and 2Ψ  that corresponded to the two highest eigenvalues were selected and 

based on Eq. (9) the reduction matrix A  was created. In that way the initial 25-dimensional 

vectors were projected onto two-dimensional space and from the initial three subsets three new 

subsets were derived:  
(1) (1) (2) (2) (3) (3),   ,   ,   1, ,100T T T

i i i i i iZ A Y Z A Y Z A Y i     , which will 

later be used in the design of classifiers. The advantage of such dimension reduction, from 25 to 

2, is two-fold. First, all of the obtained data can be represented by points in two dimensional 

space as shown in Fig. 9 and, as a result, a visual approach to data analysis is made possible. 

Second, with such dimension reduction, the elements of the matrix A  are indicative of the 

importance of the features obtained from individual EEG signal segments with regard to the 

ultimate classification. Even though these parameters, and the elements of the reduced vector, 

have no clear physical meaning, their relative relationship is important. In other words, the 

coefficients of the matrix A , which is the outcome of a statistical analysis of the distribution of 
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scatter matrices, are indicative of the relevance of the various features to the classification 

process. In the present case, after analyzing the elements of the matrix A , the conclusion was 

that the extracted features related to theta, beta and alpha sub-bands have a larger contribution to 

the classification accuracy, and thus the entire algorithm as well, than the other sub-bands. 

 

 
Figure 9 - All 300 EEG signal segments presented in two-dimensional space after feature 

space reduction. 

 

The final step is the selection of matrices 1Q  and 2Q , vectors 1V  and 2V , and scalars 01v  and 

02v , which define the quadratic classifiers. The classifiers shown in Fig. 10 are designed using 

150 training subsets Z  from all three different EEG data groups, following the design 

procedure explained above. 
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3.3. Testing and Validation Results 

 

After the design of the classifiers, the rest of the 150 EEG data segments (i.e. 50 EEG segments 

from each of three classes), were used to test and validate the accuracy of the proposed 

algorithm for classifying EEG signals. The aim was to assign the input patterns to one of the 

classes according to the characteristic features selected for that class. There were three classes: 

normal EEG class (healthy subjects), interictal EEG class (seizure-free intervals of five patients 

from the epileptogenic zone) and ictal EEG class (epileptic seizure segments). The classification 

results of the implemented algorithm were displayed by means of a confusion matrix, shown 

below in Table I, where each cell contains the raw number of exemplars classified for the 

corresponding combination of desired and actual classification results. 

 

Table I - Confusion matrix  

Output/Desired Normal EEG Interictal EEG Ictal EEG 

Normal EEG 50 0 0 

Interictal EEG 0 49 1 

Ictal EEG 0 1 49 

 

According to the confusion matrix, all 50 normal EEG data segments were properly classified 

by the algorithm. One EEG data segment from the interictal EEG class was classified 

incorrectly, as a segment from the ictal EEG class. Additionally, one segment from the ictal 

EEG class was classified incorrectly, as a segment from the interictal EEG class. 

The performance of the classifiers was determined by the calculation of sensitivity, specificity 

and total classification accuracy, which are defined as: 
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Sensitivity: total number of correctly classified positive patterns/total number of actual 

positive patterns; a positive pattern indicates an EEG data segment from one of these three 

classes. 

Specificity: number of correctly classified negative patterns/total number of actual negative 

patterns; a negative pattern indicates a segment from one class classified as a member of one 

of the other two classes. 

Total classification accuracy: total number of correctly classified patterns/total number of 

applied patterns; a pattern indicates an EEG data segment from all three classes. 

The values of these statistical parameters are shown in Table II. The classification algorithm 

classified normal, interictal and ictal EEG data sets with an accuracy of 100%, 98% and 98%, 

respectively. All the sets were classified with an accuracy of 99%, which is the total 

classification accuracy. Taking into account other reported results that span from 85% to 99% 

(summarized in Table III), it is safe to say that the total classification accuracy of the algorithm 

proposed for this application is quite high and thus has potential for a real clinical setting.    

 

Table II - Statistical parameters   

EEG data sets Statistical parameters 

 Sensitivity (%) Specificity (%) Accuracy (%) 

Normal EEG 100 100 99 

Interictal EEG 98 99.99  

Ictal EEG 98 99.99  
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Table III - Performance of other methods applied on the same EEG data sets  

Author(s) Year Method Accuracy (%) 

Guler et al. [10] 2005 Lyapunov exponents, recurrent neural network 97 

Ubeyli et al. [11] 2006 Lyapunov exponents, artificial neural network 95 

Sadati et al. [28] 2006 Wavelet transform, adaptive neuro-fuzzy network 86 

Adeli et al. [9] 2007 Wavelet transform, chaos analysis  - 

Dastidar et al. [19] 2007 Wavelet transform, chaos analysis, K-means clusters 97 

Tzallas et al. [12] 2007 Time-frequency analysis, artificial neural network 99 

Chua et al. [40] 2008 Higher order spectra, Gaussian mixture model 93 

Dastidar et al. [13] 2008 Principal component analysis, artificial neural network 99 

Ubeyli et al. [29] 2008 Wavelet transform, mixture of expert model 93 

Guo et al. [41] 2011 Genetic programming, K-nearest neighbor classifier 93 

Orhan et al. [30] 2011 Wavelet transform, K-nearest neighbor classifier 97 
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Figure 10 - Reduced two-dimensional feature space with two quadratic classifiers which 

separate the space into three separable sub-spaces that correspond to appropriate EEG 

data set. 

 

The classification results are shown in Fig. 10, where it is possible to see the positions of the 

classifiers that separate the two-dimensional feature space into three classes, as well as all 150 

testing data segments mapped into the reduced feature space.  

 

4. Discussion 
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a decision based on these data, but because it also allows insight into the severity of the brain 

state. Figure 10 shows that in a two-dimensional representation some of the points are located 

very close to the classification line that differentiates between interictal and ictal data, and that a 

few points are even in the wrong class, while a number of points are far from this discrimination 

function. The distance of these points is indicative of the severity of the brain state and the most 

distant point in the diagram (the first coordinate greater than 0.1) represents the truly healthiest 

brain state. 

 

5. Conclusions 

 

This paper presented an EEG data classification algorithm which, based on a large number of 

features extracted after wavelet transform and statistical pattern recognition, makes an objective 

decision about the type of the EEG data processed and thus the brain state of a patient. The main 

advantages of the algorithm are:  (a) the ability of the algorithm to run robustly in a clinical 

setting with noised EEG; (b) feature extractions with highly meaningful wavelet transform 

because hidden EEG information can be revealed and the noise effort reduced as certain data 

under some scales are omitted; (c) simplicity and low computational cost guaranteeing real 

clinical application; (d) very good sensitivity and specificity as well as an overall classification 

accuracy of 99%; and (e) patient-independent algorithm that does not require any specific prior 

knowledge of each subject. Therefore, the conclusion is that the proposed algorithm can be used 

to classify EEG signals and detect seizures in a clinical setting. 

Apart from the quite high overall classification accuracy achieved, there are still two directions 

for further improvement of the proposed algorithm. One is to include additional features in the 

feature vector, e.g. by nonlinear series analysis (i.e. chaos analysis) of EEG data. The other 

pertains to the selection of more sophisticated pattern recognition methods that will definitely 

result in a more complex but also a more accurate classification algorithm. In addition, the 
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algorithm’s on-line seizure detection capabilities should be examined by analyzing long-term 

continuous EEG recordings, as well as its ability to detect other changes in EEG (e.g. those 

caused by cognitive tasks). 
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Figure 1 - Implanted intracranial electrodes. 
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Figure 2 - Segments of EEG data: (a) Normal, (b) Interictal, (c) Ictal. 
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Figure 3 - Theta sub-bands of EEG data: (a) Normal, (b) Interictal, (c) Ictal. 
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Figure 4 - Proposed classification algorithm. 
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Figure 5 - Two different approaches to dimension reduction. 
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Figure 6 - Scaling function   and wavelet function   of 4
th

 order Daubechies wavelet. 
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Figure 7 - Relative wavelet energy and entropy of wavelet coefficients in delta sub-band. 
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Figure 8 - Decomposition of band-limited EEG into five sub-bands (i.e. 4 levels) using 4

th
 

order Daubechies wavelet. 
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Figure 9 - All 300 EEG signal segments presented in two-dimensional space after feature 

space reduction. 
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Figure 10 - Reduced two-dimensional feature space with two quadratic classifiers which 

separate the space into three separable sub-spaces that correspond to appropriate EEG 

data set. 
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Table I - Confusion matrix  

Output/Desired Normal EEG Interictal EEG Ictal EEG 

Normal EEG 50 0 0 

Interictal EEG 0 49 1 

Ictal EEG 0 1 49 
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Table II - Statistical parameters   

EEG data sets Statistical parameters 

 Sensitivity (%) Specificity (%) Accuracy (%) 

Normal EEG 100 100 99 

Interictal EEG 98 99.99  

Ictal EEG 98 99.99  
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Table III - Performance of other methods applied on the same EEG data sets  

Author(s) Year Method Accuracy (%) 

Guler et al. [10] 2005 Lyapunov exponents, recurrent neural network 97 

Ubeyli et al. [11] 2006 Lyapunov exponents, artificial neural network 95 

Sadati et al. [28] 2006 Wavelet transform, adaptive neuro-fuzzy network 86 

Adeli et al. [9] 2007 Wavelet transform, chaos analysis  - 

Dastidar et al. [19] 2007 Wavelet transform, chaos analysis, K-means clusters 97 

Tzallas et al. [12] 2007 Time-frequency analysis, artificial neural network 99 

Chua et al. [40] 2008 Higher order spectra, Gaussian mixture model 93 

Dastidar et al. [13] 2008 Principal component analysis, artificial neural network 99 

Ubeyli et al. [29] 2008 Wavelet transform, mixture of expert model 93 

Guo et al. [41] 2011 Genetic programming, K-nearest neighbour classifier 93 

Orhan et al. [30] 2011 Wavelet transform, K-nearest neighbour classifier 97 
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