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In this paper, we firstly derived the equations for the curves of a Lorentz–Minkowski space L3 to be f-biharmonic. (en, using
these equations, we classify such unit speed curves in L

3.

1. Introduction

Biharmonic isometric immersions are critical points of the
bienergy functional (proposed by Eells and Lemaire in [1])

E2(ϕ) �
1

2
∫
Mn

r

〈τ(ϕ), τ(ϕ)〉vg, (1)

for isometric immersions ϕ: Mn
r⟶ N

n+p
q from an n-di-

mensional pseudo-Riemannian manifold Mn
r into an

(n + p)-dimensional pseudo-Riemannian manifold N
n+p
q ,

where τ(ϕ) � tr∇dϕ � nH→ (cf. [2, 3]), with H
→

be the mean
curvature vector field of Mn

r , is the tension field of ϕ van-
ishing of which means that ϕ is harmonic orMn

r is minimal.
(e first variation formula for the bienergy E2(ϕ) which is
derived by Jiang in [4] shows that the Euler–Lagrange
equation for E2(ϕ) is

τ2(ϕ) ≔ trace ∇ϕ∇ϕ − ∇ϕ∇( )τ(ϕ) − traceR̃(dϕ, τ(ϕ))dϕ � 0,

(2)
where R̃, ∇ϕ, and ∇ are the curvature tensor of N

n+p
q , the

induced connection by ϕ on the bundle ϕ−1TN
n+p
q , and the

connection of Mn
r , respectively (cf. [4, 5] for q � 0, and [3]

for q> 0, for details).
As a generalization of biharmonic isometric immersions,

the f-biharmonic isometric immersion ϕ was introduced by

Lu in [6] (cf. [7] for f-biharmonic maps), as a critical point
of the f-bienergy functional:

E2,f(ϕ) �
1

2
∫
Mn

r

f〈τ(ϕ), τ(ϕ)〉vg, (3)

where f is a fixed function Mn
r⟶ (0,+∞).

(e Euler–Lagrange equation gives the f-biharmonic
isometric immersion (derived by Lu in [6])

τ2,f(ϕ) ≔ fτ2(ϕ) +(Δf)τ(ϕ) + 2∇ϕgradfτ(ϕ) � 0, (4)

where Δ is the laplace operator of Mn
r .

A submanifold is called a f-biharmonic submanifold if
its isometric immersion ϕ is f-biharmonic (cf. [8]). When f
is a constant, f-biharmonic submanifolds are called
biharmonic submanifolds (i.e., its bitension field τ2(ϕ)
vanishes identically) (cf. [5]) which are called submani-
folds with harmonic mean curvature vector field by
Chen in [9].

(e study of biharmonic submanifolds is a vibrant re-
search subject, which was originated in [4, 5] by Jiang for his
study of Euler–Lagrange’s equation of the bienergy func-
tional and also independently by Chen (cf. [10]) in his
program of understanding the finite type submanifolds in
Euclidean spaces, and there were numerous important de-
velopments in this domain over the past 40 plus years. For
example, Dimitŕıc proved (cf. [11]) that any biharmonic
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curve in a Euclidean space is a geodesic (Chen and Ishikawa
in [12] obtained the same result independently). (en,
Caddeo, Montaldo, and Piu in [13] considered biharmonic
curves on a surface and giave some examples of nongeodesic
biharmonic curves. Later, Caddeo, Montaldo, and Oniciuc
(cf. [2]) showed nonexistence of nongeodesic biharmonic
curves in a 3-dimensional hyperbolic space and proved that
nongeodesic biharmonic curves in the unit 3-sphere are
circles of geodesic curvature 1 or helices which are geodesics
in the Clifford minimal torus. Also, Chen and Ishikawa (cf.
[12, 14, 15]) classified completely unit speed biharmonic
curves in pseudo-Euclidean spaces E3

q(q � 0, 1, 2, 3) (when
q � 0, E3

0 is the Euclidean space E3) and gave some examples
of nonminimal biharmonic curves. More generally, Sasahara
in [3] considered unit biharmonic curves in nonflat Lorentz
3-space forms and obtained full classification of such curves.
For the study of biharmonic curves in other model spaces,
we refer to [16–19] with references therein. For some recent
progress of biharmonic submanifolds (instead of bihar-
monic curves), we refer readers to [2, 5, 12–14, 16, 17, 20–24]
and the references therein.

Naturally, the next step has been the study of
f-biharmonic curves. Ou in [8] derived equations for
f-biharmonic curves in a generic manifold and completely
classified f-biharmonic curves in 3-dimensional Euclidean
space E3, where he proved that such curves in E

3 are planar
curves or general helices and gave some examples of non-
biharmonic f-biharmonic curves in E

3. After that, there are
a few valuable results on f-biharmonic curves in (gener-
alized) Sasakian space forms, Sol spaces, Cartan–Vranceanu
3-dimensional spaces, or homogeneous contact 3-manifolds;
we refer to [25–27].

(ese facts motivate us to study f-biharmonic curves in
pseudo-Riemannian manifolds since it helps to bridge the
gap between modern differential geometry and the math-
ematical physics of general relativity. In this paper, we will
investigate unit speed f-biharmonic curves with a positive
function f in Lorentz–Minkowski space L3 and obtain the
following classification theorems.

Theorem 1. A curve c: (a, b)⟶ L
3 parametrized by

arclength s is an f-biharmonic Frenet curve if and only if one
of the following cases holds:

(i) c is a circular helix and f is constant, and
c � 1/6(κτs3,−κ2s3 + 6s, 3κs2) for timelike binor-
mal, c � 1/6(κ2s3 + 6s, 3κs2, κτs3) for timelike
tangent

(ii) c is a planar curve and f � c1κ
− 3/2 with τ � 0 and

κ � 4c2/c
2
2(s + c3)

2 − 16 for spacelike binormal or
κ � 4c2/c

2
2(s + c3)

2 + 16 for timelike binormal

(iii) c is a helix and f � c1κ
− 3/2 with τ � cκ and κ �

4c2/c
2
2(s + c3)

2 + 16(1 − c2) for timelike binormal, or
κ � 4c2/c

2
2(s + c3)

2 − 16(1 + c2) for timelike princi-
pal normal, or κ � 4c2/c

2
2(s + c3)

2 + 16(c2 − 1) for
timelike tangent

where κ> 0 and τ are the curvature and torsion of c.

Theorem 2. A curve c: (a, b)⟶ L
3 parametrized by

arclength s is an f-biharmonic unit speed curve with lightlike
principal normal if and only if one of the following cases holds:

(i) c is a planar curve with τ̃ � 0 and f � c1s + c2, and
c � (s2/2, s, s2/2)

(ii) c is a helix curve and f � (c1 + c2s)e
− τ̃s with τ̃ being

nonzero constant, and c � 1/τ̃2(cosh(τ̃s)+
sinh(τ̃s), τ̃2s, cosh(τ̃s) + sinh(τ̃s))

(iii) c is a helix curve and f � (c1 + c2s)e
− ∫̃

τ
ds
with τ̃

being nonconstant

where τ̃ is the torsion of c, c1, and c2 are two constants.

2. Preliminaries

Let E3
1 be a pseudo-Euclidean 3-space with metric given by

〈,〉 � −dx21 + dx22 + dx23, (5)

where (x1, x2, x3) is the natural co-ordinate system of E3
1.

(e E
3
1 is also called 3-dimensional Lorentz–Minkowski

space, denoted by L
3. Since 〈,〉 is an indefinite metric, an

arbitrary vector v ∈ L3 can have one of three Lorentz causal
characters: it can be spacelike if 〈v, v〉> 0 or v � 0, timelike if
〈v, v〉< 0 and lightlike or null if 〈v, v〉 � 0 or v≠ 0.

Let c: (a, b)⟶ L
3 be an arbitrary curve in L

3 and c can
have locally one of the following causal characters: c is
spacelike, lightlike (null), or timelike, if 〈c′, c′〉 is bigger,
equal or smaller than 0 on an interval (a, b).

When c is non-lightlike, then c is parametrized by arc
length s. Specifying that if a spacelike (resp. timelike) curve is
parametrized by arc length, then the velocity vector satisfies
respectively 〈c′, c′〉 � 1, (resp. 〈c′, c′〉 � −1).

A curve c: (a, b)⟶ L
3 is said to be a unit speed curve if

the velocity vector field of c′ satisfies

〈c′, c′〉 � ε1 � ±1. (6)

Differentiating (6), we have

〈c″, c′〉 � 0. (7)

In general, the causal character of c″ may change in the
interval (a, b), but the continuity assures that c″ has the
same spacelike, timelike, or lightlike in an interval around p;
we refer the readers to (examples, pp: 15-16) [28]. (us, we
will assume that the causal character of c′ or c″ is the same in
(a, b). Also, we have from (7) that c″ is perpendicular to c′
or the curvature of c is zero identically (i.e., c is a straight-
line). In the following, we will give the Frenet formulas of c
with nonzero curvature depending on 〈c″, c″〉.

When c is a unit speed curve with 〈c″, c″〉≠ 0, c is called
a Frenet curve in L

3. Every Frenet curve c in L
3 admits a

Frenet frame field along c. Here, a Frenet frame field P �
(p1, p2,p3) is an orthonormal frame field along c such that
p1 � c′, with p2 being parallel to c″ and p3 being perpen-
dicular to the plane p1, p2{ }. We call p1, p2, and p3 the
tangent vector field, principal normal vector field, and
binormal vector field of c, respectively, and p1, p2, p3{ }
satisfies the following Frenet formula.
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Lemma 1. Let c: (a, b)⟶ L
3 be a Frenet curve with

arclength parameter in L3, then the Frenet formulas of c are,
in matrixflotation:

∇L3

c′ P �

0 κ 0

−ε1ε2κ 0 −ε2ε3τ

0 τ 0

 
p1

p2

p3

 , (8)

where the functions κ(>0) and τ are called the curvature and
torsion of c, respectively, and

〈pi, pi〉 � εi, i � 1, 2, 3,

〈pi, pj〉 � 0, i, j � 1, 2, 3, i≠ j.
(9)

Proof. We set

∇L
3

c′ p1 � κp2, (10)

where κ(>0) is the curvature of c. Note that

〈p3, p1〉 � 0,

〈p3, p3〉 � ε3.
(11)

(en, differentiating the above equation, combining
with (10), we get

∇L
3

c′ p3⊥p1,

∇L
3

c′ p3⊥p3,
(12)

which mean that ∇L3

c′ p3 is parallel to p2, i.e.,

∇L3

c′ p3 � τp2, (13)

where τ is the torsion of c.
On the other hand, it is easy to see that the vector
∇L3

c′ p2 ∈ L3, then there exist three functions f1, f2, and f3,
such that

∇L
3

c′ p2 � f1p1 + f2p2 + f3p3. (14)

Taking the scalar product with p1, p2, and p3, respec-
tively, we obtain

〈∇L
3

c′ p2, p1〉 � ε1f1,

〈∇L
3

c′ p2, p2〉 � ε2f2,

〈∇L
3

c′ p2, p3〉 � ε3f3.

(15)

Also, differentiating both of the following equations:

〈p2, p2〉 � ε2,
〈p2, p1〉 � 0,

〈p2, p3〉 � 0,

(16)

using (10) and (13), we have

〈∇L
3

c′ p2, p2〉 � 0,

〈∇L
3

c′ p2, p1〉 � −κε2,

〈∇L3

c′ p2, p3〉 � −τε2.

(17)

Together with (15) leads to

f1 � −ε1ε2κ,

f2 � 0,

f3 � −ε2ε3τ.

(18)

Substituting into (14), and completing the proof of
Lemma 1. □

Remark 1. (e Frenet formula 8 has appeared in [29–31] in
different forms, but the detail proof of (8) is not given in
those papers. (us, we give a brief proof of (8) for com-
pleteness and simplicity of our main results.

When c is a unit speed curve with 〈c″, c″〉 � 0, then we
choose a suitable pseudo-orthonormal frame field
P̃ � (p̃1, p̃2, p̃3) along c in L

3 with p̃1, p̃2, and p̃3 being
tangent vector field, principal normal vector field, and
binormal vector field of c, respectively, such that (cf. [32])

∇L
3

c′ P̃ �

0 κ̃ 0

0 τ̃ 0

−κ̃ 0 τ̃

 
p̃1

p̃2

p̃3

 , (19)

where the functions κ̃(≥0) and τ̃ are called the curvature and
torsion, respectively, and

〈p̃1, p̃1〉 � 1,

〈p̃2, p̃2〉 �〈p̃3, p̃3〉 � 0,

〈p̃2, p̃3〉 � 1,

〈p̃1, p̃2〉 �〈p̃1, p̃3〉 � 0.

(20)

In this case, the curvature κ̃ can take only two values:
κ̃ � 0 when c is a straight line; κ̃ � 1 in all other cases. (us,
we have from (19) that p̃1, p̃2, p̃3{ } satisfies the following
Frenet formula in matrixflotation:

∇L
3

c′ P̃ �

0 1 0

0 τ̃ 0

−1 0 τ̃

 
p̃1

p̃2

p̃3

 . (21)

Next, we derived the equations for the unit speed curve c
to be f-biharmonic.

Lemma 2. A curve c: (a, b)⟶ L
3 parametrized by

arclength s is an f-biharmonic unit speed curve if and only if

f ∇L
3

c′ ∇
L
3

c′ ∇
L
3

c′ c′( ) + 2f′∇
L
3

c′ ∇
L
3

c′ c′ + f″∇
L
3

c′ c′ � 0. (22)

Proof. Let c � c(s) be parametrized by arclength s. (en
e1 � z/zs is an orthonormal frame on ((a, b), ds) and
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dc e1( ) � dc
z

zs
( ) � c′. (23)

(en the tension field of c is given by

τ(c) � ε1∇ce1dc e1( ) � ε1∇L3

c′ c′. (24)

For a function f: (a, b)⟶ (0,∞), we have

gradf � ε1f′e1, Δf � ε1f″. (25)

A straightforward computation gives

∇cgradτ(c)� ε1f′∇
c
e1
τ(c)� ε1f′∇L

3

c′ ε1∇
L
3

c′ c′( )�f′∇L3

c′ ∇
L
3

c′ c′,

(26)

(Δf)τ(c) �f″∇L3

c′ c′. (27)

Choose a normal coordinates at a point in (a, b); it
follows from (24) that

τ2(c) � ε1∇ce1∇
c
e1
τ(c) � ∇L

3

c′ ∇
L
3

c′ ∇
L
3

c′ c′. (28)

Putting (26)–(28) into (4), we obtain that equation (22)
holds and Lemma 2 follows.

Finally, we will give several definitions of curves in L
3.

A helix c: (a, b)⟶ L
3 is a curve parametrized by

arclength such that there exists a vector v ∈ L3 with the
property that the function 〈c′, v〉 is constant.(en the curve
c is a helix if and only if the ratio of the curvature and torsion
of c is a constant. If both the curvature (nonzero) and the
torsion of c are constant, then the c curve is called a circular
helix (cf. [28]).

A curve c: (a, b)⟶ L
3 is called a planar curve if the

torsion identically vanishes (cf. [32]).
It is obvious to see that a straight-line (i.e., the curvature

identically vanishes) and a planar curve are helices. □

3. Main Theorems and Their Proofs

Proof of 4eorem 1. We have from (8) that

∇L3

c′ p1 � κp2,

∇L3

c′ p2 � −ε1ε2( )κp1 + −ε2ε3( )τp3,

∇L3

c′ p3 � τp3.


(29)

Now, taking into account the first and second equation
of (29), we obtain

∇L3

c′ ∇
L
3

c′ c′ � κ′p2 + κ∇L
3

c′ p2

� −ε1ε2( )κ2p1 + κ′p2 + −ε2ε3( )κτp3,
(30)

which together with (29) shows that

∇L
3

c′ ∇
L
3

c′ ∇
L
3

c′ c′ � ∇
L
3

c′ −ε1ε2( )κ2p1 + κ′p2 + −ε2ε3( )κτp3( )
� 2 −ε1ε2( )κκ′p1 + −ε1ε2( )κ2∇L3

c′ p1 + κ″p2

+ κ′∇L
3

c′ p2 + −ε2ε3( )κ′τp3 + −ε2ε3( )κτ′p3

+ −ε2ε3( )κτ∇L3

c′ p3

� 3 −ε1ε2( )κκ′p1

+ −ε1ε2( )κ3 + κ″ + −ε1ε2( )κτ2( )p2

+ 2 −ε2ε3( )κ′τ + −ε2ε3( )κτ′( )p3.

(31)
Putting the first equation of (29)–(31) into (22), we get

that c is f-biharmonic if and only if

2κ2f′ + 3κκ′f � 0,

κf″ + 2κ′f′ + −ε1ε2( )κ3 + κ″ + −ε2ε3( )κτ2( )f � 0,

2κτf′ + 2κ′τf + τ′κf � 0.


(32)

In the following, we will investigate the charac-
teristics of curves according to different values of κ
and τ.

Case 1: When κ is a nonzero constant, then it follows
from the first equation of (32) that

f′ � 0. (33)

It is obvious to see that f is a constant, which
implies that c is a biharmonic curve. Together with
the third equation of (32), we obtain that τ is a
constant. Hence the second equation of (32) can be
simplified to

τ2 � −ε1ε3κ
2
(a nonzero constant), (34)

which means that c is a circular helix (cf. [28, 32]). We
note that (ε1, ε3) evaluates among the following two
possible cases:

(1,−1),

(−1, 1).
(35)

(i) When ε1 � 1 and ε3 � −1, i.e., p1 is spacelike tangent
and p3 is timelike binormal, then we conclude from
(eorem 3.3 in [32] that

c(s) �
1

6
κτs3,−κ2s3 + 6s, 3κs2( ). (36)
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(ii) When ε1 � −1 and ε3 � 1, i.e., p1 is timelike tangent
and p3 is spacelike binormal, then we conclude from
(eorem 3.6 in [32] that

c(s) �
1

6
κ2s3 + 6s, 3κs2, κτs3( ). (37)

Conversely, according to the proof of Case 4 in
(eorem 3.3 for (36) and Case 6 in (eorem 3.6 for
(37), respectively, we know that their curvature κ
and torsion τ are two constants which satisfy κ � τ.
Combining with f being a constant, we prove that
equation (32) holds for the corresponding curves;
that is, c is f-biharmonic.

Case 2: When τ is zero, then equation (32) is equivalent
to

2κ2f′ + 3κκ′f � 0,

κf″ + 2κ′f′ + −ε1ε2( )κ3f + κ″f � 0.

 (38)

Furthermore, we have

2f′
f
+
3κ′
κ
� 0, (39)

κ″
κ
+ 2
κ′
κ

f′
f
+
f″
f
+ −ε1ε2( )κ2 � 0. (40)

A direct derivative calculation for f2κ3 gives

f2κ3( )′ � fκ 2κ2f′ + 3κκ′f( ), (41)

then it follows from the first equation of (38) that f2κ3 � c
with c being a constant, which shows that

f � cκ−3/2. (42)

Also, differentiating both sides (39) yields

f″
f
� −

3

2

κ″
κ
+
15

4

κ′( )2
κ2

. (43)

Putting (39) and (43) into (40), we deduce that

3κ′2 − 2κ″κ − 4 ε1ε2( )κ4 � 0. (44)

Since ε1ε2 � −ε3, we have from (44) that, for spacelike
binormal vector field,

3κ′2 − 2κ″κ + 4κ4 � 0, (45)

and for timelike binormal vector field,

3κ′2 − 2κ″κ − 4κ4 � 0. (46)

Solving the ODEs (45) and (46), respectively, we have
that, for (45),

κ �
4c2

c22s
2 + 2c22c3s + c2c3( )2 − 16

, (47)

and for (46),

κ �
4c2

16 + c22s
2 + 2c22c3s + c2c3( )2. (48)

Note that τ � 0; then c is a planar curve. (us, the curve
c is a planar curve with spacelike binormal and
κ � 4c2/c

2
2s

2 + 2c22c3s + (c2c3)
2 − 16, or timelike binormal

and κ � 4c2/16 + c
2
2s

2 + 2c22c3s + (c2c3)
2 and f � cκ−3/2.

Conversely, because f � cκ−3/2, it is not difficult to
check that the first equation in (38) holds. Also, combining
with f � cκ−3/2, a long calculation for κ � 4c2/c

2
2s

2+ 2c22c3s +
(c2c3)

2 − 16 for spacelike binormal, or κ � 4c2/16 + c
2
2s

2 +

2c22c3s + (c2c3)
2 for timelike binormal, respectively, proves

that the second equation in (38) holds, that is, c is
f-biharmonic.

Case 3: When τ is a nonzero constant, then equation
(32) is equivalent to

(i) 2κ2f′ + 3κ′κf � 0,

(ii)f″f + 2κ′f′+ −ε1ε2( )κ3 + κ″ + −ε2ε3( )κτ2( )f � 0,

(iii) κf′ + κ′f � 0.


(49)

Combining with (i) and (iii) in (49), it is straightfor-
ward to prove that f and κ are two constants.
Substituting those facts into (ii) in (49), we obtain that

κ2 � ε2τ
2, (50)

which implies that κ is also a nonzero constant. Since
ε2 � −ε1ε3, following the similar process as in Case 1,
we complete the case.

Case 4: When κ≠ constant and τ ≠ constant, then
equation (32) is equivalent to

(i)f2κ3 � c1,

(ii)f″f + 2κ′f′+ κ″f � ε1ε2( )κ2 + ε2ε3( )τ2( )κf,
(iii) κ2τf2 � c̃2,


(51)

where c1 and c̃2 are two constants. On one hand, by the
first equation in (51), it is obvious to see that

f � c1κ
− 3/2, (52)

where c1 > 0. Moreover, it follows from (i) and (iii) in (51)
that τ/κ � c with c being constant, then we conclude from
[28] that c is a helix.
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On the other hand, combining with (43) and (i) and (ii)
in (51), with much more tedious computations gives

3κ′2 − 2κ″κ − 4 ε1ε2 + ε2ε3c
2( )κ4 � 0. (53)

Note that (ε1, ε2, ε3) evaluates among the following three
possible cases:

(1, 1,−1),

(1,−1, 1),

(−1, 1, 1).

(54)

(i) When ε1 � 1, ε2 � 1, ε3 � −1, equation (53) becomes

3κ′2 − 2κ″κ − 4 1 − c2( )κ4 � 0. (55)

Solving ODE (55), we have
κ � 4c2/16(1 − c

2) + c22s
2 + 2c22c3s + (c2c3)

2.

(ii) When ε1 � 1, ε2 � −1, ε3 � 1, equation (53) becomes

3κ′2 − 2κ′′κ + 4 1 + c2( )κ4 � 0. (56)

Solving ODE (56), we have
κ � 4c2/c

2
2s

2 + 2c22c3s + (c2c3)
2 − 16(1 + c2).

(iii) When ε1 � −1, ε2 � 1, ε3 � 1, equation (53) becomes

3κ′2 − 2κ″κ − 4 c2 − 1( )κ4 � 0. (57)

Solving ODE (57), we have
κ � 4c2/16(c

2 − 1) + c22s
2 + 2c22c3s + (c2c3)

2.

Conversely, making similar discussions as in Case 2, we
prove that c is f-biharmonic. □

Proof of 4eorem 2. According to (21), we have

∇L
3

c′ p̃1 � p̃2,

∇L
3

c′ ∇
L
3

c′ c′ � τ̃p̃2,

∇L
3

c′ ∇
L
3

c′ ∇
L
3

c′ c′ � τ̃′ + τ̃2( )p̃2.

(58)

Using Lemma 2, we obtain that c is f-biharmonic if and
only if

f″ + 2τ̃f′ + τ̃′ + τ̃
2( )f � 0. (59)

(i) When τ̃ is zero, then it follows from (59) that f″ � 0,
which means that f � c1s + c2, where c1 and c2 are
two constants. Meanwhile, we conclude from (e-
orem 3.5 in [32] that

c(s) �
s2

2
, s,
s2

2
( ), (60)

which is a planar curve.

(ii) When τ̃ is a nonzero constant, then (59) is equivalent
to

f″ + 2τ̃f′ + τ̃2f � 0. (61)

Solving the above ODE, we obtain that
f � (c1 + c2s)e

− τ̃s, where c1 and c2 are two constants,
and know from (eorem 3.5 in [32] that

c �
1

τ̃2
cosh(τ̃s) + sinh(τ̃s), τ̃2s, cosh(τ̃s) + sinh(τ̃s)( ),

(62)

which is a helix curve (cf. [28]).

(iii) When τ̃ ≠ constant, then by solving ODE (59),

we get that f � (c1 + c2s)e
−∫ τ̃ ds

, where c1 and c2
are two constants. Also, we know from [28] that
c is a helix.

(e converse is clear from the similar proof of
(eorem 3.5 in [32], together with the corresponding
function f.

As a consequence of (eorems 1 and 2, we obtain the
following. □

Corollary 1. Any f-biharmonic unit speed curve with
arclength parameter in Lorentz-Minkowski 3-space is a helix.

Using (28), we obtain that c is biharmonic if and only if

c(iv) � 0. (63)

According to (22), it is easy to find that when f is a
constant, f-biharmonic curves must be biharmonic ones. It
is a natural and interesting problem: whether fmust be a
constant when f-biharmonic curves are biharmonic. Un-
fortunately, this problem is not true.

For the f-biharmonic curve c in (eorem 2,

c �
s2

2
, s,
s2

2
( ),

f � c1s + c2,

(64)

where c1 and c2 are two constant. Using (63), it easily check
that c is biharmonic, but f is a function.

Remark 2. As we all know, the theorem of existence and
uniqueness for curves in R

3 asserts that given two functions
κ> 0 and τ, there exists a unique (up a rigid motion) curve in
R

3 with the curvature κ and the torsion τ. In Lorentz-
Minkowski space L3, the result of existence for curves is the
same as that of inR

3 (cf. [28], (ereoms 2.6-2.7). In general,
the uniqueness for curves is not true by the causal character
of the curve (cf. [28] for details). However, it holds if the
causal character of the Frenet frame field agree for both
curves c1 and c2 (i.e., the tangent, principal normal, and
binormal of c1 have the same causal character compared to
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the corresponding tangent, principal normal, and binormal
of c2, respectively) [33].(is, together with our classification
theorems, implies that there are many examples of proper
f-biharmonic curves in L

3.
Finally, we give an example of a nonbiharmonic

f-biharmonic curve in L
3. For the f-biharmonic curve in

(eorem 2,

c �
1

τ̃2
cosh(τ̃s) + sinh(τ̃s), τ̃2s, cosh(τ̃s) + sinh(τ̃s)( ),

(65)
and f � (c1 + c2s)e

− τ̃s with τ̃ be a nonzero constant.
Using (63), a short computation proves that c is a

nonbiharmonic curve.
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