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Abstract—Hand amputees would highly benefit from a robotic
prosthesis, which would allow the movement of a number of fin-
gers. In this paper we propose using the electromyographic signals
recorded by two pairs of electrodes placed over the arm for oper-
ating such prosthesis. Multiple features from these signals are ex-
tracted whence the most relevant features are selected by a genetic
algorithm as inputs for a simple classifier. This method results in a
probability of error of less than 2%.

Index Terms—Assistive devices, electromyography (EMG), ge-
netic algorithms (GA).

I. INTRODUCTION

I N cases of hand amputation, there is a need for a way to
control a robotic replacement hand. Although the hand is

missing, the muscles in the forearm, which are responsible
for finger movement, usually remain, and can be flexed. This
muscle activity can be read as electomyographic (EMG) signals
by placing electrodes on the forearm. The objective of this
study is to use these EMG signals to successfully identify when
a finger is activated and which finger is activated.

The physiological basis for this paper is that the muscles op-
erating articulations of the limbs are located above them. For
example, amputation below the wrist does not usually damage
the muscles operating the fingers, which are situated in the arm.
However, previous studies [1]–[4] have shown that there is no
one-to-one mapping of muscles to fingers. Operating a finger
causes activation in a number of muscles, some of which are
associated with other fingers. Thus, it is imperative that the pro-
cessing algorithm be capable of correctly associating the activa-
tion caused by several muscles to the correct finger movement.

Most previous studies of EMG classification to specific
movements have focused on extraction of forearm movement
using the EMG recorded from upper arm muscles [5]–[7].
One study which attempted to classify finger movements [8]
used several learning techniques, such as perceptron linear
separation and a backpropagation-type neural network. These
techniques yielded probabilities of misclassifications too
high for a realistic implementation (recent studies reached
approximately 15% error).

In this paper, a combination of a K-nearest neighbor (KNN)
classifier and a genetic algorithm (GA) for feature selection is
used, resulting in an average error rate of approximately 2%,
thereby making it feasible to operate a robotic replacement arm
with relatively few errors using only two pairs of electrodes.
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Fig. 1. Location of the recording electrodes. The electrode pairs are attached
to the superficial layer of flexors. This is advantageous compared to recording
locations over the extensor muscles because the flexor muscles are triggered
before actual movement of the finger.

II. M ATERIALS AND METHODS

A. Experimental Protocol

Four healthy subjects (males, aged 19 to 27 years old) partici-
pated in the study. The subjects did not suffer from neurological
or muscular disorders. Informed consent was obtained from the
subjects.

Subjects were seated in an armchair, with their arm supported
and their right hand fixed to a board with five microswitches,
one under each finger. The microswitches required 400 [gm] of
pressure for activation. Their maximal movement was 1 [mm].
The subjects were asked to randomly select and press one of the
five buttons with a brief delay between each press. No feedback
was provided except for the microswitch movement. The sub-
jects were instructed not to use maximal force as it was found
that this causes muscle coactivation of other fingers and pro-
duced inferior results. No multiple switches were closed at the
same instant.

Passive electrodes were placed over the flexor muscles of the
right forearm (as can been seen in Fig. 1), with one pair ap-
proximately 5 cm distal to the elbow (denoted as electrode pair
1) and another pair approximately 5 cm proximal to the wrist
joint (denoted as electrode pair 2). The electrodes (Myo-Tronics
Duo-Trode) were Ag-AgCl surface electrodes, circular, with a
6-mm diameter. The electrode pairs were placed 4 cm apart, at
an angle of 45 degrees to the arm. This electrode location was
chosen so as to record activity from a variety of forearm mus-
cles, which were found to give the best classification results.

The EMG signals were amplified 2500 times and sampled
(after antialiasing filter with a cutoff frequency of 250 [Hz]),
together with the microswitch states, using a Bio Pac Student
Lab PRO kit at a sampling frequency of 500 [Hz].

At least 30 presses from each finger were recorded. In order
to decrease the effect of fatigue, the subjects paused briefly after
each minute of recording.
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B. Data Processing

Data processing was done in three stages: Detection, where
the intervals of finger presses were detected; Feature extrac-
tion, where the most relevant features for classification were ex-
tracted; and classification, to determine which of the five fingers
were pressed. The stages of data processing were performed
separately for each subject.

1) Finger activation identification:The objective in this
stage is to find the intervals of finger activity (without regard
to identity). This was achieved using envelope detection on the
EMG signal recorded from both electrode pairs. The calculation
of the envelope of the signal is a three-staged process. First,
the signal is passed through a high-pass FIR filter with a cutoff
frequency of 30 [Hz]. Then, the absolute value of the resulting
signal is taken. Finally, the signal is passed through a low-pass
FIR filter with a cutoff frequency of 2.5 [Hz].

The interval of finger activation is the interval in which the
envelope of the signal in at least one of the electrode pairs sur-
passes a threshold. In order to separate noise from finger acti-
vation the subjects were instructed to remain still for approxi-
mately 3 [s]. The threshold was set 10% higher than the max-
imum envelope of the quiet EMG signal recorded in this time
period.

2) Feature extraction:After identification of the time inter-
vals in which finger activity was present, features for classifi-
cation were extracted from the EMG in these intervals. By trial
and error it was found that the best interval from which to ex-
tract features was between 0.4 [s] and 1.6 [s] after the envelope
crossed the threshold. The characteristic features in this study
were derived from two main sources. The first is the amplitude
of the discrete Fourier transform (DFT) of the EMG signal: The
frequency region between 0 [Hz] and 250 [Hz] was divided into
20 equal sections of frequencies and each section was charac-
terized by its mean and variance values.

The second main source for features is the coefficients of an
eleventh-order autoregressive (AR) model [9]. This order was
chosen heuristically.

Each electrode pair was assigned an additional binary feature
to represent whether or not finger activation was detected in that
electrode pair.

3) Classification: A modified KNN classifier used the
above features in order to ascertain which finger was activated
(each finger is given a different label). A standard KNN classi-
fier [10] measures the distance between a test measurement and
the labeled training examples and the label which appears most
frequently in the K nearest examples is chosen as the label of
the test measurement. The modified KNN classifier is different
from the standard KNN classifier only when there are an equal
number of appearances of two or more labels in the K nearest
training examples. In this case, the average distance between
the above training examples and the test measurements is used
as a tiebreaker.

The error rate of the classifier was determined using fivefold
cross validation [10]: The data was divided into five equal sub-
sets. One of the subsets was used for testing and the other four
for training the classifier. The error rate was the average error of
this procedure repeated for each of the subsets.

4) Feature selection:The signals from a total of 150 finger-
presses samples were recorded (30 per finger) and for each such
press 102 features were measured: For each electrode pair there
were 20 DFT bins of mean amplitude, 20 DFT bins of the vari-
ance of the amplitude, the coefficients of an eleventh-order AR
model, and one binary feature. This relatively small ratio of sam-
ples to features poses a generalization problem for the classifier
[13]. Hence, it is imperative to use a smaller number of features
for classification. In this paper, a genetic search algorithm was
used for selecting the best subset of features for use by the clas-
sifier.

A genetic algorithm attempts to simulate a process similar to
nature’s evolutionary process [11], [12]. The algorithm works
by encoding many possible solutions to the problem and iter-
atively improving them. In this paper, solutions were encoded
using a binary vector of length (the number of features),
where “1” terms in the solution indicate inclusion of the appro-
priate feature for use by the KNN classifier. A certain number of
solutions were iteratively evaluated and ranked according to the
number of misclassifications of the KNN classifier, when using
the features denoted by the solution. The solutions that have the
worst error rates are discarded, and are replaced by solutions,
which are crossovers or mutants of the remaining solutions. This
process is iterated until termination, which occurs when most of
the solutions are identical, which implies that the algorithm has
converged, or when a certain predetermined number of itera-
tions (generations) is reached.

III. RESULTS

The GA feature selection resulted in a classifier that had a
relatively low error rate, but still used about 50 features (as can
been seen in Fig. 2). This number of features was deemed too
high, and so the GA was run again using only the features se-
lected in the first execution of the GA. The number of features
obtained after this second execution dropped to about 28 and the
error percentage improved slightly, indicating that some overfit-
ting was present in the first execution of the GA.

In the second execution of the GA the average error per-
centage (across all subjects) was 1.9% (s.d. 1.5%). This was
reached using an average of 28 (s.d. 2) features. The average
error percentage for the thumb was 7% (s.d. 5.5%) and 0.5%
(s.d. 0.8%) for other fingers. The high error percentage for the
thumb is probably due to the electrode location, however a better
location was not found. This error percentage also suggests that
if four fingers are sufficient for a given application, the error rate
can be as low as 0.5%.

Fig. 3 shows that the AR features were utilized more fre-
quently compared to other features. The binary features were
often used because some fingers’ signals (for example, the
thumb) appear in electrode pair 2 but not in pair 1 and vice
versa.

It was calculated that 38.5% of the selected features were
chosen from electrode pair 1 and 61.5% from electrode pair 2.
This is logical because electrode pair 2 is located closer to the
activating muscles. Tests conducted with either one of the two
electrode pairs resulted in prohibitively high error rates (approx-
imately 15%).
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Fig. 2. A demonstration of the search process during the first execution of the GA. The bottom line shows the classification error (in percent). The topline shows
the average number of selected features and the arrow indicates the iteration in which the lowest percentage of classification error was obtained.

Fig. 3. Average percentage of selected features by type. This graph shows that
AR was the most useful feature for classification. Standard deviation of the
selected features was less than 15%, except for binary features, where it was
58%.

IV. DISCUSSION

In this paper, the possibility of using a small number of sur-
face electrodes for operation of hand prosthesis was demon-
strated. We have shown that it is possible to obtain sufficiently
small error rates by using a simple classifier coupled with a fea-
ture selection algorithm.

As noted earlier, the first 0.4 [s] (200 samples) were not uti-
lized for feature extraction. This was done because their inclu-

sion raised the probability of misclassification, probably due to
the transient nature of this interval.

During the testing of the above algorithm, it was found that
the genetic algorithm never converged and always had to be ter-
minated after reaching the maximum number of iterations (set
to 1000). This indicates that either a highly local solution ex-
ists or that the convergence criterion (80% identical solutions)
was too high. In order to make use of this algorithm without it
converging, the best overall solution was saved (marked by an
arrow in Fig. 2).

We chose to use 1000 iterations as a compromise between a
more thorough search of the solution space and processing time.
Yet if 1000 generations seem like a high value, a simple calcula-
tion can show that the GA searches only through approximately

percent of all possible feature combinations.
It is interesting to note that if the choice of features is

completely random, the probability of misclassification error
is about 25%. Manual selection of the features by observation
yielded a probability of misclassification of around 15%. The
genetic algorithm, after reviewing only approximately
percent of all the possible combinations of features, managed
to lower the probability of misclassification to only 2%.

We are currently in the process of building a real-time ver-
sion of the algorithm. Such a system would (hopefully) reduce
the number of errors even further, as the user interacts with the
system. Additional studies are also planned to test this system
with hand amputees.

During work with an on-line system, fatigue will become a
factor to be dealt with by the system. It is thought that by running
the feature selection and classification algorithms every several
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movements (in a bootstrap-like technique [10]) will enable the
system to cope with the nonstationary nature of EMG.
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