CLASSIFICATION OF FANO 4-FOLDS WITH LEFSCHETZ DEFECT 3 AND PICARD NUMBER 5

CINZIA CASAGRANDE AND ELEONORA A. ROMANO

1. Introduction

The classification of (smooth, complex) Fano manifolds has been achieved up to dimension 3 and attracts a lot of attention also in higher dimensions, especially due to the Minimal Model Program. Indeed we recall that Fano manifolds appear in the birational classification of varieties of negative Kodaira dimension: in this case the MMP is expected to end up with a fiber type morphism whose fibers are (mildly singular) Fano varieties.

In the early 80's the classification of Fano 3-folds in MM81] due to Mori and Mukai was the starting point to study Fano manifolds via their contractions. In fact, the Fano condition makes the situation special, because the Cone and the Contraction Theorems hold for the whole cone of effective curves. Nevertheless, there is still no complete classification of Fano varieties in dimension 4 and higher.

In this paper we focus on classification results of some Fano 4 -folds. Let us fix some notation. Given a smooth complex projective variety X, we denote by $\mathcal{N}_{1}(X)$ the \mathbb{R}-vector space of one-cycles with real coefficients, modulo numerical equivalence, whose dimension is the Picard number ρ_{X}.

Let D be a prime divisor in X. The inclusion $i: D \hookrightarrow X$ induces a pushforward of one-cycles $i_{*}: \mathcal{N}_{1}(D) \rightarrow \mathcal{N}_{1}(X)$. We set $\mathcal{N}_{1}(D, X):=i_{*}\left(\mathcal{N}_{1}(D)\right) \subseteq \mathcal{N}_{1}(X)$, which is the linear subspace of $\mathcal{N}_{1}(X)$ spanned by numerical classes of curves contained in D. In Cas12 the following invariant, called Lefschetz defect, was introduced:

$$
\delta_{X}:=\max \left\{\operatorname{codim} \mathcal{N}_{1}(D, X) \mid D \subset X \text { prime divisor }\right\}
$$

By [loc. cit., Th. 1.1], if X is a Fano manifold of arbitrary dimension with $\delta_{X} \geq 4$, then $X \cong S \times T$, with S a del Pezzo surface. As a consequence, all Fano 4 -folds with $\delta_{X} \geq 4$ are well known, being product of two del Pezzo surfaces.

In this paper we deal with the case in which X is a Fano 4 -fold with $\delta_{X}=3$. Under this assumption, by Cas13, Th. 1.1] we know that if X is not a product of two del Pezzo surfaces, then $\rho_{X} \in\{5,6\}$. Therefore in order to complete the classification of Fano 4 -folds with $\delta_{X}=3$ we are left to study the cases in which $\rho_{X}=5$ and $\rho_{X}=6$. This setting has already been studied in [MR19, where several properties of these 4 -folds are shown (see Th. 2.1).

Our main result is the complete classification of Fano 4 -folds with $\rho_{X}=5$ and $\delta_{X}=3$. To give the statement, we first need to introduce two examples; the former is due to Tsukioka, while the latter is new.
Example 1.1 (Tsu10]). Let $p, q \in \mathbb{P}^{4}$ be distinct points, and $Q \subset \mathbb{P}^{4}$ a smooth quadric surface disjoint from the line $\overline{p q}$. Let Z be the blow-up of \mathbb{P}^{4} along $\overline{p q}$, $F_{p}, F_{q} \subset Z$ the fibers over p and q respectively, and $S \subset Z$ the transform of Q.
The surfaces S, F_{p}, F_{q} are pairwise disjoint in Z; let X be the blow-up of Z along S, F_{p}, and F_{q}. Then X is a Fano 4 -fold with $\rho_{X}=5$ and $\delta_{X}=3$.

We can also describe X as follows: let X^{\prime} be the blow-up of \mathbb{P}^{4} along p, q, and Q. Then X is the blow-up of X^{\prime} along the transform of the line $\overline{p q}$.
Example 1.2. The 4-fold $Z:=\mathbb{P}_{\mathbb{P}^{2}}\left(\mathcal{O}^{\oplus 2} \oplus \mathcal{O}(2)\right)$ has a divisorial contraction $Z \rightarrow W:=\mathbb{P}(1,1,1,2,2)$ which sends the exceptional divisor D to a curve (the singular locus of W); let $F_{1}, F_{2} \subset D$ be two distinct fibers.
Let moreover $\mathcal{O}_{W}(1)$ be the ample generator of $\operatorname{Pic}(W)$, and $H \in \operatorname{Pic}(Z)$ the pullback of $\mathcal{O}_{W}(1)$. Consider $S \subset Z$ a general complete intersection of elements in the linear systems $|H|$ and $|2 H| ; S$ is a del Pezzo surface of degree 2 (see \$3.1).

The surfaces S, F_{1}, F_{2} are pairwise disjoint in Z; let X be the blow-up of Z along S, F_{1}, and F_{2}. Then X is a Fano 4 -fold with $\rho_{X}=5$ and $\delta_{X}=3$ (see Lemma (3.3).

We recall that toric Fano 4 -folds have been classified by Batyrev [Bat99] and Sato [Sat00]; we refer to [Bat99] for the terminology concerning toric varieties and their combinatorial type.
Theorem 1.3. Let X be a Fano 4-fold with $\rho_{X}=5$ and $\delta_{X}=3$. Then X is one of the following varieties: the toric Fano 4 -folds $K_{1}, K_{2}, K_{3}, K_{4} \cong \mathbb{P}^{2} \times S_{4}\left(S_{4}\right.$ the blow-up of \mathbb{P}^{2} in three non collinear points), or one of the 4 -folds of Examples 1.1 and 1.2 .

We describe these varieties and their invariants in 43, see Table 3.4. They are all rational, as already shown in [MR19, Cor. 1.3]. The first five are rigid, while Example 1.2 yields a positive dimensional family (see Lemma 3.3).

We note that the assumptions $\rho_{X}=5$ and $\delta_{X}=3$ imply that X contains a prime divisor D with $\operatorname{dim} \mathcal{N}_{1}(D, X)=2$; in fact it is easy to see that all the varieties listed in Theorem 1.3 also contain a prime divisor D^{\prime} with $\rho_{D^{\prime}}=2$. We obtain the following application to Fano 4 -folds containing a prime divisor with $\rho=2$; an analogous result for the case of a prime divisor with $\rho=1$ is given in [CD15, Th. 3.8].
Corollary 1.4. Let X be a Fano 4 -fold containing a prime divisor D with $\rho_{D}=2$, or more generally with $\operatorname{dim} \mathcal{N}_{1}(D, X)=2$. Then either $X \cong \mathbb{P}^{2} \times S$, or $\rho_{X} \leq 5$. Moreover, $\rho_{X}=5$ if and only if X is one of the 4 -folds listed in Theorem 1.3.

Corollary 1.4 is also related to the study of Fano 4 -folds having an elementary divisorial contraction $\sigma: X \rightarrow X^{\prime}$ such that $\sigma(\operatorname{Exc}(\sigma))$ is a curve, because then
automatically $\operatorname{dim} \mathcal{N}_{1}(\operatorname{Exc}(\sigma), X)=2$. It follows from [Cas12] that $\rho_{X} \leq 5$, and Tsukioka has classified the case $\rho_{X}=5$ when σ is a smooth blow-up, as follows.

Theorem 1.5 ([Tsu10]). Let X be a Fano 4-fold obtained as a blow-up $\sigma: X \rightarrow$ X^{\prime} of a smooth, irreducible curve in a smooth 4 -fold X^{\prime}, and assume that $\rho_{X}=5$. Then X is either the toric 4 -fold K_{3}, or Example 1.1. In both cases $\operatorname{Exc}(\sigma) \cong$ $\mathbb{P}^{1} \times \mathbb{P}^{2}, \mathcal{N}_{\operatorname{Exc}(\sigma) / X} \cong \mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{2}}(-1,-1)$, and X^{\prime} is not Fano.

In fact this result is shown in Tsu10 in arbitrary dimension ≥ 4. Here we extend the classification as follows.

Corollary 1.6. Let X be a Fano 4-fold having an elementary divisorial contraction $\sigma: X \rightarrow X^{\prime}$ such that $\sigma(\operatorname{Exc}(\sigma))$ is a curve, and assume that $\rho_{X}=5$. Then X is one of the toric Fano 4-folds K_{1}, K_{3}, or one of the 4-folds of Examples 1.1 and 1.2. In all cases, $\operatorname{Exc}(\sigma) \cong \mathbb{P}^{1} \times \mathbb{P}^{2}$, and X^{\prime} is not Fano.

In cases K_{1} and Example 1.2, we have $\mathcal{N}_{\operatorname{Exc}(\sigma) / X} \cong \mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{2}}(-1,-2)$, and $\sigma(\operatorname{Exc}(\sigma))$ is a curve of singular points.

Let us briefly discuss the strategy used to show Theorem 1.3. We build on results from Cas12, Rom19, MR19, which give a structure theorem for Fano 4 -folds X with $\rho_{X}=5$ and $\delta_{X}=3$. More precisely, X has always a flat fibration $X \rightarrow \mathbb{P}^{2}$, that factors as $X \rightarrow Y \rightarrow \mathbb{P}^{2}$, where the first map is a conic bundle, and the second one a \mathbb{P}^{1}-bundle. We collect these results in Theorem [2.1.

We show that the fibration $X \rightarrow \mathbb{P}^{2}$ has also a different factorization as $X \rightarrow$ $Z \xrightarrow{\varphi} \mathbb{P}^{2}$, where φ is a \mathbb{P}^{2}-bundle, and $X \rightarrow Z$ is the blow-up of three pairwise disjoint smooth surfaces $S_{i} \subset Z$, horizontal for φ. When all the surfaces S_{i} are sections of φ, it turns out that X is toric. Otherwise, we prove that two surfaces S_{i} are always sections, and the third one has degree 2 over \mathbb{P}^{2}. In this case, we show that X is one of Examples 1.1 or 1.2 ,

Acknowledgments. We would like to thank Gianluca Occhetta and Luis E. Solá Conde for many valuable discussions. The second author has been supported by the Polish National Science Center grant 2016/23/G/ST1/04282, and is grateful to the University of Torino for the kind hospitality and support provided during part of the preparation of this work.

Notations. We work over the field of complex numbers. Let X be a smooth projective variety.
\sim denotes linear equivalence for divisors.
$\mathcal{N}_{1}(X)$ is the \mathbb{R}-vector space of one-cycles with real coefficients, modulo numerical equivalence, and $\operatorname{dim} \mathcal{N}_{1}(X)=\rho_{X}$ is the Picard number of X.

We denote by $[C]$ the numerical equivalence class in $\mathcal{N}_{1}(X)$ of a one-cycle C of X.
$\mathrm{NE}(X) \subset \mathcal{N}_{1}(X)$ is the convex cone generated by classes of effective curves.
A contraction of X is a surjective morphism $\varphi: X \rightarrow Y$ with connected fibers, where Y is normal and projective.

The relative cone $\mathrm{NE}(\varphi)$ of φ is the convex subcone of $\mathrm{NE}(X)$ generated by classes of curves contracted by φ.

A conic bundle $h: X \rightarrow Y$ is a fiber type contraction such that every fiber is one-dimensional and $-K_{X}$ is h-ample; then every fiber is isomorphic to a plane conic.

2. Proof of the main result

2.1. Preliminaries. We begin by collecting in a unique statement the known results on the structure of Fano 4 -folds X with $\rho_{X}=5$ and $\delta_{X}=3$. This is our starting point to prove Theorem 1.3,

Theorem 2.1 (Cas12, Rom19, MR19]). Let X be a Fano 4 -fold with $\rho_{X}=5$ and $\delta_{X}=3$. Then there exists a diagram:

$$
X \xrightarrow{f} X_{2} \xrightarrow{\psi} Y \xrightarrow{\xi} \mathbb{P}^{2}
$$

with the following properties:
(a) $Y \cong \mathbb{P}_{\mathbb{P}^{2}}(\mathcal{O} \oplus \mathcal{O}(a))$ with $a \in\{0,1,2\}$, and ξ is the natural \mathbb{P}^{1}-bundle;
(b) ψ is a \mathbb{P}^{1}-bundle;
(c) f is the blow-up of two disjoint smooth, irreducible surfaces $B_{1}, B_{2} \subset X_{2}$;
(d) for $i=1,2$ set $A_{i}:=\psi\left(B_{i}\right) \subset Y ; A_{1}$ and A_{2} are disjoint smooth surfaces, and A_{1} is a nef divisor;
(e) if $a=0$, then $Y \cong \mathbb{P}^{1} \times \mathbb{P}^{2}$ and $A_{i} \cong\{p t\} \times \mathbb{P}^{2}$ for $i=1,2$; if $a \in\{1,2\}$, then A_{2} is the negative section of $\xi: Y \rightarrow \mathbb{P}^{2}$ (namely $\left.\mathcal{N}_{A_{2} / Y} \cong \mathcal{O}_{\mathbb{P}^{2}}(-a)\right)$; in any case A_{2} is a section of ξ and $\xi_{\mid A_{1}}: A_{1} \rightarrow \mathbb{P}^{2}$ is finite;
(f) for $i=1,2$ set $T_{i}:=\psi^{-1}\left(A_{i}\right) \subset X_{2} ; B_{i}$ is a section of $\psi_{\mid T_{i}}: T_{i} \rightarrow A_{i}$, for $i=1,2$.

Proof. The existence of the diagram, together with properties (b) and (드) , and the additional fact that $\psi \circ f: X \rightarrow Y$ is a conic bundle, are shown in Cas12, Th. 1.1 and its proof, in particular 3.3.15-3.3.17]. Then applying Rom19, Prop. 3.5(1)] to $\psi \circ f$ we get (f). Finally ((a) is [MR19, Prop. 1.2(a)], and (d) and (®) are proved in [MR19, proof of Prop. 1.2].

We note that after (d) and ((a), the role of the two surfaces A_{1} and A_{2} is not symmetric if $a>0$.

In the toric case, the classification is already known, and relies on Batyrev's classification of toric Fano 4 -folds [Bat99], see [MR19, Prop. 5.1]. We follow the notation of [Bat99.

Proposition 2.2. There are four toric Fano 4 -folds X with $\rho_{X}=5$ and $\delta_{X}=3$; they are the 4 -folds K_{1}, K_{2}, K_{3}, and K_{4}.
2.2. Proof of Theorem 1.3. We keep the same notation as in Th. 2.1.

Step 2.3. We can assume that there exists a commutative diagram:

where $\varphi: Z \rightarrow \mathbb{P}^{2}$ is a \mathbb{P}^{2}-bundle, g is the blow-up along a section $S_{3} \subset Z$ of φ, $E:=\operatorname{Exc}(g)$ is a section of ψ, and $E \cap\left(B_{1} \cup B_{2}\right)=\emptyset$.

Proof. Consider the natural factorization of f as a sequence of two blow-ups:

$$
X \xrightarrow{f_{1}} X_{1} \xrightarrow{f_{2}} X_{2}
$$

where f_{2} is the blow-up of B_{2} and f_{1} is the blow-up of the transform of B_{1}.
Let us consider the morphism $\zeta:=\xi \circ \psi \circ f_{2}: X_{1} \rightarrow \mathbb{P}^{2}$. Since both ψ and ξ are smooth by Th. [2.1(四)-(b), the composition $\xi \circ \psi: X_{2} \rightarrow \mathbb{P}^{2}$ is smooth. Moreover, since $A_{2} \subset Y$ is a section of ξ, and the center B_{2} of the blow-up $f_{2}: X_{1} \rightarrow X_{2}$ is a section over A_{2} (see Th. 2.1((e) and (fl)), we conclude that B_{2} is a section of $\xi \circ \psi: X_{2} \rightarrow \mathbb{P}^{2}$. This implies that $\zeta: X_{1} \rightarrow \mathbb{P}^{2}$ is smooth.

We show that $-K_{X_{1}}$ is ζ-ample. Let $C \subset X_{1}$ be an irreducible curve such that $-K_{X_{1}} \cdot C \leq 0$. If $\widetilde{C} \subset X$ is its transform, we have $-K_{X} \cdot \widetilde{C}>0$ which implies that $\operatorname{Exc}\left(f_{1}\right) \cdot \widetilde{C}<0$, hence $C \subset f_{1}\left(\operatorname{Exc}\left(f_{1}\right)\right), f_{2}(C) \subset B_{1}$, and $\psi\left(f_{2}(C)\right) \subset A_{1}$. Since ψ is finite on B_{1} and ξ is finite on A_{1} by Th. 2.1 f) and (囵), we conclude that $\zeta(C)$ is a curve. This shows that $-K_{X_{1}}$ is positive on every curve contracted by ζ. Being X Fano, the cone $\mathrm{NE}(X)$ is closed and polyhedral, and this easily implies that $\mathrm{NE}\left(X_{1}\right)$ is closed. By the relative Kleiman's criterion, $-K_{X_{1}}$ is ζ-ample.

Hence $\zeta: X_{1} \rightarrow \mathbb{P}^{2}$ is a smooth contraction of relative Picard number 3 with $-K_{X_{1}}$ relatively ample, and every fiber of ζ is isomorphic to the del Pezzo surface S with $\rho_{S}=3$, the blow-up of \mathbb{P}^{2} in two points.

If $i: S \hookrightarrow X_{1}$ is the inclusion of a fiber, the pushforward of 1-cycles $i_{*}: \mathcal{N}_{1}(S) \rightarrow$ $\mathcal{N}_{1}\left(X_{1}\right)$ is injective, and yields and isomorphism $\mathcal{N}_{1}(S) \cong \operatorname{ker} \zeta_{*}$. It is clear that $i_{*}(\mathrm{NE}(S)) \subseteq \mathrm{NE}(\zeta)$; conversely it follows from [Wiś91, Prop. 1.3] that equality holds, so that every contraction of the fiber S extends to a global contraction of X_{1} over \mathbb{P}^{2}. Therefore the sequence of elementary contractions:

yields a corresponding factorization of ζ :

We have:

- $\xi^{\prime}: Y^{\prime} \rightarrow \mathbb{P}^{2}$ and $\psi^{\prime}: X_{2}^{\prime} \rightarrow Y^{\prime}$ are \mathbb{P}^{1}-bundles, and $\varphi: Z \rightarrow \mathbb{P}^{2}$ is a \mathbb{P}^{2}-bundle;
- g is the blow-up of a smooth surface $S_{3} \subset Z$ which is a section of φ;
- f_{2}^{\prime} is the blow-up of a smooth surface $B_{2}^{\prime} \subset X_{2}^{\prime}$ which is a section of $\varphi \circ g: X_{2}^{\prime} \rightarrow$ \mathbb{P}^{2}, and is disjoint from $E:=\operatorname{Exc}(g)$;
- E is a section of $\psi^{\prime}: X_{2}^{\prime} \rightarrow Y^{\prime}$.

Notice also that the center of the blow-up $f_{1}: X \rightarrow X_{1}$ cannot meet any (-1)curve in the fiber S, otherwise X would not be Fano. Hence $B_{1}^{\prime}:=f_{2}^{\prime}\left(f_{1}\left(\operatorname{Exc}\left(f_{1}\right)\right)\right)$ is disjoint from E.

Finally, using [MR19, Prop. 1.2(a)], we still get $Y^{\prime} \cong \mathbb{P}_{\mathbb{P}^{2}}(\mathcal{O} \oplus \mathcal{O}(a))$ with $a \in\{0,1,2\}$, so that we can replace the original factorization of ζ with the new one keeping all the previous properties.
Set $S_{i}:=g\left(B_{i}\right) \subset Z$ for $i=1,2$. Then S_{1}, S_{2}, and S_{3} are pairwise disjoint smooth surfaces, and X is the blow-up of Z along $S_{1} \cup S_{2} \cup S_{3}$. We set $Z_{p}:=\varphi^{-1}(p)$ for every $p \in \mathbb{P}^{2}$. Moreover we denote by d the degree of the finite morphism $\xi_{\mid A_{1}}: A_{1} \rightarrow \mathbb{P}^{2}$ (see Th. 2.1(de)).
Step 2.4. S_{2} is a section of φ, and $\varphi_{\mid S_{1}}: S_{1} \rightarrow \mathbb{P}^{2}$ is finite of degree d.
Proof. For $i=1,2$, since B_{i} is a section over A_{i} by Th. 2.1 (f), the degree of S_{i} over \mathbb{P}^{2} is equal to the degree of A_{i} over \mathbb{P}^{2}; in particular S_{2} is a section of φ by Th. 2.1(e).

Step 2.5. The points $\left(S_{1} \cup S_{2} \cup S_{3}\right) \cap Z_{p}$ (with the reduced structure) are in general linear position in $Z_{p} \cong \mathbb{P}^{2}$, for every $p \in \mathbb{P}^{2}$.
Indeed, if there were three of them on a line ℓ, the transform of ℓ in X would have non-positive anticanonical degree.
Step 2.6. If $d=1$, then X is toric, and it is one of the 4 -folds K_{1}, K_{2}, K_{3}, or K_{4}, in the notation of Bat99].
Proof. If $d=1$, then $\varphi: Z \rightarrow \mathbb{P}^{2}$ has three pairwise disjoint sections S_{i}, which are fiberwise in general linear position, by Steps 2.3, 2.4, and 2.5. This implies that $Z \cong \mathbb{P}_{\mathbb{P}^{2}}\left(\mathcal{L}_{1} \oplus \mathcal{L}_{2} \oplus \mathcal{L}_{3}\right)$ in such a way that the three sections S_{i} correspond to the projections $\mathcal{L}_{1} \oplus \mathcal{L}_{2} \oplus \mathcal{L}_{3} \rightarrow \mathcal{L}_{i}$. This means that Z is a toric 4 -fold, and that S_{1}, S_{2}, and S_{3} are invariant for the torus action, so that X is toric. Then the statement follows from Prop. 2.2.
From now on we assume that $d \geq 2$, in particular this implies that $a \in\{1,2\}$ by Th. 2.1(e).

For $q_{1}, q_{2} \in Z_{p}$ distinct points, we denote by $\overline{q_{1} q_{2}} \subset Z_{p}$ the line spanned by q_{1} and q_{2}.

Step 2.7. Let $H \subset Z$ be the relative secant variety of S_{1} in Z, namely the closure in Z of the set:

$$
\left\{\overline{q_{1} q_{2}} \subset Z_{p} \mid q_{1}, q_{2} \in S_{1} \cap Z_{p}, q_{1} \neq q_{2}, p \in \mathbb{P}^{2}\right\}
$$

For p general, we have $\left|S_{1} \cap Z_{p}\right|=d \geq 2$, so that H is non-empty. It is not difficult to see that $\operatorname{dim} H=3$, and Step 2.5 implies that $H \cap\left(S_{2} \cup S_{3}\right)=\emptyset$.
Recall that $T_{2}=\psi^{-1}\left(A_{2}\right) \subset X_{2}$ and that $E=\operatorname{Exc}(g) \subset X_{2}$ (see Th. 2.1 $\left.f\right)$ and Step (2.3).

Step 2.8. Set $D:=g\left(T_{2}\right) \subset Z$. Then $T_{2} \cong D \cong \mathbb{P}^{1} \times \mathbb{P}^{2}$, and $D \cap Z_{p}$ is a line in Z_{p} for every $p \in \mathbb{P}^{2}$. Moreover D contains S_{2} and S_{3}, while $D \cap S_{1}=\emptyset$.
Proof. We have a commutative diagram:

where the vertical maps are isomorphisms by Step 2.3 and Th. 2.1(e), and the horizontal maps are \mathbb{P}^{1}-bundles.

We also have $S_{3}=g\left(E \cap T_{2}\right) \subset D$; moreover $B_{2} \subset T_{2}$ by Th. 2.1(d), hence $S_{2}=g\left(B_{2}\right) \subset D$. By Steps 2.3 and 2.4, S_{2} and S_{3} are disjoint sections of the \mathbb{P}^{1}-bundle $\varphi_{\mid D}: D \rightarrow \mathbb{P}^{2}$; this implies that $D \cong \mathbb{P}_{\mathbb{P}^{2}}(\mathcal{O} \oplus \mathcal{O}(c))$ for some $c \in \mathbb{Z}$.

Now we have $H \cap D \neq \emptyset$, because both contain a line in Z_{p}, so that $H \cap D$ yields a non-zero effective divisor in D. On the other hand, this divisor is disjoint from both sections S_{2} and S_{3} by Step [2.7. This easily implies that $c=0$ and $D \cong \mathbb{P}^{1} \times \mathbb{P}^{2}$.

Finally, we note that for every $p \in \mathbb{P}^{2}, D \cap Z_{p}$ is the line spanned by the points $S_{2} \cap Z_{p}$ and $S_{3} \cap Z_{p}$, so that $D \cap S_{1}=\emptyset$ by Step 2.5.

We denote by $L \in \operatorname{Pic}(Y)$ the tautological line bundle for $Y=\mathbb{P}_{\mathbb{P}^{2}}(\mathcal{O} \oplus \mathcal{O}(a))$; note that L is nef and big, and $L_{\mid A_{2}} \cong \mathcal{O}_{\mathbb{P}^{2}}$ by Th. 2.1((e)).
Step 2.9. There exists $b \in \mathbb{Z}$ such that $\mathcal{N}_{S_{3} / Z}^{\vee} \cong \mathcal{O}_{\mathbb{P}^{2}}(b) \oplus \mathcal{O}_{\mathbb{P}^{2}}(a+b)$ and $\mathcal{N}_{E / X_{2}}^{\vee} \cong$ $L \otimes \xi^{*}\left(\mathcal{O}_{\mathbb{P}^{2}}(b)\right) \in \operatorname{Pic}(Y)$.

Proof. By Step 2.3 we have a commutative diagram:

where the horizontal maps are isomorphisms, and the vertical maps are \mathbb{P}^{1} bundles. Since $g: X_{2} \rightarrow Z$ is the blow-up of S_{3}, using Th. [2.1(a) we get:

$$
\mathbb{P}_{S_{3}}\left(\mathcal{N}_{S_{3} / Z}^{\vee}\right) \cong E \cong Y \cong \mathbb{P}_{\mathbb{P}^{2}}(\mathcal{O} \oplus \mathcal{O}(a)),
$$

therefore $\mathcal{N}_{S_{3} / Z}^{\vee} \cong \mathcal{O}_{\mathbb{P}^{2}}(b) \oplus \mathcal{O}_{\mathbb{P}^{2}}(a+b)$, with $b \in \mathbb{Z}$. Moreover $\mathcal{N}_{E / X_{2}}^{\vee}$ is the tautological line bundle of $\mathbb{P}_{\mathbb{P}^{2}}(\mathcal{O}(b) \oplus \mathcal{O}(a+b))$, which gives the statement.

Step 2.10. We have $b=0, X_{2} \cong \mathbb{P}_{Y}(\mathcal{O} \oplus L)$, and E corresponds (as a section of ψ) to the projection $\mathcal{O} \oplus L \rightarrow \mathcal{O}$.

Proof. Let \mathcal{E} be a rank 2 vector bundle on Y such that $X_{2}=\mathbb{P}_{Y}(\mathcal{E})$. We know by Step 2.3 that E is a section of ψ; this section corresponds to a surjection $\sigma: \mathcal{E} \rightarrow \mathcal{F}$ with $\mathcal{F} \in \operatorname{Pic}(Y)$, and up to replacing \mathcal{E} with $\mathcal{E} \otimes \mathcal{F}^{\vee}$ we may assume that $\mathcal{F}=\mathcal{O}_{Y}$, so that $\operatorname{ker} \sigma \cong \mathcal{N}_{E / X_{2}}^{\vee} \cong L \otimes \xi^{*}\left(\mathcal{O}_{\mathbb{P}^{2}}(b)\right)$ by Step 2.9. We obtain the following exact sequence over Y :

$$
\begin{equation*}
0 \longrightarrow \operatorname{ker} \sigma \longrightarrow \mathcal{E} \longrightarrow \mathcal{O}_{Y} \longrightarrow 0 \tag{2.1}
\end{equation*}
$$

Now let us consider $A_{2} \subset Y$; we have $\operatorname{ker} \sigma_{\mid A_{2}} \cong L_{\mid A_{2}} \otimes \xi^{*}\left(\mathcal{O}_{\mathbb{P}^{2}}(b)\right)_{\mid A_{2}} \cong \mathcal{O}_{\mathbb{P}^{2}}(b)$, so by restricting to A_{2} the above exact sequence we get:

$$
0 \longrightarrow \mathcal{O}(b) \longrightarrow \mathcal{E}_{\mid A_{2}} \longrightarrow \mathcal{O} \longrightarrow 0
$$

On the other hand $\mathbb{P}_{A_{2}}\left(\mathcal{E}_{\mid A_{2}}\right)=T_{2} \cong \mathbb{P}^{2} \times \mathbb{P}^{1}$ by Step 2.8, and we deduce that $b=0$ and $\operatorname{ker} \sigma \cong L$.

We note that Y is Fano, and L is nef and big, so that $-K_{Y}+L$ is ample. Therefore $\operatorname{Ext}^{1}\left(\mathcal{O}_{Y}, \operatorname{ker} \sigma\right) \cong H^{1}(Y, L)=H^{1}\left(Y, K_{Y}-K_{Y}+L\right)=0$ by Kodaira vanishing, hence the sequence (2.1) splits, so that $\mathcal{E} \cong \mathcal{O}_{Y} \oplus L$.

Step 2.11. There exists a section K of $\psi: X_{2} \rightarrow Y$ containing B_{1} and disjoint from E.

Proof. By Th. 2.1 (f) and Step 2.10 we have $B_{1} \subset T_{1}=\mathbb{P}_{A_{1}}\left(\mathcal{O}_{A_{1}} \oplus L_{\mid A_{1}}\right)$ and B_{1} is a section of $\psi_{\mid T_{1}}: T_{1} \rightarrow A_{1}$. Moreover by Steps 2.3 and 2.10 we deduce that $T_{1} \cap E$ is another section of $\psi_{\mid T_{1}}$, disjoint from B_{1}, and corresponding to the projection $\mathcal{O}_{A_{1}} \oplus L_{\mid A_{1}} \rightarrow \mathcal{O}_{A_{1}}$. Then it is not difficult to see that B_{1} corresponds, as a section, to a surjection $\tau: \mathcal{O}_{A_{1}} \oplus L_{\mid A_{1}} \rightarrow L_{\mid A_{1}}$.

Let us consider the restriction $r: \operatorname{Hom}\left(\mathcal{O}_{Y} \oplus L, L\right) \rightarrow \operatorname{Hom}\left(\mathcal{O}_{A_{1}} \oplus L_{\mid A_{1}}, L_{\mid A_{1}}\right)$. We have
$\operatorname{Hom}\left(\mathcal{O}_{A_{1}} \oplus L_{\mid A_{1}}, L_{\mid A_{1}}\right) \cong \operatorname{Hom}\left(L_{\mid A_{1}}^{\vee} \oplus \mathcal{O}_{A_{1}}, \mathcal{O}_{A_{1}}\right) \cong H^{0}\left(A_{1}, L_{\mid A_{1}}\right) \oplus H^{0}\left(A_{1}, \mathcal{O}_{A_{1}}\right)$, and similarly $\operatorname{Hom}\left(\mathcal{O}_{Y} \oplus L, L\right) \cong H^{0}(Y, L) \oplus H^{0}\left(Y, \mathcal{O}_{Y}\right)$. Since the restriction $H^{0}\left(Y, \mathcal{O}_{Y}\right) \rightarrow H^{0}\left(A_{1}, \mathcal{O}_{A_{1}}\right)$ is an isomorphism, r is surjective if the restriction $H^{0}(Y, L) \rightarrow H^{0}\left(A_{1}, L_{\mid A_{1}}\right)$ is.

We have an exact sequence of sheaves on Y :

$$
0 \longrightarrow L \otimes \mathcal{O}_{Y}\left(-A_{1}\right) \longrightarrow L \longrightarrow L_{\mid A_{1}} \longrightarrow 0
$$

Since $A_{1} \cap A_{2}=\emptyset$ by Th. 2.1(d), and A_{1} has degree d over \mathbb{P}^{2}, it is not difficult to see that $\mathcal{O}_{Y}\left(A_{1}\right)=L^{\otimes d}$ in $\operatorname{Pic}(Y)$. Then, using Serre duality and KawamataViehweg vanishing:

$$
H^{1}\left(Y, L \otimes \mathcal{O}_{Y}\left(-A_{1}\right)\right)=H^{1}\left(Y, L^{\otimes(1-d)}\right)=H^{2}\left(Y, K_{Y} \otimes L^{\otimes(d-1)}\right)=0
$$

because $d \geq 2$ and L is nef and big.
We conclude that r is surjective, so that τ extends to a morphism $\bar{\tau}: \mathcal{O}_{Y} \oplus L \rightarrow$ L.

We show that $\bar{\tau}$ is surjective. By contradiction, suppose that $\operatorname{Im} \bar{\tau} \subsetneq L$; then $\operatorname{Im} \bar{\tau} \cong L \otimes \mathcal{O}_{Y}\left(-D_{0}\right)$ with D_{0} a non-zero effective divisor, and $\operatorname{ker} \bar{\tau} \cong \mathcal{O}_{Y}\left(D_{0}\right)$.

We have $\operatorname{Hom}\left(L, L \otimes \mathcal{O}_{Y}\left(-D_{0}\right)\right)=0$, hence $\operatorname{ker} \bar{\tau} \supseteq\{0\} \oplus L$. On the other hand $\operatorname{Hom}\left(\mathcal{O}_{Y}\left(D_{0}\right), \mathcal{O}_{Y}\right)=0$, hence $\operatorname{ker} \bar{\tau} \subseteq\{0\} \oplus L$. We conclude that $\operatorname{ker} \bar{\tau}=\{0\} \oplus L$ and $\bar{\tau}$ factors through the projection $\mathcal{O}_{Y} \oplus L \rightarrow \mathcal{O}_{Y}$. Then the same happens by restricting to A_{1}, which is impossible, because τ is surjective.

Thus we have a surjection $\bar{\tau}: \mathcal{O}_{Y} \oplus L \rightarrow L$ which yields a section $K \subset X_{2}$ extending B_{1}.

We show that $K \cap E=\emptyset$. Let us consider the projection $\mathcal{O}_{Y} \oplus L \rightarrow L$ and the corresponding section $K^{\prime} \subset X_{2}$. Since E corresponds to the projection onto the other summand, we have $K^{\prime} \cap E=\emptyset$. On the other hand, it is easy to check that $K \sim K^{\prime}$ in X_{2}, hence for every curve $C \subset E$ we have $K \cdot C=0$. Since $K \neq E$, this implies that $K \cap E=\emptyset$.
Step 2.12. We have $d=2$ and $H=g(K)$.
Proof. Consider $g(K) \subset Z$, so that $K \cong g(K)$ and $g(K) \supset S_{1}$ by Step 2.11. If $p \in \mathbb{P}^{2}$ is general, then $g^{-1}\left(Z_{p}\right) \cong \mathbb{F}_{1}$, and $K \cap g^{-1}\left(Z_{p}\right)$ is a section of $\mathbb{F}_{1} \rightarrow \mathbb{P}^{1}$, disjoint from the (-1)-curve $E \cap g^{-1}\left(Z_{p}\right)$. Thus $g(K) \cap Z_{p}$ is a line in $Z_{p} \cong \mathbb{P}^{2}$, and this line contains the d points $S_{1} \cap Z_{p}$. Since these points are in general linear position (see Step 2.5), we conclude that $d=2$. We also deduce that $g(K)=H$ (see Step 2.7).

Step 2.13. We have $Z \cong \mathbb{P}_{\mathbb{P}^{2}}\left(\mathcal{O}^{\oplus 2} \oplus \mathcal{O}(a)\right)$, and under the isomorphism $D \cong$ $\mathbb{P}^{1} \times \mathbb{P}^{2}$ one has $\mathcal{O}_{Z}(D)_{\mid\{p t\} \times \mathbb{P}^{2}} \cong \mathcal{O}_{\mathbb{P}^{2}}(-a)$.
Proof. We know by Steps [2.3, 2.9 and 2.10 that S_{3} is a section of $\varphi: Z \rightarrow \mathbb{P}^{2}$ with conormal bundle $\mathcal{O} \oplus \mathcal{O}(a)$. As in the proof of Step 2.10, using that $H^{1}\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(c)\right)=0$ for every $c \in \mathbb{Z}$, one shows that $Z \cong \mathbb{P}_{\mathbb{P}^{2}}(\mathcal{O} \oplus \mathcal{O} \oplus \mathcal{O}(a))$.

Recall from Step 2.8 that $D \cong \mathbb{P}^{1} \times \mathbb{P}^{2}$ and $S_{3} \cong\{\mathrm{pt}\} \times \mathbb{P}^{2}$. Thus $\mathcal{N}_{S_{3} / Z} \cong$ $\mathcal{O}_{\mathbb{P}^{2}} \oplus \mathcal{O}_{\mathbb{P}^{2}}(-a)$ and $\mathcal{N}_{S_{3} / D} \cong \mathcal{O}_{\mathbb{P}^{2}} ;$ using the exact sequence on S_{3} :

$$
0 \longrightarrow \mathcal{N}_{S_{3} / D} \longrightarrow \mathcal{N}_{S_{3} / Z} \longrightarrow \mathcal{N}_{D / Z \mid S_{3}} \longrightarrow 0
$$

we conclude that $\mathcal{N}_{D / Z \mid S_{3}} \cong \mathcal{O}_{\mathbb{P}^{2}}(-a)$.
Step 2.14. If $a=1$, then X is the 4 -fold of Example 1.1.
Proof. Set $a=1$. Applying Step 2.13 we have $Z \cong \mathbb{P}_{\mathbb{P}^{2}}\left(\mathcal{O}^{\oplus 2} \oplus \mathcal{O}(1)\right)$, that is the blow-up of \mathbb{P}^{4} along a line, with exceptional divisor D; moreover S_{2} and S_{3} are
non-trivial fibers of the blow-up $Z \rightarrow \mathbb{P}^{4}$. The image of H (see Steps 2.7 and (2.12) in \mathbb{P}^{4} is a hyperplane, and the image of S_{1} is a smooth quadric surface. This is Example 1.1 .

Step 2.15. If $a=2$, then X is the 4 -fold of Example 1.2.
Proof. Set $a=2$. Using Step 2.13 one has $Z \cong \mathbb{P}_{\mathbb{P}^{2}}\left(\mathcal{O}^{\oplus 2} \oplus \mathcal{O}(2)\right)$, then there is a divisorial contraction $Z \rightarrow W$ sending D to a curve; moreover $S_{2}, S_{3} \subset D$ are fibers of this contraction.

Consider the divisor $H \subset Z$ (see Step 2.7), and let $\mathcal{O}_{W}(1)$ be the ample generator of $\operatorname{Pic}(W)$. Using Steps 2.11 and 2.12, and Th. 2.1(囵) we have $H \cong K \cong$ $Y=\mathbb{P}_{\mathbb{P}^{2}}(\mathcal{O} \oplus \mathcal{O}(2))$; and it is not difficult to see that $\mathcal{O}_{Z}(H)$ is the pullback of $\mathcal{O}_{W}(1)$. Moreover, $S_{1} \subset H$ is disjoint from the negative section $D \cap H$ (see Step (2.8) and has degree 2 over \mathbb{P}^{2}; this implies that $S_{1} \in\left|\mathcal{O}_{Z}(2 H)_{\mid H}\right|$ in H. Since Z is Fano and $\mathcal{O}_{Z}(H)$ is nef, we have $h^{1}(Z, H)=h^{1}\left(Z, K_{Z}-K_{Z}+H\right)=0$ by Kodaira vanishing, therefore the restriction $H^{0}\left(Z, \mathcal{O}_{Z}(2 H)\right) \rightarrow H^{0}\left(H, \mathcal{O}_{Z}(2 H)_{\mid H}\right)$ is surjective. We conclude that S_{1} is a complete intersection of elements in the linear systems $|H|$ and $|2 H|$, and this is Example 1.2.

This concludes the proof of Th. 1.3,
Remark 2.16. A posteriori, we see that the varieties X_{1}, X_{2}, Z and Y are always toric; moreover it is not difficult to see that there is always a choice of the ordering of the three blow-ups $X \rightarrow Z$ such that X_{1} is toric and Fano.
More precisely, in the two non-toric cases one can choose an ordering of the blow-ups in such a way that, following the notation of [Bat99] for toric Fano 4-folds:

- in Example 1.1, X_{1} is H_{4} and X_{2} is D_{8};
- in Example 1.2, X_{1} is H_{1} and X_{2} is D_{2}.

Remark 2.17 (conic bundles of Fano manifolds). The varieties X of Examples 1.1 and 1.2 give new examples of Fano varieties with a conic bundle $X \rightarrow Y$ such that $\rho_{X}-\rho_{Y}=3$. It is shown in Rom19, Th. 1.1] that if X is a Fano manifold (of arbitrary dimension) which is not a product of varieties of smaller dimension, and has a conic bundle $X \rightarrow Y$, then $\rho_{X}-\rho_{Y} \leq 3$.

Given a conic bundle $h: X \rightarrow Y$, let $\triangle:=\left\{y \in Y \mid h^{-1}(y)\right.$ is singular $\}$ be its discriminant divisor. As a consequence of our main result, we find an explicit description of the discriminant divisors of conic bundles encoded by the varieties of Th. 1.3. See also [MR19, Cor. 3.4] for some partial results in this direction.

Corollary 2.18. Let X be a Fano 4-fold with $\rho_{X}=5$, admitting a conic bundle $h: X \rightarrow Y$ such that $\rho_{X}-\rho_{Y}=3$. Denote by \triangle the discriminant divisor of h. Then one of the following holds:
(i) $\triangle \cong \mathbb{P}^{2} \sqcup \mathbb{P}^{2}$, and X is toric of combinatorial type K;
(ii) $\triangle \cong\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right) \sqcup \mathbb{P}^{2}$, and X is the variety of Example [1.1;
(iii) $\triangle \cong S \sqcup \mathbb{P}^{2}$ where S is a del Pezzo surface of degree 2, and X is the variety of Example 1.2.

Proof. We first show that $\delta_{X}=3$. In view of [MR19, Th. 1.1] we are left to analyze the case in which $X \cong S_{1} \times S_{2}$ with S_{i} del Pezzo surfaces. In this situation, h is induced by a conic bundle on one of the two del Pezzo surfaces S_{i}, say S_{1}, and $Y \cong \mathbb{P}^{1} \times S_{2}$ (see e.g. the proof of [Rom19, Th. 4.2(1)]). Being $\rho_{Y}=\rho_{X}-3=2$, we conclude that $S_{2} \cong \mathbb{P}^{2}, \rho_{S_{1}}=4$, and $X \cong S_{1} \times \mathbb{P}^{2}=K_{4}$, thus $\delta_{X}=3$.
We observe that $h: X \rightarrow Y$ satisfies all the properties (a)- (ff) listed in Th. 2.1. Indeed, by [Rom19, Prop. 3.5(1) and Prop. 4.2(2)] we may take a factorization for h such that (b), ((c), and ($\bar{f})$ hold. All the remaining properties follow by arguing as in the proof of Th. 2.1. This implies that we can run the arguments of the proof of Th. 1.3 replacing $\psi \circ f$ by h. Let us keep the notation as in that theorem.

Then $\triangle=A_{1} \sqcup A_{2}$, and using Step 2.3 we have $A_{i} \cong B_{i} \cong S_{i}$ for $i=1,2$. At this point, Steps 2.6, 2.14, 2.15 and their proofs give respectively (i), (ii), and (iii), hence the statement.

Proof of Cor. 1.4. If $\delta_{X} \leq 3$, then $\rho_{X} \leq \delta_{X}+\operatorname{dim} \mathcal{N}_{1}(D, X) \leq 5$, and the statement follows from Th. 1.3 ,
If instead $\delta_{X} \geq 4$, by [Cas12, Th. 1.1] we have $X \cong S \times T$ where S and T are del Pezzo surfaces. We can assume that $\pi(D)=T$, where $\pi: X \rightarrow T$ is the projection. Let us consider the pushforward $\pi_{*}: \mathcal{N}_{1}(X) \rightarrow \mathcal{N}_{1}(T)$. Then $\pi_{*}\left(\mathcal{N}_{1}(D, X)\right)=\mathcal{N}_{1}(T)$; on the other hand π cannot be finite on D, so that $\mathcal{N}_{1}(D, X) \cap \operatorname{ker} \pi_{*} \neq 0$, and $\operatorname{dim} \mathcal{N}_{1}(T)<\operatorname{dim} \mathcal{N}_{1}(D, X)=2$. We conclude that $\rho_{T}=1$, hence $T \cong \mathbb{P}^{2}$, and being $\delta_{X}=\rho_{S}-1$ (cf. [Cas12, Ex. 3.1]) we get $\rho_{S} \geq 5$ and $\rho_{X} \geq 6$.

Proof of Cor. 1.6. Let us take the push-forward $\sigma_{*}: \mathcal{N}_{1}(X) \rightarrow \mathcal{N}_{1}\left(X^{\prime}\right)$. We have $\sigma_{*}\left(\mathcal{N}_{1}(\operatorname{Exc}(\sigma), X)\right)=\mathbb{R}[\sigma(\operatorname{Exc}(\sigma))]$, and dim ker $\sigma_{*}=1$, thus $\operatorname{dim} \mathcal{N}_{1}(\operatorname{Exc}(\sigma), X)=$ 2. By Cor. 1.4, X is one of the 4 -folds appearing in Th. [1.3, so we only have to check which of these varieties admit a contraction as in the statement. We already know by Th. 1.5 that the toric 4 -fold K_{3} and Example 1.1 do.

It is easy to check from Bat99], using the primitive relations of the varieties K_{i}, that K_{2} and $K_{4} \cong \mathbb{P}^{2} \times S_{4}$ do not have any elementary divisorial contraction such that the image of the exceptional divisor is a curve, while K_{1} does, and satisfies the statement.

Concerning Example 1.2, keeping the same notation as in the example, we have $D \cong \mathbb{P}^{1} \times \mathbb{P}^{2}$ and $\mathcal{N}_{D / Z} \cong \mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{2}}(1,-2)$. If $\widetilde{D} \subset X$ is the transform of D, it is not difficult to check that $\widetilde{D} \cong \mathbb{P}^{1} \times \mathbb{P}^{2}$ and $\mathcal{N}_{\widetilde{D} / X} \cong \mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{2}}(-1,-2)$. Then $-2 K_{X}+\widetilde{D}$ is nef, and has intersection zero only with the curves in $\{p t\} \times \mathbb{P}^{2} \subset \widetilde{D}$, so the classes of these curves belong to an extremal ray of $\mathrm{NE}(X)$ which gives the desired contraction.

3. The examples

3.1. Example 1.2. The 4 -fold $Z:=\mathbb{P}_{\mathbb{P}^{2}}\left(\mathcal{O}^{\oplus 2} \oplus \mathcal{O}(2)\right)$ has two contractions, the \mathbb{P}^{2}-bundle $\varphi: Z \rightarrow \mathbb{P}^{2}$, and a divisorial contraction $Z \rightarrow W:=\mathbb{P}(1,1,1,2,2)$. We note that $\operatorname{Pic}(W)$ is generated by a very ample line bundle $\mathcal{O}_{W}(1)$ which embeds W in \mathbb{P}^{7} as the cone over the Veronese surface, with vertex a line; the birational morphism $Z \rightarrow W$ sends the exceptional divisor D to this line.

Let $H \subset Z$ be the pullback of a general element in $\left|\mathcal{O}_{W}(1)\right|$; then H is a resolution of a cone over the Veronese surface (with vertex a point), and $H \cong$ $\mathbb{P}_{\mathbb{P}^{2}}(\mathcal{O} \oplus \mathcal{O}(2))$. We have:

$$
H \sim D+\varphi^{*} \mathcal{O}_{\mathbb{P}^{2}}(2) \quad \text { and } \quad-K_{Z}=3 H+\varphi^{*} \mathcal{O}_{\mathbb{P}^{2}}(1)
$$

Let $F_{1}, F_{2} \subset D$ be two distinct fibers of the contraction $Z \rightarrow W$, so that $F_{i} \cong \mathbb{P}^{2}$ are sections of $\varphi: Z \rightarrow \mathbb{P}^{2}$. In D we have $F_{i} \in\left|H_{\mid D}\right|$.

Let $S \subset Z$ be a general complete intersection of elements in the linear systems $|H|$ and $|2 H|$; notice that $\varphi_{\mid S}: S \rightarrow \mathbb{P}^{2}$ is finite of degree 2. By adjunction $-K_{S}=\left(-K_{Z}-3 H\right)_{\mid S}=\varphi^{*} \mathcal{O}_{\mathbb{P}^{2}}(1)_{\mid S}$, and we deduce that S is a del Pezzo surface of degree 2 .

The surfaces S, F_{1}, F_{2} are pairwise disjoint in Z. Let $\sigma: X \rightarrow Z$ be the blow-up of Z along S, F_{1}, and F_{2}.

Lemma 3.1. $-K_{X}$ has positive intersection with every curve in X.
Proof. Let $\widetilde{D} \subset X$ be the transform of D, E_{i} the exceptional divisor over F_{i}, and E_{0} the exceptional divisor over S. Using that the surface S has degree 2 over \mathbb{P}^{2}, it is not difficult to see that there exists a unique $H_{0} \in|H|$ containing it; let $\widetilde{H}_{0} \subset X$ be its transform. By the generality of S, H_{0} is smooth and disjoint from F_{1} and F_{2}.
Let $\Gamma \subset X$ be an irreducible curve not contained in any of the divisors $\widetilde{D}, \widetilde{H}_{0}$, E_{1}, or E_{2}. If $\sigma(\Gamma)$ is a point, then $-K_{X} \cdot \Gamma=1$. Otherwise, we set $\Gamma^{\prime}:=\sigma(\Gamma) \subset Z$, so that Γ^{\prime} is not contained in D, nor in H_{0}, nor in F_{i}.

For $i=1,2$ let $H_{i} \in|H|$ be a general element containing F_{i}, so that these divisors do not contain Γ^{\prime}. Then $\left(\sigma^{*} H_{i}-E_{i}\right) \cdot \Gamma \geq 0$ for $i=0,1,2$, and we get

$$
\begin{gathered}
-K_{X} \cdot \Gamma=\left(\sigma^{*}\left(-K_{Z}\right)-\sum_{i=0}^{2} E_{i}\right) \cdot \Gamma=\left(\sigma^{*}\left(3 H+\varphi^{*} \mathcal{O}_{\mathbb{P}^{2}}(1)\right)-\sum_{i=0}^{2} E_{i}\right) \cdot \Gamma \\
=\sum_{i=0}^{2}\left(\sigma^{*} H-E_{i}\right) \cdot \Gamma+\sigma^{*} \varphi^{*} \mathcal{O}_{\mathbb{P}^{2}}(1) \cdot \Gamma \geq 0 .
\end{gathered}
$$

We show that the intersection is in fact positive. If $-K_{X} \cdot \Gamma=0$, then $\sigma^{*} \varphi^{*} \mathcal{O}_{\mathbb{P}^{2}}(1) \cdot \Gamma=0$, so that Γ^{\prime} is contained in a fiber Z_{p} of the \mathbb{P}^{2}-bundle $\varphi: Z \rightarrow \mathbb{P}^{2}$. Let $i \in\{1,2\}$. We also have $\left(\sigma^{*} H_{i}-E_{i}\right) \cdot \Gamma=0$, so that the transform of H_{i} in X is disjoint from Γ. Note that $\left(H_{i}\right)_{\mid Z_{p}}$ is a line in $Z_{p} \cong \mathbb{P}^{2}$; this means that H_{i} meets Γ^{\prime} only at the point $z_{i}:=F_{i} \cap Z_{p}$, transversally. Thus Γ^{\prime}
must be the line $\overline{z_{1} z_{2}}$ in Z_{p}. However this line is contained in the exceptional divisor D, indeed $D \cap Z_{p}$ is a line and contains both points z_{i}, against our assumptions on Γ.

Now we show that the restriction of $-K_{X}$ to the divisors $\widetilde{D}, \widetilde{H}_{0}, E_{1}, E_{2}$ is ample.

We have $\widetilde{D} \cong \mathbb{P}^{1} \times \mathbb{P}^{2}$ with $\mathcal{N}_{\widetilde{D} / X} \cong \mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{2}}(-1,-2)$, so that $\left(-K_{X}\right)_{\mid \widetilde{D}}=$ $-K_{\tilde{D}}+\mathcal{N}_{\widetilde{D} / X} \cong \mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{2}}(1,1)$ is ample.

Similarly, for $i=1,2, E_{i} \cong \mathbb{P}_{\mathbb{P}^{2}}(\mathcal{O} \oplus \mathcal{O}(2))$ and $\mathcal{N}_{E_{i} / X} \cong-A-2 B$, where A is the negative section of $E_{i} \rightarrow \mathbb{P}^{2}$ and B is the pullback of $\mathcal{O}_{\mathbb{P}^{2}}(1)$. Moreover $-K_{E_{i}}=2 A+5 B$, so that $\left(-K_{X}\right)_{\mid E_{i}}=-K_{E_{i}}+\mathcal{N}_{E_{i} / X} \cong A+3 B$ is ample.

Finally we have $\widetilde{H}_{0} \cong H_{0} \cong \mathbb{P}_{\mathbb{P}^{2}}(\mathcal{O} \oplus \mathcal{O}(2))$, and the negative section is $\widetilde{H}_{0} \cap \widetilde{D}$; we know that $\left(-K_{X}\right)_{\mid \tilde{H}_{0} \cap \tilde{D}}$ is ample.

If $\ell \subset \widetilde{H}_{0}$ is a fiber of the \mathbb{P}^{1}-bundle, then $\ell \cdot E_{i}=0$ for $i=1,2, \ell \cdot E_{0}=2$, and $-K_{Z} \cdot \sigma(\ell)=3$, thus $-K_{X} \cdot \ell=1$.
Note that $\mathrm{NE}\left(\widetilde{H}_{0}\right)$ is generated by $[\ell]$ and by the class of a curve in $\widetilde{H}_{0} \cap \widetilde{D}$; we conclude that $\left(-K_{X}\right)_{\mid \widetilde{H}_{0}}$ is ample.

The following is a standard computation.
Lemma 3.2. Let $f: X \rightarrow Y$ be the blow-up of a smooth projective 4-fold along a smooth irreducible surface S. Then we have the following:

$$
\begin{aligned}
K_{X}^{4} & =K_{Y}^{4}-3\left(K_{Y \mid S}\right)^{2}-2 K_{S} \cdot K_{Y \mid S}+c_{2}\left(\mathcal{N}_{S / Y}\right)-K_{S}^{2} \\
K_{X}^{2} \cdot c_{2}(X) & =K_{Y}^{2} \cdot c_{2}(Y)-12 \chi\left(\mathcal{O}_{S}\right)+2 K_{S}^{2}-2 K_{S} \cdot K_{Y \mid S}-2 c_{2}\left(\mathcal{N}_{S / Y}\right), \\
\chi\left(X,-K_{X}\right) & =\chi\left(Y,-K_{Y}\right)-\chi\left(\mathcal{O}_{S}\right)-\frac{1}{2}\left(\left(K_{Y \mid S}\right)^{2}+K_{S} \cdot K_{Y \mid S}\right) .
\end{aligned}
$$

Proof. Let $E \subset X$ be the exceptional divisor, set $\pi:=f_{\mid E}: E \rightarrow S$, and let $F \subset E$ be a fiber of π.

We have $\left(f^{*} K_{Y}\right)^{4}=K_{Y}^{4}$, and for $i \in\{0,1,2,3\}$ one has $\left(f^{*} K_{Y}\right)^{i} \cdot E^{4-i}=$ $\left(\pi^{*} K_{Y \mid S}\right)^{i} \cdot\left(E_{\mid E}\right)^{3-i}$. This gives

$$
\left(f^{*} K_{Y}\right)^{3} \cdot E=0 \quad \text { and } \quad\left(f^{*} K_{Y}\right)^{2} \cdot E^{2}=-\left(K_{Y \mid S}\right)^{2}
$$

In $H^{4}(E, \mathbb{Z})$ we have $\sum_{i=0}^{2}(-1)^{i} \pi^{*} c_{i}\left(\mathcal{N}_{S / Y}^{\vee}\right)\left(-E_{\mid E}\right)^{2-i}=0$, which yields

$$
E_{\mid E}^{2}=-\left(\pi^{*} c_{1}\left(\mathcal{N}_{S / Y}^{\vee}\right)\right) \cdot E_{\mid E}-c_{2}\left(\mathcal{N}_{S / Y}^{\vee}\right) F
$$

Recall also that $c_{1}\left(\mathcal{N}_{S / Y}^{\vee}\right)=K_{Y \mid S}-K_{S}$. Using these formulas, we get

$$
\begin{aligned}
& f^{*} K_{Y} \cdot E^{3}=\left(K_{Y \mid S}\right)^{2}-K_{S} \cdot K_{Y \mid S} \\
E^{4}= & c_{2}\left(\mathcal{N}_{S / Y}\right)+2 K_{S} \cdot K_{Y \mid S}-\left(K_{Y \mid S}\right)^{2}-K_{S}^{2}
\end{aligned}
$$

Finally we have $K_{X}^{4}=\left(f^{*} K_{Y}+E\right)^{4}=\sum_{i=0}^{4}\binom{4}{i}\left(f^{*} K_{Y}\right)^{i} \cdot E^{4-i}$, which yields the formula for K_{X}^{4}.

By [Ful98, Ex. 15.4.3] we have $c_{2}(X)=f^{*} c_{2}(Y)+j_{*}\left(\pi^{*}\left(K_{S}\right)-E_{\mid E}\right)$ in $H^{4}(X, \mathbb{Z})$, where $j: E \hookrightarrow X$ is the inclusion and $j_{*}: H^{2}(E, \mathbb{Z}) \rightarrow H^{4}(X, \mathbb{Z})$ is the Gysin homomorphism. Using that $j_{*} \alpha \cdot \beta=\alpha \cdot \beta_{\mid E}$ for every $\alpha \in H^{2}(E, \mathbb{Z})$ and $\beta \in$ $H^{4}(X, \mathbb{Z})$, a computation similar to the previous one gives the formula for K_{X}^{2}. $c_{2}(X)$. Finally, $\chi\left(X,-K_{X}\right)$ is given by the Riemann-Roch formula, which in this setting is as follows:

$$
\chi\left(X,-K_{X}\right)=\frac{1}{12}\left(2 K_{X}^{2}+K_{X}^{2} \cdot c_{2}(X)\right)+\chi\left(X, \mathcal{O}_{X}\right)
$$

Lemma 3.3. The 4 -fold X is Fano with $\rho_{X}=5$ and $\delta_{X}=3$. We also have:

$$
\begin{gathered}
K_{X}^{4}=250, \quad K_{X}^{2} \cdot c_{2}(X)=172, \quad h^{0}\left(X,-K_{X}\right)=57, \\
b_{3}(X)=0, \quad b_{4}(X)=h^{2,2}(X)=13 .
\end{gathered}
$$

Moreover $h^{1}\left(X, T_{X}\right)=h^{0}\left(X, T_{X}\right)+6 \geq 6$, where T_{X} is the tangent bundle.
Proof. We have $K_{Z}^{4}=594, K_{Z}^{2} \cdot c_{2}(Z)=240$, and $\chi\left(Z,-K_{Z}\right)=120$; this can be computed using toric geometry, or see [Bat99, Table 4, n. 7].

We compute K_{X}^{4} using Lemma 3.2,
We calculate the contribution of $F_{i} \cong \mathbb{P}^{2}$. We have $K_{Z \mid F_{i}} \cong \mathcal{O}_{\mathbb{P}^{2}}(-1)$ and $\mathcal{N}_{F_{i} / Z} \cong \mathcal{O}_{\mathbb{P}^{2}}(-2) \oplus \mathcal{O}_{\mathbb{P}^{2}}$; this gives that the blow-up along each surface F_{i} makes K^{4} decrease by 18 .

Now we compute the contribution of S. In Z we have $H^{4}=4$, as the degree of $W \subset \mathbb{P}^{7}$ is equal to the degree of the Veronese surface. Moreover $H^{3} \cdot \varphi^{*} \mathcal{O}_{\mathbb{P}^{2}}(1)=2$, because if $\ell \subset \mathbb{P}^{2}$ is a line, the image of $\varphi^{-1}(\ell)$ under the birational map $Z \rightarrow W$ is a quadric cone. Finally $H^{2} \cdot \varphi^{*} \mathcal{O}_{\mathbb{P}^{2}}(1)^{2}=1$, because $H_{\mid Z_{p}} \cong \mathcal{O}_{\mathbb{P}^{2}}(1)$ for every fiber Z_{p} of φ. We get:

$$
\begin{aligned}
& \left(K_{Z \mid S}\right)^{2}=K_{Z}^{2} \cdot 2 H^{2}=\left(3 H+\varphi^{*} \mathcal{O}_{\mathbb{P}^{2}}(1)\right)^{2} \cdot 2 H^{2}=98 \\
& K_{Z \mid S} \cdot K_{S}=\left(3 H+\varphi^{*} \mathcal{O}_{\mathbb{P}^{2}}(1)\right) \cdot \varphi^{*} \mathcal{O}_{\mathbb{P}^{2}}(1) \cdot 2 H^{2}=14 .
\end{aligned}
$$

Moreover $\mathcal{N}_{S / Z}=\mathcal{O}_{S}(H) \oplus \mathcal{O}_{S}(2 H)$, so that $c_{2}\left(\mathcal{N}_{S / Z}\right)=H_{\mid S} \cdot 2 H_{\mid S}=2 H^{2} \cdot 2 H^{2}=$ 16. In the end the blow-up along S makes K^{4} decrease by 308 , and we get:

$$
K_{X}^{4}=K_{Z}^{4}-36-308=250 .
$$

Together with Lemma 3.1, this shows that $-K_{X}$ is nef and big, hence semiample by the base-point-free theorem, and hence ample. Therefore X is a Fano 4 -fold, and $\rho_{X}=5$.

For $i=1,2$ the divisor E_{i} has $\rho_{E_{i}}=2$, so that $\delta_{X} \geq 5-2=3$. On the other hand X is not a product, so [Cas12, Th. 1.1] implies that $\delta_{X} \leq 3$, and we conclude that $\delta_{X}=3$.

The values of $K_{X}^{2} \cdot c_{2}(X)$ and $h^{0}\left(X,-K_{X}\right)=\chi\left(X,-K_{X}\right)$ can be computed from the ones of Z using Lemma 3.2, as done for K_{X}^{4}. Also the Hodge numbers of X can be easily computed by the explicit description of X as a blow-up.

Finally, since X is Fano, by Nakano vanishing we have $h^{i}\left(X, T_{X}\right)=0$ for every $i \geq 2$, so that $\chi\left(X, T_{X}\right)=h^{0}\left(X, T_{X}\right)-h^{1}\left(X, T_{X}\right)$. We can compute $\chi\left(X, T_{X}\right)$ from the other invariants using Riemann Roch, see for instance [CCF19, Lemma $6.25]$ for an explicit formula.
3.2. Numerical invariants. Table 3.4 gives some relevant invariants of the varieties listed in Th. 1.3; T is the tangent bundle, and S_{4} is the del Pezzo surface with $\rho_{S_{4}}=4$, namely the blow-up of \mathbb{P}^{2} in three non collinear points. The invariants for the toric cases are given in [Bat99], and the ones for Example 1.2 are given in Lemma 3.3, For Example 1.1, the invariants are computed as for Example 1.2, using the same technique as in the proof of Lemma 3.3.

Table 3.4. Fano 4 -folds with $\rho=5$ and $\delta=3$

4-fold	b_{3}	$h^{2,2}$	$h^{1,3}$	K^{4}	$K^{2} \cdot c_{2}$	$h^{0}(-K)$	$\chi(T)$	
K_{1}	0	6	0	364	196	78	10	toric
K_{2}	0	6	0	354	192	76	10	toric
K_{3}	0	6	0	334	184	72	10	toric
$K_{4} \cong \mathbb{P}^{2} \times S_{4}$	0	6	0	324	180	70	10	toric
Ex. 1.1	0	7	0	253	166	57	3	non toric
Ex. 1.2	0	13	0	250	172	57	-6	non toric

References

[Bat99] V. V. Batyrev, On the classification of toric Fano 4-folds, J. Math. Sci. (New York) 94 (1999), 1021-1050.
[Cas12] C. Casagrande, On the Picard number of divisors in Fano manifolds, Ann. Sci. Éc. Norm. Supér. 45 (2012), 363-403.
[Cas13] _ , Numerical invariants of Fano 4-folds, Math. Nachr. 286 (2013), 1107-1113.
[CCF19] C. Casagrande, G. Codogni, and A. Fanelli, The blow-up of \mathbb{P}^{4} at 8 points and its Fano model, via vector bundles on a del Pezzo surface, Rev. Mát. Complut. 32 (2019), 475529.
[CD15] C. Casagrande and S. Druel, Locally unsplit families of large anticanonical degree on Fano manifolds, Int. Math. Res. Not. 2015 (2015), 10756-10800.
[Ful98] W. Fulton, Intersection theory, second ed., Springer, 1998.
[MM81] S. Mori and S. Mukai, Classification of Fano 3 -folds with $b_{2} \geq 2$, Manuscr. Math. 36 (1981), 147-162, Erratum: 110 (2003), 407.
[MR19] P. Montero and E. A. Romano, A characterization of some Fano 4-folds through conic fibrations, Int. Math. Res. Not., published online 11 November, 2019.
[Rom19] E. A. Romano, Non-elementary Fano conic bundles, Collectanea Mathematica 70 (2019), 33-50.
[Sat00] H. Sato, Toward the classification of higher-dimensional toric Fano varieties, Tôhoku Math. J. 52 (2000), 383-413.
[Tsu10] T. Tsukioka, Fano manifolds obtained by blowing up along curves with maximal Picard number, Manuscripta Math. 132 (2010), 247-255.
[Wiś91] J. A. Wiśniewski, On deformation of nef values, Duke Math. J. 64 (1991), 325-332.
Cinzia Casagrande: Università di Torino, Dipartimento di Matematica, via Carlo Alberto 10, 10123 Torino - Italy

E-mail address: cinzia.casagrande@unito.it
Eleonora A. Romano: Universytet Warszawski, Instytut Matematyki, Banacha 2, 02-097 Warszawa - Poland

E-mail address: elrom@mimuw.edu.pl

