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Abstract

To safeguard the goals of flood protection and nature development, a river manager requires 
detailed and up-to-date information on vegetation structures in floodplains. In this study, remote 
sensing data on the vegetation of a semi-natural floodplain along the river Waal in the Netherlands 
was gathered by  means of a Compact Airborne Spectrographic Imager (CASI; spectral 
information) and LiDAR (structural information). This data was used to classify the floodplain 
vegetation into 8 and 5 different vegetation classes, respectively. The main objective was to fuse 
the CASI and LiDAR-derived datasets on a pixel level, and to compare the classification results of 
the fused dataset with those of the non-fused datasets. The performance of the classification 
results was evaluated against vegetation data recorded in the field. The LiDAR data alone 
provided insufficient information for accurate classification. The overall accuracy amounted to 
41% in the 5-class set. Using CASI data only, the overall accuracy was 74% (5-class set). The 
combination produced the best results, raising the overall accuracy to 81% (5-class set). It is 
concluded that  fusion of CASI and LiDAR data can improve the classification of floodplain 
vegetation, especially  for those vegetation classes which are important to predict hydraulic 
roughness, i.e. bush and forest. A novel measure, the balance index, is introduced to assess the 
accuracy  of error matrices describing an ordered sequence of classes such as vegetation structure 
classes that range from bare soil to forest.
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1. Introduction

Climate change is expected to result  into more extreme peak discharges in large Western European 
rivers, particularly in winter. The floods of the river Rhine in 1993 and 1995 and of the river Oder 
in 1997 show the limited capacity  of these main rivers to accommodate present peak discharges. 
To increase the discharge capacity, embanked floodplains in use by farmers have been restructured 
to accommodate higher peak discharges and are at the same time designated as nature 
rehabilitation site (Smits et al. 2000, Wolfert 2001, Lenders, 2003, van der Velde et al. 2006). Due 
to this management change, the floodplain vegetation will change over time (Bekhuis et al. 1995, 
Prach and Pysek 2001, Sýkora 2002, Geerling et al. 2006).
Accurate and up-to-date information on this dynamic vegetation is of vital importance to the river 
manager because the maximum discharge capacity  depends on it through its hydraulic resistance. 
If the discharge capacity  becomes too low, special measures are necessary, e.g. removal of bushes 
and softwood forests. A readily  available, labour efficient, reliable and cost effective instrument to 
monitor the floodplain vegetation for hydraulic and ecological evaluation is needed (Geerling and 
Van den Berg 2002, Dowling and Accad 2003, Turner et al. 2003, Baptist et al. 2004). This paper 
explores the possibilities of digital remote sensing techniques to monitor and classify semi-natural 
floodplain vegetation (Leuven et al. 2002).
Two promising techniques to remotely sense vegetation are imaging spectroscopy (IS) and the 
Light Detection And Ranging (LiDAR) sensor technology. With IS spectral information (reflected 
sunlight) in the visible and shortwave Infra Red (IR) range is collected. In the current study we 
used the Compact Airborne Spectrographic Imager (CASI). This sensor has been used in several 
studies for high resolution vegetation mapping (Kurnatowska 1998, Shang et al. 1998, Protz et al. 
1999, Von Hansen and Sties 2000, Leckie et al. 2005). On the basis of spectral information alone 
especially bush and forest  types were confused (Geerling and Van den Berg 2002). The distinction 
between these vegetation classes is important because they differ considerably in hydraulic 
resistance.
LiDAR was originally  introduced to facilitate the collection of data for digital elevation models 
(DEMs, Ackermann 1999, Wehr and Lohr 1999, Lillesand and Kiefer 2000, Charlton et al. 2003). 
In the process of creating a DEM, only reflections from the ground level are used and reflections 
from vegetation are considered redundant. Recent studies with LiDAR data have explored the 
possibilities to use these redundant vegetation reflections to map vertical vegetation structures. 
The results can be applied in woodland management (tree density, timber volume, tree height) and 
ecological (habitat) mapping (Protz et al. 1999, Zimble et al. 2003, Hill and Thompson 2005, 
Suárez et al. 2005, Straatsma and Middelkoop 2006). Studies to map riparian vegetation using 
LiDAR showed that discrimination of some vegetation types was possible based on vegetation 
height and density. The vegetation types that  were similar in structure (e.g. bare soil and short 
grassland) were difficult to separate, but discrimination between bushes and trees was high 
(Asselman 2001, Cobby et al. 2001, Asselman et al. 2002, Dowling and Accad 2003). In this 
paper LiDAR will be used both for the technique and for the instrument used.
Based on the above, the IS and LiDAR data seem complementary. As suggested by Leckie et al. 
(2005), the use of both data types in one classification could be synergetic. This idea is called data 
fusion. Pohl and van Genderen (1998) describe three types of data fusion: data-fusion at the 



decision level, at the feature level and at the pixel level. When datasets are fused at the decision 
level, they are processed completely separately and only the end results (say  maps) are “fused” by 
combination in a GIS. Ordinary  GIS overlays already qualify for this level of data fusion. At the 
feature level, the datasets are processed individually, resulting in unidentified features. The 
identification of the features is done by combining feature information of the two datasets. Finally, 
at the pixel level, the datasets are fused immediately  and processed together to produce the end 
result.
Hill et al. (2002) and Hill & Thompson (2005) used CASI, HyMap and LiDAR data for landscape 
modelling applying a parcel-based approach in an English field-based landscape configuration. 
Although the data was pixel compatible after pre-processing, the data fusion took place at the 
feature level. The parcels were segmented using CASI. The parcel spectral properties were used 
for identification. LiDAR data were used to calculate additional parcel properties and assisted the 
segmented CASI data in identifying different woodland types. This approach worked well in a 
patchy cultural landscape but seems not applicable for classifying heterogeneous patches of 
natural vegetation.
Hudak et al. (2002) estimated canopy  height at unsampled locations by  LiDAR based on the 
statistical and geostatistical relations between the LiDAR data and a Landsat ETM+ image at 
sample locations. In this process, the canopy height is extracted from the LiDAR data and is 
subsequently correlated to the ETM+ image. This is considered a feature level data fusion.
Currently no results have been published combining and processing IS and LiDAR data at  the 
pixel level. Fusing the data from these two sensor types could contribute to vegetation maps with 
classes separated on vegetation type and vertical structure as required for modern nature and river 
management. The idea of transforming the raw LiDAR data into one or several data layers, added 
as extra layer(s) to an IS image, seems a straightforward way to fuse datasets. To extract  features, 
the fused data can be processed by standard classification algorithms, thus making the process 
readily available and cost effective.
The aim of this paper is to combine IS and LiDAR data by data fusion at the pixel level to 
improve the classification accuracy  of an 8-class and 5-class set of natural vegetation types. The 8-
class set represents the vegetation classes relevant for nature and river management, while the 5-
class set serves as a minimum set to estimate hydraulic resistance for river management purposes. 
The classification results of the fused data are compared to classification results of IS only  and 
LiDAR only of the same dataset.

2. Materials and Methods

A case study area was chosen along the Waal River; one of the main branches of the river Rhine in 
the Netherlands (Figure 1). The nature area consists of former fields and grasslands, which have 
been bought from farmers through time. Between 1990 and 1994 the nature area was formed and 
ever since the site has been left to develop itself under a regime of natural grazing. The surface 
area of the research area is 5.8 hectares and it contains mixed patches and ecotones, i.e. the 
transitions between plant communities, of grass, herbaceous vegetation, some bushes and part of a 
40 year old softwood forest (Bekhuis et al. 1995, Sýkora 2002).

Insert Figure 1.



Table 1 lists the characteristics of the CASI data set. To cover the whole study area, two CASI 
flight lines were mosaiced using the mosaic function in Erdas Imagine (Erdas, 2005). The original 
geo-rectification of the CASI data proved insufficiently accurate (error of about 5 to 8 m or 3 to 4 
pixels) and was re-georectified using a standard photogrammetrically generated river map of scale 
1:1000 with planimetric error of 0.06 m (Anonymous 2003). To conserve the original DN values, 
nearest neighbour resampling was applied. The geo-rectification resulted in a root mean square 
(RMS) error of 2 m in x- and y-direction, i.e. about one pixel.
The LiDAR dataset of the study area was flown on 12th of October 2001 using an ALTM 2033 
scanner. The first return pulse was recorded. This first return may be the result of a hit of the laser 
pulse somewhere on a vegetation layer (or even the top) or a hit  on the ground if no vegetation is 
hit. The dataset was delivered as an ASCII file containing xyz coordinates. The mean density in 
the resulting dataset is about 1 point per square meter. The approximate elevation error is 0.07 m 
and the planimetric error less than 0.5 m. The elevation error was determined using standard test 
surfaces (total 270m2) close to the research area (Brügelmann 2003). The planimetric error was 
determined using building perimeters from the same standard river map as used in the CASI geo-
rectification (Anonymous 2003).
Insert table 1.
Field data on the floodplain vegetation were collected in August 2002 by botanists as part of a 
long term monitoring programme. The vegetation differences between the field data collection 
period (August 2002) and the date of flight (August and October 2001) can be considered 
negligible (Sýkora 2002). Within the monitoring programme, the plots were classified into 24 
plant communities in accordance with the communities described by  Schaminée et al. (1995) 
using TWINSPAN (Hill 1979). Additional bush and forest plots were added bringing the total to 
405 plots in 25 classes which were used for classification and accuracy assessment.
The distinction of 25 vegetation classes is unnecessary  for river management purposes and large-
scale nature management. Furthermore, the number of plots is too low for a statistically sound 
classification into 25 classes. Therefore, the 25 original vegetation classes were regrouped into 
two related classification sets based on increasing vertical structure (Table 2). The vertical 
structure of vegetation is most important because it relates to the hydraulic resistance of the 
vegetation (van Velzen et al. 2003). The 5-class set (classes A to E) serves as a minimum set  to 
estimate hydraulic resistance for river management purposes. In this set, herbaceous vegetation 
represents a large group of plant communities and is divided over classes B and C. Class B 
contains low herbaceous vegetation and class C contains higher herbaceous vegetation. The 8-
class set provides more detail in the lower vegetation types and can be considered a minimum set 
for nature management purposes. 

Insert table 2.

The classification procedure consisted of the following steps: (1) pre-processing of the LiDAR 
data and subsequently the fusion of the CASI and LiDAR data; (2) classification of the LiDAR 
data, the CASI data and of the fused image, and (3) evaluation of the results. These steps are 
explained in more detail below. Step 1 is illustrated in a flowchart (Figure 2).

Insert Figure 2



Pre-processing of LiDAR data and fusion with CASI data

A digital elevation model (DEM) was created and subtracted from the LiDAR data (vector points) 
to correct for variations in ground level. Per 2x2m pixel the lowest point in an area of a 10 metre 
search radius was chosen to represent the ground level and used to create the DEM. After 
subtraction of the DEM, the resulting LiDAR data was assumed to reflect variations in vegetation 
height only  (step A in Figure 2; Figure 3a). The vegetation’s vertical structure was described using 
the following statistics derived from the vegetation height points: minimum, maximum, mean, 
median, range and standard deviation (step B in Figure 2). These statistics (or ‘textural bands’) 
were computed for every 2x2m cell in the research area (matching the CASI raster cell size), using 
a ‘moving window’ operation (Figure 3a and 3b, Lillesand and Kiefer 2000, ESRI 2005). This 
yielded 6 LiDAR based rasters each containing one textural band, these bands were stacked (step 
C in Figure 2).
The number of LiDAR-points in the ‘moving window’ is defined by the size of the search radius 
(Figure 3b). If the radius is chosen too small, it will result in insufficient data points to calculate 
the required statistics. If it is chosen too large, it  will smoothen the image detail. To test this, four 
stacked LiDAR raster sets were derived using search radii of 2 m, 3 m, 4 m and 6 m, respectively. 
The average number of LiDAR points per radius ranged from 13.8 (± 8.8 SD) for 2 m to 81.3 (± 
51.9 SD) for 6 m. The variances in LiDAR point  density are relatively high due to high 
concentration of LiDAR points in small borderlines of the flight paths where points per column 
range up to 160 for the 2 m search radius.
The data-fused image was created by  stacking the layers in Erdas Imagine (Erdas 2005). Before 
stacking, the grid size of the CASI and pre-processed LiDAR data was reduced to 0.5 m to 
minimise the potential impact of a grid shift during the stacking procedure.
The fused images contained the 10 CASI bands and the 6 LiDAR texture bands and the cell size is 
0.5 m. Four final fused-images were tested of which only the LiDAR bands differed: CASI fused 
with  LiDAR bands derived from point statistics in a search area radius of 2 m, 3 m, 4 m and 6 m.

Classification

Maximum likelihood classification (MLC) was chosen to classify  the data (Lillesand and Kiefer 
2000, Thomas et al. 2003). MLC is a proven and robust method which gives a straightforward 
approach to classify and compare the different generated images and has been used previously to 
classify texture, e.g. by Liapis et al. (1997), Maas (1999) and Haack and Bechdol (2000). 
All the bands of the fused image were normalised prior to classification by using a standard 
deviation stretch of 2 times the standard deviation (Mather 2004, Erdas 2005). Figure 4 shows an 
excerpt of the normalised fused image (LiDAR search radius 4 m) with the maximum vegetation 
height in red, green reflectance values in green and blue reflectance values in blue.

Insert figure 4.

The field data were split in two halves by spatially stratified random selection, resulting in 
separate training and testing sets for the MLC procedure. The training set was used to produce the 
signature files for MLC. Pixels within 3m of the centre point of the botanical field plots (3x3m) 
were considered representative for the plot. The test set was used to derive error matrices, to 
calculate overall accuracies (Kappa Average, overall percentage) and to produce maps. MLC was 
performed in Erdas Imagine (Erdas 2005).



Evaluation

The quality  of the classification results was evaluated using conventional indicators such as error 
matrices, overall accuracy, Kappa and the Kappa-Z-test (Congalton 1991, Congalton 1999, Mather 
2004). Furthermore, a new indicator was used which is referred to as the balance index (BI). The 
BI accounts for the fact that a misclassification between thematically distant classes (e.g. bare soil 
and forest) is considered worse than confusion of neighbouring classes (e.g. grass and herbaceous 
vegetation). The BI is calculated as the product of an error matrix (M) and a balance matrix (V) 
(Equation 1). If the error matrix is an n x n matrix, the balance matrix is an n x n matrix with 
maximum values (equalling n-1) on the top-left to bottom-right diagonal. The balance matrix is 
used to value the amount of misclassification and its values decrease towards the top-right and 
bottom-left corners (Equation 1). The product of the error and balance matrices is normalised by 
the maximum score possible, i.e. n-1 times the number of test plots (Equation 2). The result is a 
value between 0 and 1, where a value of 1 indicates a perfect classification and a value of 0 
indicates the worst possible classification from the thematic distance point of view.

 (1)

 (2)

The BI is only applicable when, as in Table 2, the vegetation classes are ordered according to their 
vertical structure: from bare soil and pioneer vegetation (class A) to forest (class E), or any other 
principle of order. Only then the distance between a misclassified pixel and the diagonal is related 
to the amount of misclassification. This misclassification is valued by  using the balance matrix. 
Two examples are given. Error matrices A and B both have an overall accuracy  of 80 percent, i.e. 
40 out of 50 test plots accurately classified, and only differ in the amount of misclassification. 
Vn=5 is the Balance matrix for a 5x5 error matrix, it values the classified pixels according to their 
distance from the diagonal. The Balance Indexes for A and B are computed as shown below; 
values for BIA and BIB are respectively 0.95 and 0.90.



3. Results

Tables 3, 4 and 5 show the error matrices for the classification into 8 vegetation classes using only 
the CASI bands, only the LiDAR bands (of the 4 m search area radius image), and using both 
CASI and LiDAR bands, respectively. The columns show the distribution of the ground truth plots 
over the vegetation classes. The rows show the composition of the MLC results. Producers 
Accuracy and Users Accuracy are indicated as respectively PA and UA. The PA summarises the 
probability  of a vegetation plot being correctly classified. The UA represents the probability of a 
classified pixel belonging to the class it represents (Congalton, 1991). Error matrix results for the 
images based on 2 m, 3 m and 6 m search area LiDAR statistics are not separately given but their 
results are summarised in Tables 6 and 7. Tables 6 and 7 show the Kappa index per class and the 
overall indexes Kappa Average, accuracy percentage and balance index for the 8-class and 
condensed 5-class set, respectively.

Insert Tables 3 to 7.

The overall CASI results were average (8-class set) to good (5-class set) with overall accuracies of 
57.8% and 74% (Tables 6 & 7). CASI classification results were average to good for classes A, D 
and E (Tables 3 & 6). PA was low for classes B1 and B2; their plots were distributed over classes 
B1 to C2. UA was lowest for class B1.
Overall LiDAR results of the 8-class set and the 5-class set were poor (Tables 4 & 6). The 
confusion between the classes with smaller vegetation structure (A to C2) was large, clearly 
represented in the low class-specific Kappa values (Table 6) and the LiDAR (4 m) UA of class A 
(17%) and C1 (17%; Table 4). Structurally well-defined classes like bush (D) and forest (E) show 
good results.
For some classes all test  plots are misclassified, i.e. zero on the diagonal in the corresponding 
error-matrices, this results in the negative class-specific Kappa values found in Table 5.
When comparing the results for the different LiDAR sets, the overall accuracy and Kappa index 
show a downward trend with an increasing search radius. The class-specific Kappa indexes show 
different trends per class: classes B1 and B2 have their optimum in the 3 m set, B3 and C2 have 
their optimum in the 2 m set and C2 and D in the 4 m set. The balance index is highest for the 3m 
set.



The overall results of the fused CASI and LiDAR data are average for the 8-class set (highest 
overall accuracy 63.5%) to good (81%) for the 5-class set. In all cases, the fused image had higher 
Kappa and overall accuracies than the CASI, but these differences were not significant at p < 0.01 
(Kappa Z-test). For the 8-class (4m) and 5-class set, the differences were significant at  p<0.26 and 
p<0.19 respectively. The fused image always performed significantly better than LiDAR (p<0.01).
Generally, the results in the fused CASI and LiDAR error matrices were more balanced when 
compared to the error matrices of LiDAR and CASI alone, i.e., the confusion with distant classes 
decreased as shown in the balance index (Tables 6 & 7). The final maps for the 8-class set are 
shown in Figure 5. The heterogeneity of the area can be clearly recognised in these maps.
Figure 6 illustrates the performance in shadows. When using CASI only, the shadows are 
classified as Forest or Bush. In the fused image result, the shadows are classified as lower 
vegetation.

Insert Figure 5.
Insert Figure 6.

4. Discussion

In this study, LiDAR and CASI data were combined using a pixel-based method. The principle of 
pixel-based fusion worked well for this CASI and LiDAR dataset. Although the approach can be 
refined, the transformation of the LiDAR data into a layered grid containing LiDAR point 
statistics proved to be useful. The LiDAR data became an integral part of the image (Figure 4) and 
were easily used in existing classification algorithms and GIS applications, making it a readily 
available, labour efficient, reliable and cost effective method.
The LiDAR only  approach used in this study performs well as a 3-class instrument: bare soil, 
grasses and herbaceous vegetation (A to C2) as one class, and bush (D) and forest  (E) as another 
two classes. Confusion is high between classes with a relatively  low vegetation structure. 
Asselman (2001) and Asselman et al. (2002) reached a similar conclusion for grassland 
vegetation.
The LiDAR results in Table 6 show that an increase of the search radius leads to a decrease of the 
overall accuracy. This can be explained by the smoothening effect that occurs at larger search 
radii. The accuracy of the classification of the individual vegetation classes, indicated by the class-
specific Kappa index, does not always decrease with an increasing search radius. The vegetation 
classes have an optimum that  seems related to the spatial variability within the class. The length of 
the search radius has little influence for bare soil & pioneer vegetation (A) which is relatively 
homogeneous over large areas. Vegetation that is variable on a small scale level is classified best 
using a 2 or 3 m radius (e.g. classes B1-C1: grassland and herbaceous vegetation), but vegetation 
that forms bigger homogeneous patches performs best using a 4 m radius (e.g. C2-D: herbaceous 
& low woody vegetation and bush). Forest patches have lowest kappa for the 2 m search radius 
and perform best at larger search radii.
The CASI data produced much better results than the LiDAR data. The classification accuracies 
obtained in this study (57.8 % for the 8-class set and 74 % for the 5-class set) are comparable to 
previous studies (60 to 80% overall accuracy for classification into 6 to 9 vegetation classes, 
Green et al. 1998, Thomas et al. 2003, Leckie et al. 2005). However, it  should be noted that other 
studies deal with relatively homogeneous vegetation structures (i.e., patchy fields) when compared 
to the heterogeneous floodplain vegetation used in the study at hand. For the classes bush and 



forest, the CASI data produced less accurate results than the LiDAR data. To estimate the 
hydraulic resistance for river management, the discrimination of bush and forest is of major 
importance. Geerling and Van den Berg (2002) also showed that spectral discrimination of bush 
and forest with CASI can be difficult, probably  because both classes mainly consist of Willow 
(Salix spp).
From the LiDAR perspective, adding spectral data to the LiDAR data improved the results by 
more than 25% in the 8-class set to a 40% improvement in the 5-class set. Especially 
discrimination of low vegetation such as grasses and bare soil improved. The higher balance index 
indicates that confusion with distant classes diminished.
From the CASI perspective, adding LiDAR data to CASI data improved the overall classification 
accuracy  up to 7 percent. Especially  the classes with a well-defined structure, such as bush and 
forest, were classified more accurately when compared to CASI only. These are classes with a 
high hydraulic resistance and, as such, very important for the river manager. The results of our 
study are in line with Mundt et al. (2006) who found an improvement of 14% accuracy in the 
classification of sagebrush (Artimisia tridentate Spp. wyomingensis) after adding LiDAR to 
spectral data.
A common problem encountered in the classification of spectral data is misclassification due to 
shadows (Leckie et al. 2005). Figure 6 illustrates that this misclassification is reduced after fusion 
of the CASI and LiDAR data. It can be concluded that the classification of shady areas in the 
fused image is dominated by  the added height information contained in the LiDAR texture bands, 
instead of the spectral information contained in the CASI bands.
The 2 m LiDAR set resulted in the highest  overall accuracy and Kappa indexes of all LiDAR sets 
(Table 6). Remarkably, the results of its fusion with the CASI data were lowest. The 4 m LiDAR 
set produced the best results after fusion. These findings indicate that the classification of a fused 
image is not simply  the sum of the separate CASI and LiDAR classifications. The MLC calculates 
the class probabilities for each pixel using the multivariate normal distribution fitted over the 
training set, with the values of the CASI and/or LiDAR bands as input values. The addition of 
extra bands to a pixel can influence the classification in different ways. If the extra bands have a 
low distinctive power, the calculated class probabilities will more or less remain unchanged. If the 
extra bands have a high distinctive power, the calculated class probabilities will increase for the 
pixel values falling within the range of high probability density, but will decrease for pixel values 
outside this range. However, a decrease or increase in class probability does not automatically 
imply that a pixel will be classified in a different class. This also depends on the change in 
probability  for the other classes because a pixel is classified in the class with the highest 
probability. Addition of extra bands will only result in a different class if the new probability 
calculated for the original class is exceeded by that of another. This combination of changing 
(absolute) class probabilities and classification according to relative probabilities makes it 
particularly difficult to predict the classification results of the fused image based on the results of 
the separate CASI and LiDAR images. Nonetheless, some tendencies can be observed. The results 
in Table 6 indicate that the LiDAR bands have a large distinctive power for high vegetation 
classes, i.e. classes D and E. The CASI bands have a relatively large distinctive power for classes 
A, B3 and C1. Classes B1, B2 and C2 performed relatively poor in the CASI set  and produced 
variable results in the 2, 3, 4 and 6 m LiDAR set. These varying LiDAR results seem to provide 
an explanation for the fact that the fused 2 m LiDAR image performed worse than the fused 4 m 
LiDAR image. In the 2 and 6 m LiDAR sets, classes B1, B2 and C2 performed worst; the kappa 
indexes of zero or lower indicate that the average class probability  of the pixels for their true class 



is lower than for the other classes. The 3 m LiDAR image performs well for classes B1 and B2, 
but this is counterbalanced by a bad performance for class C2. The 4 m LiDAR performs 
relatively well in all three classes, which may explain why the fused image with the 4 m LiDAR 
has the highest  overall classification accuracy. Remarkably, classes B1 and B2 perform best in the 
3 m LiDAR image before fusion, but after fusion they  perform best in the fused image with the 4 
m LiDAR. This illustrates that the performance of the fused image cannot easily be predicted 
based on the performance of the separate CASI and LiDAR images.

Classifier

In this study, a maximum likelihood classifier was used, but there are several other options 
available. A test  with the same dataset using neural network and CART decision tree classifiers 
produced similar results (Psomas 2003). Using another part of the same CASI flight line, 
promising results were generated while developing new unsupervised classification algorithms, 
but these results were not tested against ground data (Tran et al. 2003). Another option is 
segmentation (Hill et al. 2002, Hill and Thompson, 2005). This approach is suitable for 
classification of large-scale patchy landscapes, but it seems less suitable for small-scale 
heterogeneous vegetation as found in the case study area. The ‘soft borders’ or transitions between 
plant communities encountered within semi-natural vegetation are difficult to segment. Therefore, 
a pixel-based approach seems more appropriate.

Input data

The LiDAR only results were relatively  poor in the lower vegetation types. Firstly, a higher 
LiDAR point density could improve the classification because a better discrimination in classes 
with similar height is expected as the 3D structure is better recorded. In addition, when using 
higher density data, the search area (Figure 3) can be optimised for different vegetation types 
because the number of LiDAR points in smaller search areas will be sufficient for reliable 
statistics. However, the collection of high density LiDAR data may be constrained by the footprint 
size, which currently equals 25 to 40 cm for a small footprint (Reutebuch 2003).
Secondly, LiDAR signals are often reflected multiple times because of its footprint. The last return 
pulse is the reflection of that part of the beam which has travelled the longest distance, hence is 
more likely  to be a ground level point. The LiDAR dataset used in this study contained only first 
return pulse values and was used for DEM and vegetation classification. The combined use of first 
and last return pulses can be expected to improve the quality  of the DEM  and the classification 
results. Especially  for the detection of smaller objects, the accuracy of the DEM becomes more 
important. The generation of accurate DEMs out of LiDAR datasets is subject of extensive study 
(Cobby et al. 2001, Reutebuch et al. 2003).
Before classification a 2 times the standard deviation stretch normalisation was applied to the 
CASI and LiDAR fused images due to the difference in range of digital number between the CASI 
and LiDAR data. The visualisation of the images improved after this. Upon classifying a none 
normalised dataset with MLC, the results were identical. The MLC method is insensitive to 
differences in ranges as it calculates the class probabilities for each pixel using the multivariate 
normal distribution fitted over the training set. When using other classification algorithms, 
normalisation can influence the results. An example is classification with neural networks; the 
bands are normalised by pre-processing functions before the neural model is trained (Psomas 
2003).



As mentioned in the Materials and Methods, the CASI data used consists of data from two flight 
lines. The use of multiple flight lines can have effects on the classification results due to 
differences of atmospheric condition, imaging condition and illumination geometry between these 
flight lines. Cross flight line radiometric normalisation can improve the results. In this research, 
one of the two CASI flight lines covers about 95% of the research area and contains 403 of the 
405 plots used for training and testing. Effects on the results are considered minimal.

Differentiation of input

Classification of vegetation was realised in one step, but a natural landscape consists of elements 
of different scale. In the case study  area, forest typically is of large scale and natural grasslands are 
of small scale because they contain heterogeneous patches of grasses and herbs. The area needed 
for representative sampling varies accordingly: the plot size needed for a representative area of 
forest typically is 10-30 metre, while the plot size of grassland typically  is 2-5 metre. As shown, 
the ML classifier classifies the major differences between forest, bush, and small-scale vegetation 
when using the LiDAR data only, i.e. the LiDAR image results in 3 broad classes. More subtle 
differences might be too small for a single classification step. Based on the above, the landscape 
could be divided into large-scale and small-scale elements, and these elements could be treated 
separately  in ML classification. This could improve the discrimination between smaller 
differences. This approach of separating the landscape in different  scale levels and subsequently 
the use of ML classification is in fact a mix of a decision tree and ML classification.

Geometric accuracy

Geometric accuracy is of major importance when two independently acquired data sources are 
fused (Hill and Thompson 2005, Mundt et al. 2006). In this study the planimetric accuracy  of the 
LiDAR data was higher than of the CASI data, which is a general problem when combining high 
resolution spectral and LiDAR data. For accurate results the use of combined sensors, acquiring 
multi sensor data at the same time, and so minimising co-registration errors, is highly favoured. 
Another aspect favouring combined sensors is resampling of input data. While preparing and 
fusing the two different datasets, the CASI data was resampled during geo-rectification and 
stacking. Nearest neighbour resampling was chosen, so the original DN values of the CASI 
remained unaltered and because of its straightforwardness. Other resampling methods such as 
bilinear interpolation and cubic convolution, compute a DN value out of neighbouring pixels and 
so change the measured DN values but  yield a visually  smoother image (Mather 2004). As there 
are drawbacks to every resampling method, the number of times an image is resampled should be 
minimised to preserve image detail and reduce possible negative effects on the image 
classification results. Recording images the same time eliminates at least one of the resampling 
steps.

Reliability of botanic field data

The remote sensing community often regards botanic field data as hard facts. However, there are 
two sources of subjectivity enclosed in the botanic field data:
The botanic classification of plant species into 25 different plant classes was originally  developed 
for plant science purposes and is subsequently  used in nature conservation and management. It is 
inevitably based on arbitrary borders between classes. This botanic classification might not be the 
optimum for remote sensing purposes (Thomas et al., 2003). The relation between botanic 
classification of plant species and classification of remotely sensed vegetation is topic of ongoing 
research.



The botanic field data used in the present study originates from field plots. The plots were 
classified (Hill 1979) on the basis of the plot’s plant composition until they could be assigned to a 
botanic class described in Schaminée et al. (1995). Obviously, the assignment of classes to field 
plots involves some level of expert judgement by the botanist. Especially  when a plot contains a 
mixture of different vegetation types, the assigned class will not always accurately reflect the 
heterogeneous nature of the vegetation within a plot.

Data collection

Collecting LiDAR data for vegetation purposes solely is expensive. However, lower density 
LiDAR is already systematically being used for the creation of DEMs. Combination of these 
purposes will make application of LiDAR for vegetation studies more feasible. For CASI images, 
a similar argument counts. If future digital scanners combine high resolution and Infra Red data, 
these images can be used as a substitute for aerial photographs (which are applied in plan 
processes of the river manager) and at the same time provide data for vegetation classification.

5. Conclusions

Fusion of CASI and LiDAR data can improve the classification of floodplain vegetation. Firstly, 
the overall accuracy is higher and the classification of shadows has improved. Secondly, the fused 
dataset classification shows diminished confusion with distant classes, i.e. the results become 
more balanced. This reduces errors in overall vegetation roughness when the maps are used as 
input in hydrological models. The best  classification results of the fused data do not necessarily 
follow from the combination of separate sets with highest overall accuracy. They  depend on the 
per-class added value of the probability distribution. It is expected that the classification results 
can be further improved by (1) using higher density  LiDAR data, (2) the combined use of first  and 
last return pulses, (3) the division of the landscape into large-scale and small-scale elements and 
subsequent classification and (4) optimising the botanic clustering of plant communities. The 
balance index proved to be a useful indicator for classification quality which takes into account 
the distance between classes.
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Figures

Figure 1. The Location of the study area in the Netherlands along the Waal River, a Rhine 

branch.

Figure 2. Flowchart showing the general procedure for pre-processing of the raw LiDAR data 

and the pixel based fusion of CASI and LiDAR data.



Figure 3a. Example of LiDAR point clouds of training plots of classes Bush (D) on left and 

Forest (E) on the right. Points fall into a circular search area which are depicted as black 

circles overlaid on the DEM.

Figure 3b. Preparation of LiDAR texture statistics min, max, mean, median, standard 

deviation and range. The scattered dots represent the LiDAR point cloud from above. The grid 

is according to the CASI grid and the circles represent the search area.



Figure 4. Example of the fused CASI and LiDAR image. Of the 16 band image (10 CASI and 

6 LiDAR texture bands) 3 bands are shown, indicating the potential of data-fusion. RGB 

values correspond to maximum vegetation height, and reflectance of band (549-559 nm) in 

green and the band (437-447 nm) in blue. The bushes (dark red) and trees (bright red) stand 

out in this band combination. The light blue-ish line is a sandy path.



Figure 5.  Maps of classification results LiDAR (4m), CASI, and Fused CASI LiDAR (4m).



Figure 6. Two examples of classification of shadows. On the left, a true colour image (CASI 

bands 615-625 nm (red), 549-559 nm (green) and 437-447 nm (blue)) on which the shadows 

are outlined in red. The middle image shows shadows mainly classified as trees in the CASI 

classification . On the right, shadows classified using the fused CASI LiDAR data appear 

partly as tree (covered in shadow) and partly as surrounding lower vegetation.



Table 1: Specification of the Compact Airborne Spectral Imager (CASI) data used.

Date of Flight 15 august 2001

Flight elevation 1500m

Swath width 1536m

Pixel size*) 2m

Number of spectral bands 10

Spectral range 437-890 nm
*) The original pixel size was 3m but resampled to 2m by the imaging company; the original 3m data was unavailable for this 
study

Table 2. Classes used for classification. The plant communities are used from Sýkora (2002) and described in 
Schaminée et al. (1995). Some plant communities are preceded by RG which is Romp Gemeenschap (Dutch) 
meaning “fragmented community”. When plant communities are preceded by RG, this means that the 
communities found did not always contain all community species, i.e., were not fully saturated, and sometimes 
consisted of overlapping communities.

5 class set 8 class set Plant communities

A

Bare and pioneer 
communities

A Chenopodietum rubri

Fragmented Medicagini-Avenetum pubescentis / Fragmented Bromo inermis-Eryngietum 
campestris

Lolio-Potentillion anserinae / Fragmented Bromo inermis-Eryngietum campestris

RG  of Cirsium arvense en Polygonum amphibium [Artemisietia vulgaris]

B

Grasses and 
herbaceous 
vegetation

B1 Fragmented Medicagini-Avenetum pubescentis / Bromo inermis-Eryngietum campestris with 
Cynodon dactylon

Fragmented Ranunculo-Alopecuretum geniculati with Trifolium repens

RG of Cynodon dactylon + Euphorbia esula [Sedo-Cerastion] / Fragmented Bromo inermis-
Eryngietum campestris

B2 Fragmented Arrhenatheretum elatioris

Fragmented Medicagini-Avenetum pubescentis / Bromo inermis-Eryngietum campestris with 
Oenothera erytrosepala and Sedum acre

Fragmented Ranunculo-Alopecuretum geniculati

B3 Bromo inermis-Eryngietum campestris

Bromo inermis-Eryngietum campestris / fragmented Medicagini-Avenetum pubescentis

Fragmented Medicagini-Avenetum pubescentis / Bromo inermis-Eryngietum campestris with 
Euphorbia cyparissias and Medicago falcata

Rorippo-Oenanthetum aquaticae

C

Herbaceous and 
low woody 
vegetation

C1 Fragmentair Ranunculo-Alopecuretum geniculati

Ranunculo-Alopecuretum geniculati

RG of Brassica nigra [Phragmitetea] / Fragmented Ranunculo-Alopecuretum geniculati

RG of Calamagrostis epigejos and Epilobium hirsutum [Galio-Urticetea]

RG of Mentha aquatica and Lycopus europaeus [Narsturtio-Glycerietalia]

C2 Fragmented Ranunculo-Alopecuretum geniculati / RG of Rubus caesius [Phragmitetea]

RG of Rubus caesius [Galio-Urticetea]

RG of Urtica dioica [Galio-Urticetea]

D
Bush

D RG Sambucus nigra [Galio-Urticetea]

RG of Ulmus minor [Galio-Urticetea]

E
Forest

E RG of Urtica dioica [Salicion albae]



Table 3. The error matrix of the classification using only the CASI bands of the fused image, based on a separate 
test set. Producers Accuracy (PA) and Users Accuracy (UA) are shown.

Reference data

Classified data A B1 B2 B3 C1 C2 D E UA

A 11 2 0 2 2 0 0 0 65%

B1 0 8 5 7 4 3 0 0 30%

B2 0 0 7 8 0 2 0 0 41%

B3 3 6 5 31 0 3 0 1 63%

C1 0 2 3 2 12 1 1 0 57%

C2 0 5 7 1 3 13 3 0 41%

D 0 0 1 2 0 2 12 0 71%

E 0 0 0 0 0 0 3 28 90%

PA 79% 35% 25% 58% 57% 54% 63% 97%

Table 4. The error matrix of the classification of only the LiDAR bands (in the fused image with search area 4m 
radius for LiDAR points), based on a separate test set. Producers Accuracy (PA) and Users Accuracy (UA) are 
shown.

Reference data

Classified data A B1 B2 B3 C1 C2 D E UA

A 6 6 4 15 3 1 0 0 17%

B1 0 1 2 0 0 0 0 0 33%

B2 4 2 5 1 0 3 0 0 33%

B3 1 1 5 4 0 2 0 0 31%

C1 3 13 12 33 16 16 0 0 17%

C2 0 0 0 0 2 2 3 0 29%

D 0 0 0 0 0 0 16 1 94%

E 0 0 0 0 0 0 0 28 100%

PA 43% 4% 18% 8% 76% 8% 84% 97%

Table 5. The error matrix of classification of both CASI and LiDAR bands (in the fused image with search area 
4m radius for LiDAR points), based on a separate test set. The Producers Accuracy (PA) and Users Accuracy 
(UA) are shown.

Reference data

Classified data A B1 B2 B3 C1 C2 D E UA

A 11 2 0 2 2 0 0 0 65%

B1 0 6 1 0 1 0 0 0 75%

B2 0 1 15 7 0 4 0 0 56%

B3 3 10 5 40 3 2 0 0 63%

C1 0 3 5 4 13 13 0 0 34%

C2 0 1 2 0 2 4 3 0 33%

D 0 0 0 0 0 1 16 0 94%

E 0 0 0 0 0 0 0 29 100%

PA 79% 26% 54% 75% 62% 17% 84% 100%



Table 6. The per-class accuracies (Kappa index) and overall accuracy indexes (Kappa Average, Percentage and 
Balance) for all 8-class classifications. The distance value between brackets (2, 3, 4 and 6 m) refers to the search 
area radii used to compute the LiDAR statistics from the LiDAR points.

CASI LiDAR 
(2m)

Fused 
(2m)

LiDAR 
(3m)

Fused 
(3m)

LiDAR 
(4m)

Fused 
(4m)

LiDAR 
(6m)

Fused 
(6m)

Class Accuracy (Kappa)

A 0.62 0.13 0.62 0.11 0.62 0.11 0.62 0.11 0.62

B1 0.21 0.00 -0.12 0.44 0.44 0.25 0.72 -0.12 0.25

B2 0.32 0.00 0.62 0.26 0.40 0.23 0.49 0.23 0.40

B3 0.51 0.27 0.41 0.25 0.49 0.08 0.51 -0.34 0.58

C1 0.52 0.22 0.23 0.10 0.27 0.08 0.27 0.04 0.24

C2 0.33 0.00 0.44 -0.13 0.36 0.19 0.25 0.06 0.25

D 0.68 0.84 0.84 0.93 0.88 0.94 0.94 0.68 0.79

E 0.89 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Overall indexes

Kappa Average 0.51 0.36 0.52 0.33 0.55 0.29 0.57 0.23 0.53

Accuracy % 57.8 44.6 59.7 42.2 61.6 37.0 63.5 31.3 59.7

Balance 0.871 0.835 0.905 0.852 0.907 0.836 0.910 0.821 0.886

Table 7. The per-class accuracy (Kappa index) and overall accuracy (Kappa Average, Percentage and Balance) 
for the CASI, LiDAR (4m) and Fused CASI LiDAR (4m) 5-class classification. The distance value between 
brackets ( 4 m) refers to the search area radius used to compute the LiDAR statistics from the LiDAR points.

CASI LiDAR (4m) Fused (4m)

Class Accuracy (Kappa)

A 0.62 0.03 0.62

B 0.69 0.04 0.64

C 0.44 0.39 0.57

D 0.52 0.87 0.88

E 0.89 1.00 1.00

Overall Indexes

Kappa Average 0.63 0.28 0.71

Accuracy % 74.4 41.2 80.6

Balance 0.929 0.835 0.948


