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Abstract Electroencephalogram (EEG) signals are used

broadly in the medical fields. The main applications of

EEG signals are the diagnosis and treatment of diseases

such as epilepsy, Alzheimer, sleep problems and so on.

This paper presents a new method which extracts and

selects features from multi-channel EEG signals. This

research focuses on three main points. Firstly, simple

random sampling (SRS) technique is used to extract fea-

tures from the time domain of EEG signals. Secondly, the

sequential feature selection (SFS) algorithm is applied to

select the key features and to reduce the dimensionality of

the data. Finally, the selected features are forwarded to a

least square support vector machine (LS_SVM) classifier to

classify the EEG signals. The LS_SVM classifier classified

the features which are extracted and selected from the SRS

and the SFS. The experimental results show that the

method achieves 99.90, 99.80 and 100 % for classification

accuracy, sensitivity and specificity, respectively.
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1 Introduction

Epilepsy is a disorder which affects the human brain and

hugely impairs patients’ daily lives. It is characterized by

recurrent and sudden incidence of epileptic seizures [1].

According to an estimation of the World Health Organi-

zation, more than 50 million of population are affected by

epilepsy [2, 3]. Approximately, almost 1 % population

have the neurological disorders [4–6]. It leads to numerous

research works to identify epilepsy and related treatments.

Electroencephalogram (EEG) signals have been proved as

a powerful tool for detecting and diagnosing different

neurological diseases. EEG signals are often used to detect

and classify epilepsy [7]. It is often difficult for the experts

to recognize the people who have a brain disorder through

visual inspection of EEG signals [8]. In addition, visual

inspection for discriminating EEG signals is a time con-

suming, error prone, costly process and not sufficient

enough for reliable information. The analysis and classifi-

cation of EEG signals can lead to better diagnostic tech-

niques for brain-related disorders. It is thus important to

develop better EEG classification methods.

Many researchers developed new techniques to extract

the significant information from EEG signals. The infor-

mation is used as the input to different classifiers. There are

many approaches used to extract the key features as well as

to further select features. Most of these fall under five

broad categories: time domain, frequency domain, time–

frequency domain, traditional non-linear methods and

graph theory approaches [9].

H. R. A. Ghayab (&) � Y. Li � S. Abdulla � M. Diykh

Faculty of Health, Engineering and Sciences, University of

Southern Queensland, Toowoomba, QLD 4350, Australia

e-mail: HadiRathamGhayab.AlGhayab@usq.edu.au

Y. Li

e-mail: Yan.Li@usq.edu.au

S. Abdulla

e-mail: Shahab.Abdulla@usq.edu.au

M. Diykh

e-mail: Mohammed.Diykh@usq.edu.au

X. Wan

School of Electrical and Electronic Engineering, Hubei

University of Technology, Wuhan 430068, China

e-mail: wanxiangkui@163.com

123

Brain Informatics (2016) 3:85–91

DOI 10.1007/s40708-016-0039-1

http://crossmark.crossref.org/dialog/?doi=10.1007/s40708-016-0039-1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40708-016-0039-1&amp;domain=pdf


One of the methods used in this paper for extracting

epileptic EEG data is sample random sampling (SRS)

technique. Researchers often applied the SRS in time

domain. In this technique, each sample of the population

has the same chance to be selected as a subject. The

complete process of sampling is done in a single step, with

each subject can be selected independently from the other

samples of the population [10]. Then, we forwarded all

these samples to the sequential feature selection (SFS)

method for selecting the best features.

This study uses the selected features as the input for a

classifier. One of the most popular classifiers, the least square

support vector machines (LS_SVMs) [11], is used to classify

EEGdata. This technique isused to identify theEEGdata from

healthy people and epileptic patients for epileptic seizures.

A lot of approaches for EEG signals classification have

been developed [12]. There were reported a diverse of

classification precisions for epileptic EEG data. Brief dis-

cussions of the previous research are provided below.

Gajic et al. [13] extracted different features from time,

frequency, time–frequency domain and non-linear analysis.

These features were obtained from sub-bands with good

representative characteristics. The researchers reduced the

dimension of the features by using scatter matrices. This

method yielded 98.7 % accuracy.

An optimum allocation-based principal component

analysis method was proposed by Siuly and Li [8] to

extract key features for the classification of multi-class

EEG signals from epileptic EEG data. They used four

different classifiers which were LS_SVM, naive Bayes

classifier, k-nearest neighbour (KNN) algorithm and linear

discriminant analysis, to find out which one was the best

classifier. They used four different output coding approa-

ches for the multi-class LS_SVM. These were error cor-

recting output codes, minimum output codes, one versus

one (1vs1) and one versus all. That method achieved a

100 % accuracy with LS_SVM_1vs1.

Feature extraction was carried out through an empirical

mode decomposition. The extracted features were for-

warded to two classifiers, the classification and regression

tree and the C4.5 classifiers. The method using the C4.5

classifier suggested by Martis et al. [14] obtained good

experimental results of 95.33, 98 and 97 % for accuracy,

sensitivity and specificity, respectively.

Chua et al. [15] gained features from raw EEG record-

ings by using higher order spectra. They used a Gaussian

mixture model (GMM) and a SVM classifiers to detect

epileptic EEG signals. They achieved average accuracies

of 93.11 and 92.56 % for the HOS based GMM classifier

and the SVM classifier, respectively, for different EEG

classes, such as normal, pre-ictal and epileptic EEGs.

On the other hand, a genetic algorithm (GA) was used by

Guo et al. [16] to automatically extract features from EEG

data in order to enhance the classifier’s performance, as well

as, to reduce the feature’s dimensionality. They used two

groups of epileptic datasets. The first group was two classes

of healthy people and epileptic patients. The second group

was three classes of healthy people, inter-ictal and ictal. The

KNN classifier was used in the work to classify the two

groups. They gained 88.6 and 99.2 % accuracies for the first

group without GA and with GA, respectively. They obtained

of a 67.2 % accuracy without GA, and 93.5 % within GA,

respectively, for the second group.

Ocak decomposed EEG signals, which were recorded

from normal subjects and epileptic patients, by using discrete

wavelet transform [17]. An approximate entropy (ApEn) was

extracted from the approximation and the detail coefficients.

The methodology achieved more than 96 % accuracy.

Srinivasan et al. used the ApEn to extract features and

an artificial neural network classifier to identify epileptic

EEG signals [18]. That approach achieved a high overall

accuracy of 100 %.

Srinivasan et al. also proposed a special type of recur-

rent neural network, Elman network [19]. They used the

feature extracted in time domain and frequency domain as

the input to the proposed classifier. The Elman network

method yielded a 99.6 % accuracy with a single input

feature.

A wavelet transform method was used by Gajic et al.

[20] to extract the key features. They also used scatter

matrices to reduce the dimensionality of the features. These

features were used as the input to a quadratic classifier. The

EEG epileptic database was classified into healthy subjects,

epileptic subjects during a seizure-free (inter-ictal) and

epileptic patients during the seizure activity (ictal). They

obtained a 99 % classification accuracy.

Shen et al. [12] proposed a cascade of wavelet-ApEn for

feature selection. They used Fisher scores for adaptive

feature selection, and SVM for feature classification to

detect epileptic seizures. They applied the method to dif-

ferent epileptic EEG recordings: open source EEG data and

clinical EEG data. The method obtained the overall clas-

sification accuracies of 99.97 and 98.73 %, respectively.

A sampling technique (ST) based on a LS_SVM was

proposed by Siuly et al. [21]. Firstly, they used the ST to

extract features from two classes of, normal persons with

eyes open and epileptic patients during a seizure activity.

They applied the LS_SVM to the extracted features. The

total classification accuracy by that approach for both the

training and testing datasets was 80.31 and 80.05 %,

respectively.

Husain and Rao [22] presented an artificial neural net-

work model using back propagation algorithm for the

classification of epileptic EEG signals. They decomposed

the EEG signals into a finite set of band limited signals

termed as intrinsic mode functions. They also applied
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Hilbert transform on these intrinsic mode functions to

calculate instantaneous frequencies. They achieved a

99.80 % overall classification accuracy.

Rückstieß et al. [23] performed a SFS method to select

the most representative features at each time step. Each

successive features depended on the previous features. All

the features were put into one vector and were forwarded to

a classifier. This approach was applied for handwritten

digits classification and a medical diabetes prediction task.

A sequential floating forward selection (SFFS) algorithm

was proposed to detect epileptic seizures in EEG signals by

Choi et al. [24]. They selected the most energy power as the

features from frequency bands by using the SFFS algorithm.

The total accuracy obtained by that method was 97.2 %.

In this study, we developed a new method combining the

SRS with the SFS to acquire the best features set, and then

we use the features as the input of the LS_SVM classifier for

the EEG classification. All the techniques are discussed in

Sects. 3 and 4. The conclusion is presented in Sect. 5.

2 Experimental data

The data used in this study are open source EEG recordings

and are publicly available1 [25]. The database includes five

sets of EEG recordings (sets A–E), with each containing

100 single-channel EEG signals of 23.6 s from five sepa-

rate classes. References [13, 26] presented all details of

these datasets from set A to E. This study selected set

A which was taken from surface EEG recordings of five

healthy people with eye open, and set E which was taken

from EEG records of five pre-surgical epileptic patients

during epileptic seizure activity.

3 Methodology

The big EEG datasets cause the curse of dimensionality

and make it difficult to estimate the accuracy of classifi-

cation from a limited number of samples. This study

develops a new structure for classifying epileptic EEG

signals, as presented in Fig. 1. This work investigates and

explores whether the SRS combined with SFS give the best

features for epileptic EEG signals classification.

3.1 Simple random sampling (SRS) technique

SRS technique is a popular type of random or prospect

sampling [21]. In this technique, each sample of the pop-

ulation has the same chance of being selected as a subject.

We put the number of population in a sample size calcu-

lator of the ‘‘Creative Research System’’ (available in

sample size calculator online), to determine the sample size

for both samples and subsamples. In this work, the dataset

used are set A and set E (repeated). Each set has 100 data

files, and each file has 4097 observations.

This research uses the sample size calculator to find the

sample size needed as well as to find the subsample size.

The sizes of the samples and the subsamples in this work

are 3288 and 2746, respectively. The sizes were selected

because they reflect the limitation of time to select samples

and subsamples. Firstly, we randomly select 10 samples

from size 3288 for each dataset (set A or E). Secondly, 5

subsamples are also random chosen from each 10 random

samples, with a size of 2746. In each step, this study takes

into account a 99–100 % confidence interval and a 99 %

confidence level. In the last step, nine statistical features

are extracted from each subsample. These features are

{maximum value (Max), minimum value (Min), mean

value, median value, mode, first quartile (Xq1), second

quartile (Xq2), range value and standard deviation (Std)}.

Figure 2 shows how samples, subsamples and features are

taken from each class. We used MATLAB software

package version 8.4, R2014b, for the experiments.

3.2 Sequential feature selection (SFS) algorithms

The SFS is used to reduce the dimensionality of the dataset

selected randomly from the SRS. This method is used to

generate fewer numbers of uncorrelated variables which

are utilized as the features for the better classification of

EEG signals. The aim of the presented sequential selection

algorithm is to decrease the feature space, D = x1, x2,…,xn,

to a subset of features, D - n. It aims at enhancing or

optimizing the computational execution of the classifier, as

well as avoiding the curse of dimensionality [27]. This

method is used to select a sufficiently reduced subset from

the feature space D without affecting the performance of

the classifier. In order to choose a suitable feature subset

size k, namely, a criterion function typically estimates the

recognition rate of the classifier [28]. The SFS algorithm

starts with an empty set S, and progressively fills the set S

through adding features selected by the criterion function

[29, 30]. It is searching on the feature space from bottom to

up. Figure 3 illustrates how the SFS picks features from the

original data. The SFS is applied to select the best features

EEG 
Signals 

SRS 
Technique 

SFS 
Algorithm 

Classification by 
LS_SVM

C

Fig. 1 The structure of the proposed system

1 http://www.meb.unibonn.de/epileptologie/science/physik/eegdata.

html.
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from the statistical features. The criterion is empirically

chosen based on the experimental results. In this study,

several experiments are made to define the best criterion.

The criterion value is calculated based on the statistical

relations among the features. Firstly, the Max value is

chosen as the criterion as shown in Eq. (1).

d ¼ q
Xn

i¼1

fs2ðiÞ i ¼ 1; 2; . . .; n; ð1Þ

where d refers to the criterion, q is one of the nine statis-

tical features, n is the number of the features and fs2 is the

statistical feature set. Secondly, all the features are selected

in the same way for Min, Mean, Mode and Std, in order to

find the best features by the SFS algorithm. The best fea-

tures (denoted as SFS_feature) are selected based on

Eqs. (2) and (3) as below:

d� fs2; ð2Þ
d[ fs2: ð3Þ

3.3 The feature set

After decreasing the dimensions of the features through the

SFS, the new feature set is forwarded to the LS_SVM

classifier. In this study, we obtain a feature set that has

2000 data points of 35 dimensions. These features are

divided into two groups, which are the training set and the

testing set. The training set is directed to train a classifier.

The testing set is employed to evaluate the performance of

the methodology and it is utilized as the input of the

classifier.

3.4 Least square support vector machines

In this subsection, we briefly review some basic work on

LS_SVMs for classification. LS_SVMs are proposed by

Suykens and Vandewalle. LS_SVMs are the least square

versions of SVMs, which are a set of related supervised

learning methods that analyse data and recognize patterns.

Moreover, they are used for classification and regression

analysis [31]. In this research, the LS_SVM classifier with

a radial basis function kernel is used for the classification

of epileptic EEG signals. These classifiers can avoid the

problem of convex quadratic programming from the clas-

sical SVMs by using a set of linear equations [8]. In this

paper, the classification is performed by LS_SVMlab

(version 1.8) toolbox in MATLAB2 [32].

Chose 10 samples randomly from each dataset (Set A and Set E)  

Sta�s�cal features are extracted from each subsample  

Max            Min            Mean            Median            Mode          Xq1            Xq2           Range          Std 

Chose 5 subsamples randomly from each sample  

EEG signals 

Set E 

…………………… a100                              e001 ……………..….. e100      

Set A

a001

Sample 1 …………………………………..……………………. Sample 10  

Subsample 1 …………….. Subsample 5                                    Subsample 1 …………….. Subsample 5 

Fig. 2 The SRS technique to

select samples, subsamples and

statistical features

The 
Extracted 

Features by 
the SRS 

The SFS 
Technique

Criterion 
Function

Performance 
Improved 

SFS_feature set Yes 

No 

h SF

Fig. 3 Features selection from the extracted features by the SRS

2 http://www.esat.kuleuven.ac.be/sista/lssvmlab/.
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3.5 Performance measures

This subsection presents assessing how the proposed

method performs. The assessments include accuracy (also

known as recognition rate), sensitivity (or recall) and

specificity. The accuracy of a classifier is the percentage of

the test set which is correctly classified by the classifier.

The sensitivity is referred to the true positive rate which is

the proportion of the positive set correctly identified.

The specificity is the true negative average which is the

proportion of the negative set correctly identified. The

following Eqs. (4)–(6) provide the definitions for the terms

[33]:

Accuracy ¼ TPþ TN

Pþ N
; ð4Þ

Sensitivity ¼ TP

P
; ð5Þ

Specificity ¼ TN

N
; ð6Þ

where TP is the number of true positives, TN is the number

of true negatives and P and N are the positive and negative

samples, respectively.

4 Results and discussions

In this study, we involved two datasets: sets A and E as

mentioned in Sect. 2. SRS technique was used to extract

features from the datasets. This technique selected features

randomly by choosing 10 samples from each dataset (sets

A and E). A five subsamples were selected from each

sample. From each subsample, nine statistical features,

such as minimum, maximum, mean, median, mode, first

quartile, third quartile, inter-quartile range and Std were

extracted as aforementioned in Sect. 3.1.

A set of features obtained from the SRS included

2000 9 45 dimensions. These features were used in two

different ways. Firstly, the statistical features were directly

fed to the LS_SVM classifier and yielded the results, as

shown in Table 1. Secondly, the SFS based on the criterion

was employed to select the key features from the extracted

features as mentioned in Sect. 3.2. As shown in the results,

the good results of the best features are presented in

Table 2. In Table 2, the good results are obtained by using

the SRS algorithm and the SFS technique with the

LS_SVM classifier depending on the best criterion chosen.

Furthermore, the LS_SVM has two important parameters,

which are c and r2 which should be suitably selected for

achieving a desirable performance too. The LS_SVM was

affected by the value of these two parameters. This study

trained the LS_SVM with different groups of the parame-

ters c and r2 to obtain best results. In this proposed method,

we conducted with one group of the five EEG datasets and

gained the best classification result with sets A and E when

c = 10 and r2 = 1 for the two methods applied in this

paper. The results of the proposed method were compared

with the results that were obtained from the SRS method

and the LS_SVM classifier. The experimental results

showed that our approach yielded 99.90 % classification

accuracy for the epileptic EEG data. Table 3 gives a better

view for the results by the two different classification

methods. On the other hand, in this study, the evaluation of

time complexity between the presented approach and the

SRS was conducted.

The SRS_SFS_LS_SVM method took 0.16 s to classify

the extracted features in Sect. 3.2. While the

SRS_LS_SVM tackled the same features with 1.52 s as

shown in Table 3. The performance of the proposed

method is also compared with two existing methods in the

literature. For fair comparison, the same dataset was used

in comparison. The results show that the proposed method

outperforms over the other two existing methods: a Huang–

Hilbert transform and an artificial neural network model by

Husain and Rao [22] and a ST and LS_SVM methods by

Table 1 Classification accuracy for epileptic EEG signals (sets

A and E)

Statistical parameters Results (%)

Accuracy 100

Sensitivity 100

Specificity 100

Table 2 Experimental results

using different statistic features

as the criterion

Choose criterion Accuracy (%) Sensitivity (%) Specificity (%)

Mean C fs2 (SFS_feature) 99.90 99.80 100.00

Mean B fs2 (SFS_feature) 98.90 98.00 99.80

Max B fs2 (SFS_feature) 97.20 100.00 94.40

Min C fs2 (SFS_feature) 99.10 99.20 99.00

Mode C fs2 (SFS_feature) 97.70 95.40 100.00

Median B fs2 (SFS_feature) 95.30 92.80 97.80

Std C fs2 (SFS_feature) 95.60 91.20 100.00
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Siuly et al. [21]. The performance comparison of the pro-

posed method with the two reported methods to classify

sets A and E is shown in Table 4. Husain and Rao in 2014

applied a Huang–Hilbert transform and an artificial neural

network model on sets A and E (the same datasets used in

this paper). They achieved a 99.80 % classification accu-

racy. While Siuly et al. in 2009 obtained 80.05 % classi-

fication accuracy when they used a ST and the LS_SVM

methods to classify the EEG signals for the same datasets.

Moreover, the proposed method gains a 99.90 % classifi-

cation accuracy for the same group of datasets. The results

shown that the proposed technique in this paper has the

potential to classify the EEG signals from healthy people

and epileptic patients using the extracted and selected

features from the SRS and SFS techniques.

5 Conclusions

This research concentrates on two classes of EEG signals

from healthy people and epileptic patients. The study

presents a SRS_SFS method to extract and select the key

features for classifying EEG signals into two classes. The

LS_SVM classifier is used to classify two-category EEG

data after the feature extraction and selection. This method

yields the results of 99.90, 99.80 and 100 % for classifi-

cation accuracy, sensitivity and specificity, respectively. In

addition, the proposed method is faster than the SRS

technique. It means that the SRS_SFS is useful for

extracting and selecting the EEG features. To sum up, the

proposed method is very efficient for analysing and clas-

sifying epileptic EEG signals. It will be also useful for the

classification of other biomedical data.
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29. Pudil P, Novovičová J, Kittler J (1994) Floating search methods

in feature selection. Pattern Recognit Lett 15(11):1119–1125

30. Reunanen J (2003) Overfitting in making comparisons between

variable selection methods. J Mach Learn Res 3:1371–1382

31. Suykens JA, Vandewalle J (1999) Least squares support vector

machine classifiers. Neural Process Lett 9(3):293–300

32. LS-SVMlab toolbox (version 1.8). http://www.esat.kuleuven.ac.

be/sista/lssvmlab/. Accessed Nov 2015

33. Han J, Kamber M, Pei J (2011) Data mining: concepts and

techniques, 3rd edn. Elsevier, Amsterdam

Hadi Ratham Al Ghayab received his BSc Degree in Computer

Science from Thi_Qar University in 2007 and MSc Degree in

Information Technology from University Utara Malaysia in 2010. He

is currently a PhD Student in the Faculty of Health, Engineering and

Sciences, University of Southern Queensland Toowoomba. His

research interests include biomedical signal analysis, data mining

and image processing.

Yan Li is currently an Associate Professor of Computer Sciences in

the Faculty of Health, Engineering and Sciences at the University of

Southern Queensland, Australia. Her research interests are in the areas

of Big Data Technologies, Artificial Intelligence, Biomedical Engi-

neering, and Signal/Image Processing.

Shahab Abdulla received his BSc and MSc Degrees from University

of Technology Baghdad and PhD from USQ. He is currently a

Lecturer in Language Centre, University of Southern Queensland. His

research interests are in the areas of biomedical engineering, complex

medical engineering, networked system, intelligent control, computer

control systems, robotics and mathematics research, etc.

Mohammed Diykh received his BSc Degree in Computer Science

from Thi_Qar University and MSc Degree in Information Technology

from Voronezh State University in 2002 and 2010, respectively. He is

currently a PhD Student in the Faculty of Health, Engineering and

Sciences, University of Southern Queensland Toowoomba. His

research interests include biomedical signal analysis, data mining

and image processing, etc.

Xiangkui Wan is a Professor of the school of Electrical and

Electronic Engineering, Hubei University of Technology. He received

MS Degree and PhD Degree in Mechanical and Electronic Engineer-

ing from the Chongqing University, in 2002 and 2005, respectively.

From 2005 to 2008, he was with the Department of Information

Engineering, Guangdong University of Technology, as a Lecturer.

Since 2008, he was as an Associate Professor in the same Department.

And since 2014, he is with the School of Electrical and Electronic

Engineering, Hubei University of Technology. His professional

research interests are in signal processing of biomedical signals,

artifact and noise analysis and linear and nonlinear time-series

analysis.

Classification of epileptic EEG signals 91

123

http://dx.doi.org/10.3389/fncom.2015.00038
http://dx.doi.org/10.3389/fncom.2015.00038
http://www.meb.unibonn.de/epileptologie/science/physik/eegdata.html
http://www.meb.unibonn.de/epileptologie/science/physik/eegdata.html
http://www.esat.kuleuven.ac.be/sista/lssvmlab/
http://www.esat.kuleuven.ac.be/sista/lssvmlab/

	Classification of epileptic EEG signals based on simple random sampling and sequential feature selection
	Abstract
	Introduction
	Experimental data
	Methodology
	Simple random sampling (SRS) technique
	Sequential feature selection (SFS) algorithms
	The feature set
	Least square support vector machines
	Performance measures

	Results and discussions
	Conclusions
	Open Access
	References


