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Abstrat

The equivalene of prinipal bundles with transitive Lie groupoids due to Ehresmamm

is a well known result. A remarkable generalisation of this equivalene, given by Maken-

zie, is the equivalene of prinipal bundle extensions with those transitive Lie groupoids

over the total spae of a prinipal bundle, whih also admit an ation of the struture

group by automorphisms. This paper proves the existene of suitably equivariant transi-

tion funtions for suh groupoids, generalising onsequently the lassi�ation of prinipal

bundles by means of their transition funtions, to extensions of prinipal bundles by an

equivariant form of �eh ohomology.

Introdution

Lie groupoids are ategories where every arrow has an inverse, plus a smooth struture. They

generalise at the same time the notion of a manifold and a group, and are widely understood

to be part of the general ontext of nonommutative geometry. First, beause groupoids

are inherently nonommutative objets, to a greater extent than are groups. Seondly, Lie

groupoids provide a modern ontext for the understanding of the geometry of sympleti and

Poisson manifolds, whih are equipped with nonommutative strutures. Following a result

of Makenzie, it was shown in [1℄, that the prequantization problem for a sympleti manifold

amounts to the existene of a suitable transitive Lie groupoid. Furthermore, given a Poisson

∗
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manifold, the existene of a (non-transitive) sympleti groupoid provides a way to quantize

it.

A rough and desriptive de�nition of a Lie groupoid is a pair of manifolds Ω and M suh

that the elements of Ω are arrows between points of M . The funtions α, β : Ω → M
mapping every arrow to its soure and target points in M are di�erentiable. Moreover there

is a di�erentiable way to multiply suitable arrows (suh that the soure of one is exatly the

target of the other), and the inversion of arrows is also di�erentiable. In this setting, for

x, y ∈ M we denote Ωx the set of arrows in Ω with soure x , Ωy
the arrows with target y

and Ωy
x the arrows with soure x and target y . In partiular, Ωx

x is a Lie group alled the

orbit of Ω at x . A Lie groupoid is denoted by Ω −→−→M .

The simplest example of a Lie groupoid is the produt M ×M −→−→M of a manifold M ,

with the obvious groupoid struture. This is alled the "pair" groupoid. If Ω and Ξ are Lie

groupoids over the same base manifold M , then a smooth map ϕ : Ω → Ξ is a morphism of

Lie groupoids if α ◦ ϕ = α , β ◦ ϕ = β and ϕ(η · ξ) = ϕ(η) · ϕ(ξ) for any pair of omposable

arrows in Ω . For example, given any Lie groupoid Ω −→−→M , the map (β, α) : Ω →M ×M
is a morphism of Lie groupoids. This partiular morphism is alled the anhor.

The most well-known lassi�ation of Lie groupoids is the one of the transitive ase. Transi-

tive Lie groupoids are the ones whose anhor is a surjetive submersion, in other words there

is an arrow between any two points in M . The hoie of a basepoint x ∈ M for a transi-

tive Lie groupoid Ω −→−→M gives rise to the prinipal bundle Ωx(M,Ωx
x, βx) . The prinipal

bundles arising from di�erent hoies of elements in M are isomorphi. Given a prinipal

bundle P (M,G, π) on the other hand, the assoiated transitive Lie groupoid is the quotient

P×P
G −→−→M . The groupoid struture here is as follows: For an element 〈u2, u1〉 , the soure

is π(u1) and the target π(u2) . Suitable arrows 〈u2, u1〉 and 〈u′2, u
′

1〉 suh that there exists a

g ∈ G with u1 = u′2g an be multiplied by

〈u2, u1〉〈u
′

2, u
′

1〉 = 〈u2, u
′

1g〉

The inverse of 〈u2, u1〉 is 〈u1, u2〉 and the unit element over an x ∈M is 〈u, u〉 for any u ∈ P
suh that π(u) = x . It is shown in [8, II�1℄, that the two proesses are mutually inverse.

So transitive Lie groupoids are lassi�ed by the well known lassi�ation of prinipal bundles

by �eh ohomology.

A di�erent lassi�ation of the transitive ase was given by Makenzie in [9℄. It was shown

that if we shift the point of view from the presription of Ωx
x (for any given basepoint) to the

presription of the Lie group bundle IΩ over M , of orbits, then transitive Lie groupoids are

lassi�ed by �eh ohomology with abelian oe�ients. This lassi�ation is always possible

to alulate in ontrast with the often non-abelian lassi�ation of prinipal bundles. To

ahieve this lassi�ation, a transitive Lie groupoid is onsidered as an extension

IΩ >−−−> Ω
(β,α)
−−−≫M ×M

of the Lie groupoid M ×M −→−→M (with the obvious groupoid struture) by the Lie group

bundle IΩ , instead of the prinipal bundle Ωx(M,Ωx
x, βx) . For example, the groupoid exten-

sion assoiated to a prinipal bundle P (M,G) is

P ×G

G
>−−−>

P × P

G
−−−≫M ×M, (1)
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where

P×G
G → M is the well known gauge group bundle of P (M,G) (where the G-ation

on itself implied is the adjoint). The usual lassi�ation of prinipal bundles by Ȟ1(M,G)
is the answer to the problem "given a Lie group G and a manifold M , lassify all prinipal

bundles P (M,G)". Makenzie's results imply that if we shift the problem to "given a Lie

group bundle F → M lassify all groupoid extensions of M ×M by this bundle", then we

get a lassi�ation by �eh ohomology with oe�ients in an abelian group whih is always

omputable, instead of Ȟ1(M,G) .

Another lassi�ation appeared reently by Moerdijk. In [11℄ regular Lie groupoids are lassi-

�ed, i.e. those ones whose orbits have a onstant dimension. Many Lie groupoids are regular,

for example those arising from regular Poisson manifolds; moreover all transitive Lie groupoids

are regular. Extensions appear in this lassi�ation as well. Namely, it is shown that regular

Lie groupoids are extensions of foliation groupoids by bundles of onneted Lie groups, and

they are lassi�ed as suh. In the ase of transitive Lie groupoids, the results in [9℄ are a

variation of the results of Moerdijk in [11℄.

The main result of the present paper is the lassi�ation of extensions of transitive Lie

groupoids by bundles of Lie groups. Denote suh an extension

F >−−−> Ω−−−≫ Ξ (2)

where F is a bundle of Lie groups and Ω,Ξ are Lie groupoids, all of them over the same

onneted manifold M . Due to the equivalene of transitive Lie groupoids with prinipal

bundles, suh extensions are equivalent to extensions of prinipal bundles

N >−−−> Q(M,H)−−−≫ P (M,G). (3)

Here N is a Lie group and the notation implies the existene of an extension of Lie groups

N >−−−> H −−−≫ G.

On the other hand, an extension of prinipal bundles (3), gives rise to the extension of

transitive Lie groupoids over M

Q×N

H
>−−−>

Q×Q

H
−−−≫

P × P

G

Here the quotient

Q×N
H → M is the bundle of Lie groups assoiated to the prinipal bundle

Q(M,H) through the ation of H on N by (the restritions of) inner automorphisms. It is

shown in [7℄ that the two proesses are mutually inverse.

From this point of view, the importane of suh a lassi�ation is more than the generalisation

of the lassi�ation of transitive Lie groupoids to extensions. The entral problem it deals with

is the lassi�ation of the overing bundles of a given prinipal bundle P (M,G) with onneted
base manifold M . Less abstrat uses of suh a lassi�ation arise from an abundane of

paradigms of extensions of prinipal bundles (see for example [6℄).

The lassi�ation of extensions (2) is made possible using a result of Makenzie [7℄. It was

proved that suh extensions are equivalent to a speial kind of transitive Lie groupoids, the

so-alled PBG-groupoids. These are transitive Lie groupoids over the total spae of a prinipal

bundle whih admit an ation of the Lie group of the bundle by Lie groupoid isomorphisms. A
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desription of this equivalene is given in Setion 1 of this paper. Roughly speaking, the PBG-

groupoid that orresponds to (2) is a Lie groupoid over the prinipal bundle P (M,G) , together
with a G-ation by (Lie groupoid) automorphisms. Thinking in terms of the extension of

prinipal bundles (3) orresponding to (2), this is a remarkable result; beause although the

Lie group G does not always at on the kernel N (unless N is abelian), due to Makenzie's

result there always exists a Lie groupoid whih admits an ation of G .

One this result is well understood, the problem shifts to the lassi�ation of PBG-groupoids.

The lassi�ation we give here is similar to the one given for general transitive Lie groupoids.

In that ase, the equivalene with prinipal bundles ensures the existene of transition fun-

tions for Lie groupoids, whih su�e to lassify them by the usual �eh ohomology. In the

ase of PBG-groupoids though, it is neessary to enode the group ation as well, and the

existene of transition funtions whih keep trak of the ation is not established.

In this paper it is shown that there exist transition funtions for PBG-groupoids whih are

equivariant in a ertain sense. This is a non-standard notion of equivariane whih we all

isometabliity. In turn, a non-standard form of equivariane in �eh ohomology arises. The

�rst isometabli �eh ohomology then lassi�es PBG-groupoids.

Furthermore, a rather old problem is answered. Lie algebroids are the in�nitesimal objets

that arise from Lie groupoids, remotely related to them like Lie algebras are related to Lie

groups. Makenzie in [8℄ gave a lassi�ation of transitive Lie algebroids, but it is not lear

how this lassi�ation integrates to the groupoid level. A reformulation of the isometabli

transition funtions is given here, whih learly di�erentiates to the equivariant analogue of

the lassi�ation given in [8℄.

This paper is strutured in the following way: Setion 1 is an aount of PBG-groupoids and

their relation with extensions of Lie groupoids and prinipal bundles. In Setion 2 the relevant

onnetion theory is desribed, emphasizing on the material that is of use for the sope of

this paper. In Setion 3 we prove the existene of transition funtions whih keep trak of

the group ation, and larify the notion of isometabliity. Setion 4 gives the lassi�ation of

PBG-Lie group bundles. A remarkable result yielding from this is that the loal G-ations

whih give rise to the notion of isometabliity are loal expressions of the ation of G on

the Lie group bundle IΩ of a given PBG-groupoid Ω −→−→ P (M,G) . Setion 5 ontains the

proof of the fat that isometabli transition funtions indeed lassify PBG-groupoids. Setion

6 provides the reformulation of iosmetabli transition funtions to a form that di�erentiates

to the equivariant analogue of the lassi�ation of Lie algebroids given in [8℄. Finally, the

formulation of the suitable ohomology groups where the oyles of isometabli transition

funtions live is given in Setion 7.
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1 Lie groupoid extensions and PBG-groupoids

This setion realls in short the material from [7℄ on the orrespondene of extensions of

transitive Lie groupoids to PBG-groupoids.

De�nition 1.1 A PBG-groupoid is a Lie groupoid Ω −→−→ P whose base is the total spae of

a prinipal bundle P (M,G) together with a right ation of G on the manifold Ω suh that

for all (ξ, η) ∈ Ω ∗ Ω and g ∈ G we have:

(i) β(ξ · g) = β(ξ) · g and α(ξ · g) = α(ξ) · g

(ii) 1u·g = 1u · g

(iii) (ξη) · g = (ξ · g)(η · g)

(iv) (ξ · g)−1 = ξ−1 · g

The notation Ω ∗ Ω stands for the pairs (ξ, η) ∈ Ω × Ω suh that α(ξ) = β(η) . We denote

a PBG-groupoid Ω over the prinipal bundle P (M,G) by Ω −→−→ P (M,G) and the right-

translation in Ω oming from the G-ation by R̃g for any g ∈ G . The right-translation in P

will be denoted by Rg . The previous de�nition implies that R̃g is an automorphism of the

Lie groupoid Ω over the di�eomorphism Rg for all g ∈ G . A morphism ϕ of Lie groupoids

between two PBG-groupoids Ω and Ω′
over the same prinipal bundle is alled a morphism

of PBG-groupoids if it preserves the group ations, namely if ϕ ◦ R̃g = R̃′

g ◦ ϕ for all g ∈ G .

In the same fashion, a PBG-Lie group bundle (PBG-LGB) is a Lie group bundle F over the

total spae P of a prinipal bundle P (M,G) suh that the group G ats on F by Lie group

bundle automorphisms. We denote a PBG-LGB by F → P (M,G) . It is easy to see that

the gauge Lie group bundle IΩ → P assoiated with a PBG-groupoid Ω −→−→ P (M,G) is a

PBG-LGB.

Numerous examples of transitive PBG-groupoids and their orresponding extensions an be

found in [6℄. In [2℄ non-transitive examples are given as well. Transitive PBG-groupoids are

the onern of this paper, due to their equivalene with extensions of transitive Lie groupoids

(or, equivalently, extensions of prinipal bundles [7℄). Let us give an outline of this equivalene.

Given an extension of Lie groupoids (2), the hoie of a basepoint gives rise to its orresponding

prinipal bundle extension (3) as was disussed in the Introdution. With the notation of (3),

the Lie group N ats on the manifold Q by the restrition of the H -ation on Q to the

embedding of N in H . It is immediate that Q(P,N, π) is a prinipal bundle. Here the

projetion π : Q−−−≫ P is the surjetive submersion given with the extension (3). In [7℄ this

was alled the transverse bundle.

Denote Ω the (transitive) Lie groupoid

Q×Q
N −→−→ P assoiated to the transverse bundle, and

de�ne a right ation of the Lie group G on Ω by

〈q2, q1〉g = 〈q2h, q1h〉

where h ∈ H is any element whih projets to g . It is trivial to see that this ation is well

de�ned and makes Ω a transitive PBG-groupoid over the prinipal bundle P (M,G) .

It is shown in [7, 1.3℄ that the Lie group bundle IΩ → P of the orbits of Ω is isomorphi to the

pullbak bundle π∗(Q×N
H ) . Therefore the PBG-groupoid Ω −→−→ P (M,G) an be presented
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anonially in the following form:

π∗(
Q×N

H
) >−−−> Ω−−−≫ P × P.

Here the injetion is

(p, 〈q, n〉) 7→ 〈qnh−1, qh−1〉

where the element h ∈ H is hosen so that π(q) = pπ(h) . Moreover, it is shown in [7, 1.6℄,

that IΩ is a PBG-Lie group bundle over P (M,G) , the ation of G de�ned as

(p, 〈q, n〉)g = (pg, 〈q, n〉).

Conversely, onsider given a transitive PBG-groupoid Υ −→−→ P (M,G) . It follows easily from

(i) of 1.1 that the ation of G is free. In [7, 2.2℄ it is shown that the riterion of Godement (see

[4, 16.10.3℄) applies, therefore the quotient manifold

Υ
G exists and the projetion ♯ : Υ → Υ

G
is a surjetive submersion.

This manifold has a natural Lie groupoid struture with base M de�ned as follows: Sine

the soure and target projetions of Υ are G-equivariant, they indue maps α′, β′ : Υ
G →M ,

whih are surjetive submersions beause the projetion ♯ , the projetion of the prinipal

bundle P (M,G) , as well as the soure and target maps of Υ as also. Take u1, u2 ∈ Υ
suh that α′(〈u1〉) = β′(〈u2〉) . Then there exists g ∈ G suh that α(u1) = β(u2)g , so it is

meaningful to de�ne

〈u1〉〈u2〉 = 〈u1u2g〉.

Finally, the map (β, α) : Υ → P × P is equivariant, so it indues a smooth submersion

π : Υ
G → P×P

G . It is lear that this is a groupoid morphism over M , and its kernel is

IΥ
G .

Therefore

IΥ

G
>−−−>

Υ

G

π
−−−≫

P × P

G

is an extension of Lie groupoids over M . Finally, it is easy to see that the two proesses are

mutually inverese. In [7℄ the following theorem is proven:

Theorem 1.2 The ategory of transitive Lie groupoid extensions is equivalent to the ategory

of transitive PBG-groupoids.

2 Connetions of PBG-groupoids

An alternative formulation of the onnetion theory of prinipal bundles is by using the Atiyah

sequene. Given a prinipal bundle P (M,G, p) , it follows from the fat that the bundle

projetion p is G-invariant, that the vetor bundle morphism Tp : TP → TM quotients

to a map p∗ : TP
G → TM whih, like Tp , is a �brewise surjetive vetor bundle morphism,

therefore a surjetive submersion. The kernel of this map is of ourse

T pP
G , where T pP is the

vertial subbundle of TP , i.e. the kernel of Tp . Now the map j : P×g

G → T pP
G indued by

P × g → TP, (u,X) 7→ T1(mu)(X)

6



(where mu : G → P is g 7→ ug ) is a vetor bundle isomorphism (see [8, Appendix A, 3.2℄).

Note that the G-ation on g implied here is the adjoint. Therefore the prinipal bundle

P (M,G, p) gives rise to the extension of vetor bundles

P × g

G

j
>−−−>

TP

G

p∗

−−−≫ TM (4)

whih is known as the Atiyah sequene.

The properties of a onnetion 1-form γ̃ : TP →M × g allow it to quotient to a left-splitting

γ̄ : TP
G → P×g

G of (4). In turn, the rule

j ◦ γ̄ + γ ◦ p∗ = 0

orresponds γ̄ to a right-splitting γ : TM → TP
G of (4). This way the onnetion forms of a

prinipal bundle orrespond to the right-splittings of its Atiyah sequene. Respetfully, the

urvature of the onnetion 1-form γ̃ orresponds to the 2-form Rγ : TM × TM → P×g

G
de�ned by Cγ(X,Y ) = γ[X,Y ]− [γ(X), γ(Y )] .

The module of setions of the vetor bundle

TP
G →M an be identi�ed with the G-invariant

vetor �elds of P (see [8, Appendix A℄), thus inheriting a Lie braket whih, together with

p∗ , satis�y the properties of the following de�nition:

De�nition 2.1 A Lie algebroid is a vetor bundle A on base M together with a vetor bundle

map ♯ : A → TM , alled the anhor of A, and a braket [ , ] : ΓA × ΓA → ΓA whih is

R-bilinear, alternating, satis�es the Jaobi identity, and is suh that

(i) ♯([X,Y ]) = [♯X, ♯Y ],

(ii) [X, fY ] = f [X,Y ] + (♯X)(f)Y

for all X,Y ∈ ΓA and f ∈ C∞(M).

Basi material on Lie algebroids an be found in [8℄ and [5℄. The notion of a Lie algebroid

generalises that of the tangent bundle TM of a given manifold M , whih an be thought

of as a Lie algebroid with the well known Lie braket of vetor �elds and the identity as the

anhor map. Moreover, any bundle of Lie algebras is a Lie algebroid with zero as the anhor

map.

If A and A′
are Lie algebroids over the same base M , then a morphism of Lie algebroids

ϕ : A → A′
over M is a vetor bundle morphism suh that ♯′ ◦ ϕ = ♯ and ϕ([X,Y ]) =

[ϕ(X), ϕ(Y )] for X,Y ∈ ΓA . A Lie algebroid is alled transitive if its anhor map is a

surjetive submersion. In this ase the kernel of the anhor map is a bundle of Lie algebras,

alled the adjoint bundle, and the Lie algebroid an be presented as an extension of vetor

bundles

L >−−−> A
♯

−−−≫ TM (5)

where the injetion of L into A and the anhor map are morphisms of Lie algebroids.
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De�nition 2.2 Let A,A′
be Lie algebroids over the manifold M and L→M . An extension

of vetor bundles

K >−−−> A−−−≫ A′.

is alled an extension of Lie algebroids if the injetion and surjetion maps are morphisms of

Lie algebroids.

Extensions suh as (5) are the simplest form of Lie algebroid extensions, in fat they are just

an alternative way to present a transitive Lie algebroid A over a manifold M . In this setting,

the onnetion theory of prinipal bundles gives rise to the following notions:

De�nition 2.3 Let L >−−−> A
♯

−−−≫ TM be a transitive Lie algebroid.

(i) A onnetion of A is a vetor bundle morphism γ : TM → A suh that ♯ ◦ γ = 0.

(ii) The urvature of a onnetion γ is the 2-form Cγ : TM × TM → L de�ned by

Cγ(X,Y ) = γ[X,Y ]− [γ(X), γ(Y )]

for all X,Y ∈ ΓA.

A onnetion γ is alled �at if Cγ = 0.

Note that a �at onnetion is evidently a morphism of Lie algebroids γ : TM → A .

All Lie groupoids di�erentiate to Lie algebroids. A full aount of this proess an be found

in [8, III�3℄. The reader an get a rough idea by omparing the extension (1) to the Atiyah

sequene (4). Lie III does not apply for groupoids and algebroids though. The integrability

of Lie algebroids has a ohomologial obstrution in the transitive ase, whih was given by

Makenzie in [8, V℄. In the non-transitive ase, integrability of Lie algebroids is a problem of

di�erent order whih was takled by Craini and Fernandes in [3℄. In general, a Lie algebroid

that integrates to a Lie groupoid Ξ −→−→M is denoted by AΞ . Note that the tangent bundle
TM of a manifold M integrates to the "pair" groupoid M ×M −→−→M .

Analogously with the reformulation of prinipal bundle onnetions as right-splittings of

the Atiyah sequene, it is legitimate to regard the onnetions of a transitive Lie groupoid

Ξ −→−→M as the onnetions of the Lie algebroid AΞ it di�erentiates to, and the same is valid

for the urvature 2-forms. This terminology will be used in the remaining of this paper.

One again though, the onern of this paper is extensions of transitive Lie groupoids, so let

us make a fresh start by giving the notion of a PBG-algebroid.

De�nition 2.4 A PBG-algebroid over the prinipal bundle P (M,G) is a Lie algebroid A
over P together with a right ation of G on A denoted by (X, g) 7→ R̂g(X) for all X ∈

A, g ∈ G suh that eah R̂g : A → A is a Lie algebroid automorphism over the right

translation Rg in P .

We denote a PBG-algebroid A over P (M,G) by A⇒ P (M,G) . The G-ation on A indues

an ation of G on the module ΓA of setions of the vetor bundle A→M , namely

X · g = R̂g ◦X ◦Rg−1 .
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The right-translation with respet to this ation is denoted by R̂Γ
g : ΓA→ ΓA for all g ∈ G .

With this notation de�nition 2.4 implies that

R̂Γ
g ([X,Y ]) = [R̂Γ

g (X), R̂Γ
g (Y )].

Given a transitive PBG-algebroid A ⇒ P (M,G, p) , its adjoint bundle L → P inherits a

G-ation by automorphisms, thus making

L >−−−> A
♯

−−−≫ TP

an extension of PBG-algebroids. That is to say it is an extension of Lie algebroids suh

that the injetion and surjetion maps are moreover equivariant. It is shown in [2, 3.4℄ that

the Godement riterion applies, so the quotient manifold

A
G exists. Therefore the previous

extension quotients to a vetor bundle extension

L

G
>−−−>

A

G

♯/G

−−−≫
TP

G
(6)

of the (integrable) Lie algebroid

TP
G by the quotient Lie algebra bundle

L
G . Observe that

sine the quotient manifold

A
G exists, the vetor bundle struture of A quotients to

A
G →M .

Moreover, the natural projetion ♮A : A→ A
G is a pullbak over p : P →M .

The vetor bundle

A
G has the following Lie algebroid struture: The anhor is the omposition

of vetor bundle morphisms p∗ ◦ ♯/G . Moreover, the setions of

A
G are isomorphi to the G-

invariant setions of A , therefore Γ(AG) inherits the Lie braket from ΓGA . The veri�ation
that this braket together with the anhor map p∗◦♯G satisfy the properties of a Lie algebroid

an be found in [7, 3.2℄. It is immediate that

A
G is transitive. A more elaborate presentation

of the extension 6 is given in Figure 1, whih helps to keep trak of all the strutures related

to the Lie algebroid extension. Note that the adjoint bundle K of

A
G is an extension of

P×g

G
by

L
G . This diagram makes lear that the okernel of the extension (6) is in fat the Atiyah

sequene of the bundle P (M,G, p) .

K
P × g

G

L

G
✲ →

A

G

↓

❄

♯/G
։

TP

G

j
↓

❄

TM

p∗ ◦ ♯/G

❄
❄

= TM

p∗

❄
❄

Figure 1: The extension of Lie algebroids indued by a PBG-algebroid

On the other hand, pulling bak (6) by the map Tp : TP → TM we reover the given

PBG-algebroid (see [7, 4℄). This onsists the proof of the following theorem.
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Theorem 2.5 The ategory of transitive PBG-algebroids over a manifold M is equivalent to

the ategory of Lie algebroid extensions

K >−−−> A−−−≫ AΞ (7)

of an integrable transitive Lie algebroid by a Lie algebra bundle (over M ).

Now extensions of Lie groupoids di�erentiate to extensions (7). The onnetion theory of Lie

groupoid extensions (2) is enoded by the right-splittings of extensions (7). These in turn

orrespond to the following notion of onnetion for the equivalent PBG-algebroid (see [6℄

and [7℄):

De�nition 2.6 Let A⇒ P (M,G, p) be a transitive PBG-algebroid. A onnetion γ : TP →
A is alled isometabli, if it satis�es

γ ◦ TRg = R̂g ◦ γ (8)

An aount of isometabli onnetions and their holonomy is given in [2℄, however in this

paper we are interested in a di�erent problem. The groupoid extensions that we intend to

lassify have presribed kernel and okernel. In other words, given a transitive Lie groupoid

Ξ −→−→M and a Lie algebra bundle F →M , we lassify all transitive Lie groupoids Φ →M
whih �t into a Lie groupoid extension

F >−−−> Φ−−−≫ Ξ.

In this sense, we are interested in the onnetions of Φ rather than the splittings of the

extension of the Lie algebroid extension AF >−−−> AΦ −−−≫ AΞ . The following theorem

lari�es exatly what these onnetions orrespond to in the relevant PBG-algebroid.

Theorem 2.7 Suppose given a transitive PBG-algebroid A ⇒ P (M,G, p) and onsider its

orresponding extension of Lie algebroids (6) over M . The onnetions of the (transitive)

Lie algebroid

A
G →M are equivalent to the isometabli onnetions of A whih vanish on the

kernel T pP of Tp : TP → TM .

Proof. Consider an isometabli onnetion γ : TP → A suh that γ(X) = 0 if X ∈ T pP .

This quotients to a splitting γ/G : TP
G → A

G . Given a onnetion δ : TM → TP
G of the

prinipal bundle P (M,G) , de�ne

γ̃ = γ/G ◦ δ : TM →
A

G
.

The assumption that γ vanishes on the kernel of Tp makes the de�nition of γ̃ independent

from the hoie of δ . It follows immediately from the assumption that δ is a onnetion of

P (M,G) and γ/G is a splitting of (6) that this is a onnetion of the Lie algebroid

A
G .

Conversely, given a onnetion θ : TM → A
G of the Lie algebroid

A
G , ompose it with the

anhor map p∗ : TP
G −−−≫ TM of the Atiyah sequene orresponding to the bundle P (M,G, p)

(see (4)) to the vetor bundle morphism

θ = θ ◦ p∗ :
TP

G
→

A

G
.
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Denote ♮ : TP → TP
G and ♮A : A → A

G the natural projetions. Sine ♮A is a pullbak over

p : P →M , there is a unique vetor bundle morphism γ : TP → A suh that

♮A ◦ γ = θ ◦ ♮.

Due to the G-invariane of ♮ and ♮A the morphism of vetor bundles R̂g−1 ◦ γ ◦ TRg also

satis�es the previous equation for every g ∈ G , therefore it follows from the uniqueness

argument that γ is isometabli. It is an immediate onsequene of the previous equation that

γ vanishes at T pP .

To see that it is indeed a onnetion of A , let us reall the fat that θ is a onnetion of

A
G . This gives p∗ ◦ ♯/G ◦ θ = idTM . Now ♯/G = ♮ ◦ ♯ and by de�nition we have p∗ ◦ ♮ = Tp ,
therefore Tp ◦ ♯ ◦ θ = idTM . Now take an element X ∈ TP . Then Tp(X) ∈ TM , and it

follows from this equation that there exists an element g ∈ G suh that

(♯ ◦ θ)(Tp(X)) = X · g.

Multiplying this by g−1
and using the G-invariane of Tp we get

♯ ◦ (θ ◦ Tp) = idTP .

Finally, from the properties of the pullbak, it follows immediately that γ is the map (π, θ◦♮) ,
where π : TP → P is the natural projetion of the tangent bundle. It is straightforward to

hek that this reformulates to (π, θ ◦ Tp) , and this proves that γ is a onnetion.

De�nition 2.8 The isometabli onnetions of a PBG-algebroid A⇒ P (M,G, p) whih van-

ish at the kernel T pP of p∗ are alled basi onnetions.

It is therefore neessary to fous on basi onnetions of PBG-groupoids for the purpose of

this paper. The following result follows from the proof 2.7.

Corollary 2.9 Let A ⇒ P (M,G) be a transitive PBG-algebroid. A �at onnetion of the

Lie algebroid

A
G →M gives rise to a unique �at basi onnetion of A.

Note that the proof of 2.7 does not give fore to the onverse of this result. That is beause

the onnetion of

A
G orresponding to a given �at basi onnetion of A arises by omposition

with an arbitrary onnetion of

TP
G , whih is not neessarily a �at one, unless the bundle

P (M,G) is �at.

3 Transition funtions for transitive PBG-groupoids

This setion is onerned with the study of those transition funtions of transitive PBG-

groupoids whih enode the group ation.

Let us start with a prinipal bundle P (M,G) and a simple open over U = {Ui}i∈I of M .

This is an open over suh that eah Ui is ontratible, and the intersetion of two as well
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as three open sets is also ontratible. Then a over P = {Pi}i∈I of P by prinipal bundle

harts suh that Pi
∼= Ui ×G exists.

Consider now a PBG-groupoid Ω −→−→ P (M,G) over this bundle and its orresponding Lie

algebroid AΩ ⇒ P (M,G) with adjoint bundle LΩ . The extension of Lie algebroids orre-

sponding to that is

LΩ

G
>−−−>

AΩ

G
−−−≫

TP

G
.

It follows from [8, IV�4℄ that the Lie algebroid

AΩ
G (over M ) has loal �at onnetions

θ̃∗i : TUi → (AΩ
G )Ui . Due to 2.9 these give rise to �at basi onnetions θ∗i : TPi → AΩPi .

Sine the onnetions θ̃∗i are �at, they an be regarded as morphisms of Lie algebroids. Now

onsider the following theorem from [10℄:

Theorem 3.1 Let Ω,Ξ be Lie groupoids over the same manifold M and µ : AΩ → AΞ a

Lie algebroid morphism. If Ω is α-simply onneted, then there exists a unique morphism of

Lie groupoids ϕ : Ω → Ξ whih di�erentiates to µ, i.e. ϕ∗ = µ.

With the assumption that every Ui is ontratible, and by fore of the previous result, it

follows that the θ̃∗i s integrate uniquely to morphisms of Lie groupoids θ̃i : Ui × Ui →
Ω
G

Ui

Ui
.

It was shown in the proof of 2.7 that the basi �at onnetions θ∗i orresponding to the θ̃∗i s
are in essene the maps θ̃∗i ◦ Tp , therefore they also integrate uniquely to morphisms of Lie

groupoids

θi : Pi × Pi → ΩPi
Pi
.

Proposition 3.2 The θi s are morphisms of PBG-groupoids.

Proof. It su�es to prove the equivariane of the θi s. For every g ∈ G , the map θgi :

Pi × Pi → ΩPi
Pi

de�ned by

θgi (u, v) = θi(ug, vg)g
−1

is learly a morphism of Lie groupoids and it di�erentiates to θ∗i . It therefore follows from

the uniqueness of θi that θ
g
i = θi for all g ∈ G , onsequently θi is equivariant.

For every i ∈ I hoose an element ui ∈ Pi and de�ne σi : Pi → ΩPi by σi(u) = θi(u, ui) .
We all these maps shisms. Note that σi(ui) = 1ui . The following proposition lari�es the

behaviour of the shisms with respet to the G-ation. We all this notion of equivariane

isometabliity beause it follows diretly from the isometabliity property of the loal �at

onnetions of the PBG-groupoid we disussed above.

Proposition 3.3 The shisms σi are isometabli in the sense

σi(ug) = (σi(u)g) · σi(uig)

for all u ∈ Pi and g ∈ G.
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Proof. From the de�nition of the σi s and the equivariane of the morphisms θi we get:

(σi(u)g) · σi(uig) = (θi(u, ui)g) · θi(uig, ui) = θi(ug, uig) · θi(uig, ui) = θi(ug, ui) = σi(ug).

For every hoie of a ui ∈ Pi , onsider the Lie group Hi = Ωui
ui
. In order to refer to a unique

Lie group independent to the index i ∈ I , we need to �x a u0 ∈ P and de�ne H = Ωu0
u0
.

Then, for every i ∈ I hoose a ξi ∈ Ωui
u0

and onsider the maps τi : Hi → H de�ned by

τi(η) = ξ−1 · η · ξ . These are isomorphisms of Lie groups. Now de�ne σi : Pi → Ωu0
by

σ = σi · ξi.

These are setions of the Lie groupoid Ω . Note that σi(ui) = ξi . The isometabliity of these

setions is desribed in the following proposition:

Proposition 3.4 The setions σi are isometabli in the sense

σi(ug) = [σi(u)g] · (ξ
−1
i g) · σi(uig).

for all i ∈ I, u ∈ Pi and g ∈ G.

The proof is a straightforward alulation.

Now we look at the isometabliity of the transition funtions. We denote {sij : Pij → Ωui
uj
}i,j∈I

the transition funtions of the shisms {σi}i∈I and {sij : Pij → Ωu0
u0
}i,j∈I the transition

funtions of the setions {σi}i∈I . The following proposition is an immediate onsequene of

the isometabliity of the shisms and the setions.

Proposition 3.5 For every i, j ∈ I suh that Pij 6= ∅, u ∈ Pij and g ∈ G we have:

(i) sij(ug) = σi(uig)
−1 · (sij(u)g) · σj(ujg)

(ii) sij(ug) = σi(uig)
−1 · (ξig) · (sij(u)g) · (ξjg)

−1 · σj(ujg).

This gives rise to the following formulation of G-ations:

De�nition 3.6 Denote Ωui
ui

= Hi and Ωu0
u0

= H . The formulas

(i) ρij : G×Hi → Hi , ρij(g
−1)(hi) = σi(uig)

−1 · (hig) · σj(ujg) and

(ii) ρij : G×H → H , ρij(g
−1)(h) = σi(uig)

−1 · (ξig) · (hg) · (ξjg)
−1 · σj(ujg)

de�ne families of G-ations on Hi and H respetively.

With this notation, it is legitimate to reformulate the isometabliity equations of 3.5 to

sij(ug) = ρij(g
−1)(sij(u))

and

sij(ug) = ρij(g
−1)(sij(u)).

Let us now examine the properties of the G-ations ρij and ρij . The proof of the following
proposition is, again, straightforward.
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Proposition 3.7 Let Ω −→−→ P (M,G) be a PBG-groupoid. Then the families of G-ations

{ρij}i,j∈I and {ρij}i,j∈I satisfy the following identities:

ρij(g
−1)(h1h2) = ρik(g

−1)(h1)ρkj(g
−1)(h2) (9)

for all i, j, k ∈ I suh that Pijk 6= ∅ and h1, h2 ∈ H .

ρij(g
−1)(h) = ρii(g

−1)(h) · σi(uig)
−1 · (ξig) · (ξjg)

−1 · σj(ujg) =

= σi(uig)
−1 · (ξig) · (ξjg)

−1 · σj(ujg) · ρjj(g
−1)(h). (10)

τi(ρii(g
−1)(hi)) = ρii(g

−1)(τi(hi)) (11)

for all hi ∈ Hi .

Due to (10), it is possible to say that the family of ations {ρij}i,j∈I is fully determined by

the subset of those ations with i = j . Now (11) shows that for all i ∈ I the isomorphism

τi : Hi → H maps every G-ation ρii on Hi exatly to the G-ation ρii on H .

Last, notie that (9) is a non-standard property. From this it follows immediately that

ρii(g
−1)(eH) = eH for all i ∈ I . These two properties almost make the ρij s representations

in a ertain sense. We single out (9) by giving the following de�nition.

De�nition 3.8 Let G and H be Lie groups. If a family {ρij}i,j∈I of G-ations on H satisfy

ρij(g
−1)(h1h2) = ρik(g

−1)(h1)ρkj(g
−1)(h2)

for all g ∈ G, h1, h2 ∈ H and i, j, k ∈ I then G is said to be ating on H by oyle

morphisms.

Equivalene of transition funtions

So far we have demonstrated that PBG-groupoids have setions whih are suitably equivariant.

These setions arise naturally from the loal �at basi onnetions that exist on the algebroid

level. But what happens if we start with a di�erent family of loal �at basi onnetions?

Let us start with two families {θ∗i }i∈I and {θ′∗i }i∈I of �at basi onnetions over the same

over P = {Pi}i∈I of P by prinipal bundle harts. Then there exist maps ℓ∗i : TPi → Pi×hi
suh that

θ′
∗

i = θ∗i + ℓ∗i

for every i ∈ I . Here gi denotes the Lie algebra of the Lie group Hi . Therefore every ℓ∗i
must also be isometabli, that is to say

ℓ∗i (Xg) = ℓ∗i (X)g

for all X ∈ TPi and g ∈ G . Moreover, the ℓ∗i s integrate to PBG-groupoid morphisms

ℓi : Pi × Pi → Hi suh that θ′i = θi · ℓi . As far as the isometabliity of the ℓi s is onerned,
it follows

ℓi(ug, vg) = ρii(g
−1)(ℓi(u, v)). (12)
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Now de�ne ri : Pi → Hi by

ri(u) = ℓi(u, ui)

and ri : Pi → H by ri = τi ◦ ri . That is to say,

ri(u) = ξ−1
i · ri(u) · ξi

for all u ∈ Pi . We all the ri s and the ri s onjugation maps. The proof of the following

proposition is a simple alulation.

Proposition 3.9 The shisms, setions and the respetive transition data indued by {θ∗i }i∈I
and {θ′∗i }i∈I are related by:

(i) σ′i = σi · ri .

(ii) s′ij = r−1
i · sij · rj .

(iii) σ′i = σi · ri .

(iv) s′ij = r−1
i · sij · rj .

Corollary 3.10 The families of G-ations ρ = {ρij}i,j∈I and ρ′ = {ρ′ij}i,j∈I arising from

the onnetions θ∗i and θ′∗i respetively are related by

ρ′ij(g
−1)(h) = ri(uig)

−1 · ρij(g
−1)(h) · rj(ujg)

for all h ∈ H and g ∈ G.

Now let us examine the isometabliity of the onjugation maps.

Proposition 3.11 The onjugation maps satisfy

(i) ri(ug) = ρii(g
−1)(ri(u)) · ri(uig)

(ii) ri(ug) = ρii(g
−1)(ri(u)) · ri(uig)

for all u ∈ Pi and g ∈ G.

Proof. Note that (ii) follows by applying the isomorphisms τi to (i) and taking into aount

(11). For (i) we have:

ri(ug) = ℓi(ug, ui) = ℓi(ug, uig) · ℓ(uig, ui)

Beause of (12) the last part of the above equation beomes ρii(g
−1)(ℓ(u, ui)) · ℓ(uig, ui) , and

the result follows.

4 The lassi�ation of PBG-Lie group bundles

Consider the adjoint bundle IΩ → P (M,G) assoiated with a a given PBG-groupoid

Ω −→−→ P (M,G) . This setion is onerned with the isometabli transition data that las-

si�es this bundle. Apart from this lassi�ation, another result given here is that by using

this data it is shown that the G-ations ρij given in the previous setion are loal expressions

of the ation of G on the Lie group bundle IΩ .
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Proposition 4.1 Let {Ui}i∈I be a simple open over of M and Pi
∼= Ui × G harts of the

prinipal bundle P (M,G). The maps ψi : Pi ×H → IΩPi de�ned by

ψi(u, h) = σi(u) · h · σi(u)
−1

are loal harts for the Lie group bundle IΩ. They are isometabli in the sense

ψi(ug, ρii(g
−1)(h)) = ψi(u, h) · g.

Proof. The fat that ψi is a bijetion and ψi,u : H → Ωu
u is a morphism of Lie groups for

all u ∈ Pi are simple alulations. For the isometabliity we have:

ψi(ug, ρii(g
−1)(h)) = σi(ug) · ρii(g

−1)(h) · σi(ug)
−1 =

= (σi(u)g)·(ξ
−1
i g)·σi(uig)·σi(uig)

−1 ·(ξig)·(hg)·(ξ
−1
i g)·σi(uig)·σi(uig)

−1 ·(ξig)·(σi(u)
−1g) =

= (σi(u)g) · (ξig) · (σi(u)
−1g) = ψi(u, g) · g.

The transition funtions of these harts are αij : Pij → Aut(H) de�ned by

αij(u)(h) = sij(u) · h · sij(u)
−1.

As far as the isometabliity of the respetive transition funtions is onerned, the following

proposition is a straightforward alulation.

Proposition 4.2 The transition funtions αij are isometabli in the sense

αij(ug)(ρjj(g
−1)(h)) = ρii(g

−1)(αij(u)(h)). (13)

Theorem 4.3 Let P (M,G) be a prinipal bundle, P = {Pi}i∈I be an open over of P by

prinipal bundle harts and H a Lie group. Let ρ = {ρi}i∈I be a family of ations of G
on H . Given a oyle α = {αij : Pij → Aut(H)}i,j∈I whih satis�es (13), there exists a

PBG-Lie group bundle over P (M,G) with transition funtions the given ones.

Proof. Let Fi = Ui×H and on the union of the Fi de�ne the following equivalene relation:

(i, (u1, h1)) ∼ (j, (u2, h2)) ⇔ u1 = u2 = u and h2 = αij(u)(h1).

This is an equivalene relation beause we assumed that the αij s form a oyle. Denote

the quotient set by F and equivalene lasses 〈i, (u, h)〉 . De�ne a map π : F → P by

π〈i, (u, h)〉 = u and a G-ation by

〈i, (u, h)〉 · g = 〈i, (ug, ρi(g
−1)(h))〉.

It is easy to see that the map ψi : Pi × H → π−1(Pi) de�ned by (u, h) 7→ 〈i, (u, h)〉 is an

equivariant bijetion. Give F the smooth struture indued from the manifolds Pi ×H via

the ψi s. Clearly F → P (M,G) is a PBG-Lie algebra bundle, and its transition funtions are

ψ−1
i,u (ψj,u(h)) = ψ−1

i,u (〈j, (u, h)〉) = ψ−1
i,u (〈i, (u, αij(u)(h))〉) = αij(u)(h).
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It will be shown in Setion 6 that the onstrution of a PBG-LGB given in 4.3 is well de�ned.

The family of G-ations {ρij}i,j∈I arises naturally from the loal �at basi onnetions that

every PBG-groupoid has. A remarkable result, whih is presented here, is that these ations

are really only loal expressions of the G-ation on the groupoid. We prove this for the

subset of the ρij s for whih i = j . This is enough, as it was shown in (10) that these ations

determine the whole family. To this end, it is neessary to establish the notion of an ation

groupoid.

De�nition 4.4 Given a manifold M together with a right ation of a Lie group G on M ,

the ation groupoid M 7>G −→−→M assoiated with this ation is the produt manifold M×G,

together with the following groupoid struture:

(i) The soure map is α(x, g) = x, and the target map β(x, g) = xg .

(ii) Multipliation is de�ned by (xg, h) · (x, g) = (x, gh).

(iii) The unit element over any x ∈M is 1x = (x, eG).

(iv) The inverse of an element (x, g) ∈M 7> G is (xg, g−1).

Note that the ation groupoid is transitive if and only if the G-ation on M is transitive.

Now suppose given a PBG-groupoid Ω −→−→ P (M,G) and a over P = {Pi}i∈I of P by

prinipal bundle harts. For every i ∈ I , onsider the ation groupoid Pi 7> G −→−→ Pi(Ui, G)
and de�ne a map ρ̃i : Pi 7> G ∗ IΩPi → IΩPi by

ρ̃i((u, g), η ∈ Ωu
u) = ψi(ug, ρii(g

−1)(ψ−1
i,u (η))).

Obviously, π(ρ̃i((u, g), η)) = ug = β(u, g) and ρ̃i((u, eG), η) = η . It is easily veri�ed that

ρ̃i((ug1, g2) · (u, g1), η) = ρ̃i((ug1, g2), ρ̃i(u, g1), η).

Also, eah ρ̃i(u, g) is an automorphism of Ωu
u , therefore it is a representation of the Lie

groupoid Pi 7> G on the Lie group bundle IΩPi , in the sense of [9℄. The following proposition

allowes us to "glue" the ρ̃i s together to a global map.

Proposition 4.5 For all i, j ∈ I suh that Pij 6= ∅, u ∈ Pij , g ∈ G and η ∈ Ωu
u we have

ρ̃i((u, g), η) = ρ̃j((u, g), η).

Proof. The isometabliity of the αij 's gives:

ρ̃i((u, g), η) = ψi(ug, ρii(g
−1)(ψ−1

i,u (η))) = ψi(ug, ρii(g
−1)(αij(u)(ψ

−1
j,u(η)))) =

= ψi(ug, αij(ug)(ρjj(g
−1)(ψ−1

i,u (η)))) = ψj(ug, ρjj(g
−1)(ψ−1

i,u (η))) = ρ̃j((u, g), η).

Now we an de�ne ρ : (P 7> G) ∗ IΩ → IΩ by ρ((u, g), η ∈ Ωu
u) = ρ̃i((u, g), η) , if u ∈ Pi.

The previous proposition shows that it is well de�ned. More than that, it is a representation
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beause eah ρ̃i is. As a matter of fat, ρ is a lot simpler than it seems. Sine the harts

{ψi}i∈I are isometabli we have:

ρ((u, g), η) = ψi(ug, ρii(g
−1)(ψ−1

i,u (η))) = ψi(u, ψ
−1
i,u (η)) · g = η · g.

So ρ is, in fat, just the PBG struture of IΩ.

Conversely, it is possible to retrieve the loal representations {ρii}i∈I from the PBG struture

of IΩ . Suppose {σi : Pi → Ωu0
}i∈I is a family of setions of Ω . Consider the harts

ψi : Pi ×H → IΩPi de�ned as ψi,u(h) = Iσi(u)(h) and de�ne ρ̃i : Pi 7> G→ Aut(H) by

ρ̃i(u, g)(h) = ψ−1
i,ug(ψi,u(h) · g)

for all g ∈ G , h ∈ H and u ∈ Pi . This is a morphism of Lie groupoids over Pi → · . For

every i ∈ I hoose ui ∈ Pi and de�ne

ρii(g
−1)(h) = ρ̃i(ui, g)(h) = ψ−1

i,uig
(ψi,u(h) · g).

Then,

ρii(g
−1)(h) = Iσi(uig)−1(Iσi(ui)(h) · g) = σi(uig)

−1 · (σi(ui)g) · (hg) · (σi(ui)
−1g) · σi(uig).

The latter is exatly the original de�nition of the ρii 's. Sine the ρii s determine the ρij s, the
previous onsiderations are the proof of the following theorem:

Theorem 4.6 Given a PBG-groupoid Ω −→−→ P (M,G), the representations {ρij}i∈I are loal

expressions of the PBG struture of IΩ.

5 The lassi�ation of transitive PBG-groupoids

This setion deals with a single result: It is shown that the isometabli transition funtions

lassify transitive PBG�groupoids.

Theorem 5.1 Let P (M,G) be a prinipal bundle and P = {Pi}i∈I an open over of P by

prinipal bundle harts. Consider a Lie group H and a family of ations ρ = {ρij}i,j∈I
of G on H whih has the property of the oyle morphism. Given a ρ-isometabli oyle

{sij : Pij → H}i,j∈I there is a PBG-groupoid Ω over P (M,G) whose PBG-Lie group bundle

IΩ of orbits is the one produed by {αij = Isij}i,j∈I .

Proof. For every i, j ∈ I onsider the sets Σj
i = Pi×H×Pj and let Σ =

⋃
i,j∈I Σ

j
i . Consider

the equivalene relation

(i, u, h, v, j) ∼ (i′, u′, h′, v′, j′) ⇐⇒ u = u′, v = v′ and h′ = si′i(u) · h · sjj′(v).

Then it is shown in [8, II 2.19℄ that the following de�nes a groupoid struture on the quotient

Ω = Σ/ ∼ : The soure and target projetions are 〈i, u, h, v, j〉 = v, 〈i, u, h, v, j〉 = u , the
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objet inlusion map is 1 : u 7→ 1u = 〈i, u, eH , u, i〉 (any i ∈ I suh that u ∈ Pi ), and the

multipliation is

〈i, u, h1, v, j1〉 · 〈j2, v, h2, w, k〉 = 〈i, u, h1 · sj1j2(v) · h2, w, k〉.

The inversion is 〈i, u, h, v, j〉−1 = 〈j, v, h−1, u, i〉 . This groupoid beomes a PBG-groupoid

with ation:

〈i, u, h, v, j〉 · g = 〈i, ug, ρij(g
−1)(h), vg, j〉.

This is well de�ned beause if 〈i, u, h, v, j〉 = 〈i′, u, h′, v′, j′〉 then h′ = si′i(u) ·h · sjj′(v) . The
oyle morphism ondition then gives:

ρi′j′(g
−1)(h′) = ρi′i(g

−1)(si′i(u)) · ρij(g
−1)(h) · ρjj′(g

−1)(sjj′(u)) =

= si′i(ug) · ρij(g
−1)(h) · sjj′(ug).

So, 〈i, u, h, v, j〉 · g = 〈i′, u, h′, v, j′〉 · g . It is straightforward that this ation makes Ω a PBG-

groupoid. For instane, we prove here that this ation preserves the multipliation. Again,

beause of the oyle morphism property, we have:

(〈i, u, h1, v, j1〉 · 〈j2, v, h2, w, k〉) · g = 〈i, u, h1 · sj1j2 · h2, w, k〉 · g =

= 〈i, ug, ρik(g
−1)(h1 · sj1j2 · h2), w, k〉 =

= 〈i, ug, ρij1(g
−1)(h1) · ρj1j2(g

−1)(sj1j2(v)) · ρj2k(g
−1)(h2), wg, k〉 =

= 〈i, ug, ρij1(g
−1)(h1) · sj1j2(vg) · ρj2k(g

−1)(h2), wg, k〉 =

(〈i, u, h1, v, j1〉 · g) · (〈j2, v, h2, w, k〉 · g).

Proposition 5.2 Let P (M,G) be a prinipal bundle, {Pi}i∈I an open over of P by prinipal

bundle harts, H a Lie group and ρ′, ρ be two families of ations of G on H by oyle

morphisms whih are onjugate under a family of maps r = {ri : Pi → H}i∈I suh that

ri(ug) = ρii(g
−1)(ri(u)) · ri(uig) for all u ∈ Pi, g ∈ G and i ∈ I . Let {sij}i,j∈I and

{s′ij}i,j∈I be ρ′ -isometabli and ρ-isometabli systems of transition data over {Pi}i∈I with

values in H respetively whih are equivalent under the family of maps r . Let Ω′
and Ω

be the PBG-groupoids onstruted from {sij}i,j∈I and {s′ij}i,j∈I respetively. Then the map

ϕ : Ω′ → Ω de�ned by

〈i, u, v, h〉 7→ 〈i, u, ri(u) · h · rj(v)
−1, v, j〉

is an isomorphism of PBG-groupoids over P (M,G).

Proof. It is shown in [8, II 2.19℄ that ϕ is an isomorphism of Lie groupoids. To show that

it is an isomorphism of PBG-groupoids, take any g ∈ G . Then

ϕ(〈i, u, h, v, j〉 · g) = ϕ(〈i, ug, ρ′ij(g
−1)(h), vg, j〉) =

= 〈i, ug, ri(ug) · ri(uig)
−1ρij(g

−1)(h) · rj(ujg) · rj(vg)
−1, vg, j〉 =

= 〈i, ug, ρii(g
−1)(ri(u))·ri(uig)·ri(uig)

−1ρij(g
−1)(h)·rj(ujg)·rj(ujg)

−1ρjj(g
−1)(rj(v)

−1), vg, j〉 =

= 〈i, ug, ρij(g
−1)(ri(u) · h · rj(v)

−1), vg, j〉 = ϕ(〈i, u, h, v, j〉) · g.
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6 Isometabli transition data

Let us move to the Lie algebroid level for a while. In [8, IV�4℄, it is shown that a transitive

Lie algebroid L >−−−> A−−−≫ TM is loally desribed by the following data: If h denotes the

�bre type of L , then for a simple open over {Ui}i∈I of M , there exists a family of di�erential-

2-forms χ = {χij : TUij × TUij → Uij × h}i,j∈I and a oyle α = {αij : Uij → Aut(h)}i,j∈I
suh that

(i) The χij s are Maurer-Cartan forms, i.e. δχij + [χij, χij ] = 0 , whenever Uij 6= ∅ ,

(ii) χik = χij + αij(χjk) , whenever Uijk 6= ∅ ,

(iii) ∆(αij) = ad ◦χij , whenever Uij 6= ∅ .

The αij s here are the transition funtions of the Lie algebra bundle L . The notation ∆ stands

for the Darboux derivative. More than that, it is shown that this data lassi�es transitive Lie

algebroids.

Sine transitive Lie groupoids di�erentiate to transitive Lie algebroids, it is reasonable to

expet that so does the respetive lassi�ation data. Makenzie in [8, III�5℄, gives a full

aount of this proess, however it is expeted that the transition funtions that lassify a

transitive Lie groupoid an be reformulated in a fashion whih makes their orrespondene to

the pair (χ,α) on the algebroid level immediate.

In this setion we give this reformulation for transitive PBG-groupoids. For any PBG-groupoid

Ω → P (M,G) suh that the �bre bundle of the assoiated PBG-Lie group bundle IΩ is H ,

we have the following de�nition:

De�nition 6.1 The Lie groupoid morphisms χij : Pij × Pij → H de�ned by

χij(u, v) = sij(u) · sji(v)

(over the map Pij → ·) are alled transition morphisms.

Let us see now how the transition morphisms intertwine with the transition funtions αij .

Proposition 6.2 The transition morphisms χij and the transition funtions αij satisfy:

(i) χik(u, v) = χij(u, v) · αij(v)(χjk(u, v))

(ii) For a hoie of uij ∈ Pij ,

αij(u) = Iχij(u,uij) ◦ Isij(uij )).

(iii) ρii(g
−1)(χij(u, v)) = χij(ug, vg).

Again, the proof is straightforward. Note that these onditions di�erentiate to the respetive

ones on the Lie algebroid level.

De�nition 6.3 Let P (M,G) be a prinipal bundle, P = {Pi}i∈I a over of P by prinipal

bundle harts, H a Lie group and ρ = {ρi}i∈I a family of G-ations on H . Let χ =
{χij : Pij × Pij → H}i,j∈I be a family of Lie groupoid morphisms and α = {αij : Pij →
Aut(H)}i,j∈I a oyle, suh that
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(i) ρii(g
−1)(χij(u, v)) = χij(ug, vg),

(ii) αij(ug)(ρjj(g
−1)(h)) = ρii(g

−1)(αij(u)(h)),

(iii) χik(u, v) = χij(u, v) · αij(v)(χjk(u, v)),

(iv) For a hoie of uij ∈ Pij ,

αij(u) = Iχij(u,uij) ◦ Isij(uij )).

Then the pair (χ,α) is alled a ρ-isometabli system of transition data over P (M,G) with

values in H .

Let us now examine the relation of systems of transition data when we start with di�erent

families of �at isometabli basi onnetions. Denote (χ,α) and (χ′, α′) the respetive systems

of isometabli transition data. Again, the proof of the following proposition is just a matter

of alulations.

Proposition 6.4 Two ρ-isometabli and ρ′ -isometabli systems of transition data (χ,α) and
(χ′, α′) respetively are related by

χ′

ij(u, v) = ri(u)
−1[χij(u, v) · αij(v)(ri(u) · rj(v)

−1)] · ri(v) (14)

and

α′
ij(u) = Iri(u)−1 ◦ αij(u) ◦ Irj(u) (15)

De�nition 6.5 Two isometabli systems of transition data whih satisfy (14) and (15) are

alled equivalent.

Finally we prove that the PBG-Lie group bundles indued by equivalent transition funtions

are isomorphi, showing thus that the lassi�ation of PBG-Lie group bundles we gave in 4.3

is well de�ned.

Theorem 6.6 Let P (M,G) be a prinipal bundle, P = {Pi}i∈I a over of P by prinipal

bundle harts and H a Lie group. Let ρ = {ρi}i∈I and ρ′ = {ρ′i}i∈I be two families of

ations of G on H suh that

(i) ρi(g
−1)(h1h2) = ρi(g

−1)(h1) · ρi(g
−1)(h2)

(ii) There exists a family of maps {ri : Pi → H}i∈I whih are ρ-isometabli (i.e. ri(ug) =
ρi(g

−1)(ri(u)) · ri(uig)) suh that

ρ′i(g
−1)(h) = ri(uig)

−1 · ρi(g
−1)(h) · ri(uig).

If α and α′
are oyles whih satisfy (15) whih give rise to the PBG-Lie group bundles F

and F ′
respetively, then the map ϕ : F → F ′

〈i, (u, h)〉 7→ 〈i, (u, ri(u)
−1 · h · ri(u))〉

is an isomorphism of PBG-Lie algebra bundles.

The proof of this is analogous to the one given in 5.2.
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7 Isometabli ohomology

In this setion we give a formulation of the ohomology that lassi�es PBG-groupoids. In

general, onsider a prinipal bundle P (M,G) , a over P = {Pi}i∈I of P by prinipal bundle

harts and a Lie group H . We also suppose given a family ρ = {ρij}i,j∈I of G-ations on H
with the property of the oyle morphism.

For n ≥ 3 we denote by Čn
G(P,H) the set of di�erentiable maps ei0,...,in : Pi0,...,in → H suh

that for every u ∈ Pi0,...,in and g ∈ G we have:

(i) ei0,...,in(ug) = ρin−1,in−2
(g−1)(ei0,...,in(u)) , if n is odd and

(ii) ei0,...,in(ug) = ρin−1,in−3
(g−1)(ei0,...,in(u)) , if n is even.

For n = 0 de�ne Č0
G(P,H) to be the set of ei : Pi → H suh that ei(ug) = ρii(g

−1)(ei(u)) .
For n = 1 de�ne Č1

G(P,H) to be the set of eij : Pij → H suh that eij(ug) = ρij(g
−1)(eij(u)) .

Finally, de�ne Č2
G(P,H) to be the set of eijk s suh that eijk(ug) = ρjj(g

−1)(eijk(u)) and

identify Č−1
G (P,H) with H .

Then the usual �eh di�erential δ : Čn(P,H) → Čn+1(P,H) de�ned by

δ(e)i0 ,...,in = Πn
k=0[ei0,...,îk,...,in ]

(−1)k+1

is isometabli in the sense that

(i) δ(e)i0,...,in(ug) = ρin−1in−2
(g−1)(δ(e)i0 ,...,in(u)) if n is odd and

(ii) δ(e)i0,...,in(ug) = ρin−1in−3
(g−1)(δ(e)i0 ,...,in(u)) if n is even.

De�nition 7.1 The ohomology of the omplex

...
δ
→ Čn

G(P,H)
δ
→ Čn+1

G (P,H)
δ
→ ...

is alled isometabli �eh ohomology and denoted by Ȟn
G(P,H).

The next theorem follows immediately from 5.1.

Theorem 7.2 With the notation above, PBG-groupoids are lassi�ed by Ȟ1
G(P,H).
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