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Abstract

With advances in brain-computer interface (BCI) research, a portable few- or single-channel BCI system has become
necessary. Most recent BCI studies have demonstrated that the common spatial pattern (CSP) algorithm is a powerful tool in
extracting features for multiple-class motor imagery. However, since the CSP algorithm requires multi-channel information,
it is not suitable for a few- or single-channel system. In this study, we applied a short-time Fourier transform to decompose a
single-channel electroencephalography signal into the time-frequency domain and construct multi-channel information.
Using the reconstructed data, the CSP was combined with a support vector machine to obtain high classification accuracies
from channels of both the sensorimotor and forehead areas. These results suggest that motor imagery can be detected with
a single channel not only from the traditional sensorimotor area but also from the forehead area.
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Introduction

The brain-computer interface (BCI) is a new communication

scheme that depends on neither the brain’s normal output nerve

pathways nor the muscles. Using a BCI system, one can directly

translate brain activities into sequences of control commands for

an output device such as a computer application [1,2]. Motor

imagery is a mental process by which an individual rehearses or

simulates a given action in his/her mind but without actually

producing movement; it is assumed to involve similar cortical

areas that are activated during actual motor preparation and

execution [3]. Motor imagery has been widely used as a major

approach in BCI studies [4,5].

In most BCI research, whole-head multi-channel data are used

to produce high accuracy. However, the large number of

electrodes required implies a longer time spent in channel

preparation. In addition, the BCI system may be expensive as

many amplifiers are needed. As BCI research has advanced,

portable systems with fewer channels have become essential in

applying BCIs to everyday life and home applications. The

preparation of the electrodes involves putting gel or paste on the

scalp and fitting an electroencephalography (EEG) cap on the

head. Additionally, the skin needs to be prepared to deal with the

hair under the electrodes. By comparison, in long-term daily-life

BCI usage, it is much easier to fit EEG electrodes on the forehead

area because there is no hair in this area. Additionally, it is

inconvenient and uncomfortable to place multiple electrodes on

the scalp. A realistic solution is to place a few electrodes or a single

electrode over the motor cortex or, since it is easier and more

comfortable to place electrodes on the forehead to get the motor

imagery signal from the forehead if possible. Thus, in this study,

we hypothesize that if high classification accuracy can be obtained

in motor imagery tasks using only a few EEG channels or a single

EEG channel from forehead electrodes, then the use and

application of a motor-imagery BCI system will be much easier

and more convenient.

Our hypothesis must address how to extract adequate and

appropriate features of motor imagery from a system comprising

few or a single channel. The common spatial pattern (CSP)

method is commonly used for effective feature extraction [6–9].

The main idea of CSP method is to use a linear transform to

project multi-channel EEG data into a low-dimensional spatial

subspace with a projection matrix, of which each row consists of

weights for channels. However, CSP can only be effectively used if

there are many electrodes available [10]. Therefore, it is not

appropriate to use CSP for a few- or single-channel system.

Some previous research has focused on single-channel electro-

corticography BCI [11]. Müller-Putz et al. reported success in

detecting foot motor imagery (one-class) employing single-channel

EEG [12]. Pfurtschellers group [13,14] used one Laplacian

channel (signals from the surrounding electrodes were used) to

detect motor imagery. Some multi-channel BCI research has also

attempted single-channel analysis, but the signals from the

remaining channels were used during the analysis [15,16].

In this paper, we propose a method of using only single-channel

EEG data to classify four-class motor imagery. We first decompose

the single-channel EEG signal into the time-frequency domain. In

the time-frequency domain, we treat the frequency band as a

variable, and we thus have multi-channel time-varying inputs.

With this transformation, the original single-channel input can be

transformed into a multi-channel input. Therefore, CSP can be
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used in feature extraction. To the best of our knowledge, this

research is the first to address four-class motor-imagery BCI with a

single-channel EEG.

Methods

Data acquisition
In our retrospective study, we used the dataset IIIa from the

2005 BCI competition provided by the University of Technology,

Graz, Austria [17]. All participant records and information used in

this study were anonymous and were not identified in the dataset.

The Ethics Committee of Southeast University approved our study

protocol and methods before we conducted this research. This

dataset comprises 60-channel EEG data for a four-class (left hand,

right hand, foot, and tongue) classification task. The datasets were

recorded for three participants, K3, K6 and L1, using a Neuroscan

EEG amplifier. The left mastoid served as a reference and the

right mastoid as the ground. The EEG was sampled at 250 Hz

and filtered between 1 and 50 Hz. A notch filter allowed

suppression of line noise. Sixty EEG channels were recorded

according to the scheme in Figure 1.

The participants were seated relaxed in a chair with armrests,

and were instructed to perform imaginary movements prompted

by a visual cue. Each trial started with an empty black screen; at

time point t~2 s a short beep tone was presented and a cross +
appeared on the screen to catch the participants attention. Then,

at t~3 s, an arrow appearing for 1.25 s pointed either to the left,

to the right, upwards or downwards. Each position indicated by

this arrow instructed the participant to imagine a left hand, right

hand, tongue or foot movement, respectively. The respective

imaginary movement was to last until the cross disappeared at

t~7 s (see Figure 2). The data set recorded from participant K3

consisted of 9 runs, whereas the data sets from K6 and L1

consisted of 6 runs each. Each of the four cues was displayed 10

times within each run in a randomized order, and each trial lasted

for 7 s. Trials with labels, which indicated that the trials had

visually identified artifacts, were excluded from the input data for

analysis.

EEG electrode selection
Previous knowledge tells us that the C3, Cz and C4 electrodes,

which are over the sensorimotor area, record important charac-

teristics of motor imagery [18,19]. In this study, we selected EEG

data from C3, Cz and C4. Moreover, Fp1, Fpz and Fp2, which

are over the forehead, were also used in this study.

Time-frequency analysis
The purpose of this study was to distinguish four-class motor

imagery only using single-channel EEG data. Therefore, it was

important to extract more information from single-channel data.

In this study, we employed time-frequency analysis to obtain both

temporal and frequency characteristics. By performing time-

frequency analysis, a single time-varying signal can be converted

into multiple time-varying signals at different frequencies. Such a

channel-increasing method allows past multi-channel BCI ap-

proaches, such as the use of CSP, to be applied to the single-

channel case.

Short-time Fourier transform (STFT) analysis, wavelet trans-

form (WT) analysis and Hilbert-Huang transform (HHT) analysis

are the most used time-frequency analysis methods. The time

resolution of the WT is hundreds of milliseconds, with a central

frequency below 20 Hz [20], while past motor imagery research

has reported that the mu (8–13 Hz) and beta (16–25 Hz) rhythms

served as effective classification features to distinguish motor

imagery [21,22]. Further, empirical mode decomposition in HHT

analysis often encounters such problems as mode mixing and

ending effect, and is very sensitive to noise [23]. Compared with

these two methods, STFT analysis has acceptable time and

frequency resolution below 20 Hz. The most important point is

that the calculation cost of the STFT is far lower than those of the

WT and HHT. Thus, the STFT is a reliable method for BCI

analysis. In this study, we used the STFT (spectrogram function of

Matlab’s Signal Processing Toolbox) for time-frequency analysis of

single-channel EEG data, while a 50% overlapped Hamming

window of size 128 samples was used, and the number of FFT

nfft~128 samples (each 100 original samples were zero-padded to

128 points). Since the mu (8–13 Hz) and beta (16–25 Hz)

frequency bands play a key role in classification of motor imagery

[21,22], the 8–30 Hz frequency band was investigated.

Feature extraction
In most BCI research, the CSP is widely used to separate two

different classes. The idea behind using such a binary CSP is to

find an optimal decomposition to transform two classes of data

into a common space, in which the two classes of transformed data

have the same principal components, and their corresponding

eigenvalues add up to a unit matrix. The idea behind the CSP is to

find a spatial filter that can be applied such that the projected

signal has high power for one class and low power for the other.

Here, the power in a trial is calculated using the variance in the

time domain. The binary CSP can discriminate only between two

different classes (e.g., left versus right). For k-class paradigms, an

extension has been proposed [24,25]: the basic idea is to
Figure 1. Position of EEG electrodes.
doi:10.1371/journal.pone.0098019.g001

Figure 2. Timing of the paradigm.
doi:10.1371/journal.pone.0098019.g002
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decompose the k-class problem into a set of k binary problems

(right versus rest, left versus rest, etc.). Each problem consists of

discriminating one class against the remaining classes (one versus

the rest, OVR) [26].

Here, we will derive an OVR algorithm for the four-class case.

We denote the STFT matrices X of a single-channel EEG signal

for four different directions as X1, X2, X3 and X4 with dimensions

of M by N , where M and N are the numbers of frequency and

time bands, respectively. The spatial covariance of STFT matrices

for these conditions can therefore be estimated by

Ci~XiXi
T , i~1,2,3,4 ð1Þ

where X T
i denotes the transpose of Xi. As for the binary CSP, we

can build the composite covariance matrix as

C~C1zC2zC3zC4 ð2Þ

The composite covariance matrix can be factored by eigen-

decomposition as

C~U0LU0
T ð3Þ

where U0 is the M|M unitary matrix of principal components,

and L is the M|M diagonal matrix of eigenvalues.

The whitening transformation matrix is then formed as

P~L{1=2U0
T ð4Þ

To see how to extract common spatial patterns specific to

condition 1, we let

C1
0
~C2zC3zC4 ð5Þ

C1 and C
0

1 are then individually transformed as

S1~PC1PT ð6Þ

S1
0
~PC1

0
PT ð7Þ

It can be demonstrated that S1 and S
0

1 share common principal

components [24]. If the eigen-decomposition of can be written as

S1~U1L1U1
T ð8Þ

where U1 is the eigenvector matrix of S1, which corresponds with

eigenvalue matrix L1. Then S
0
1 can be factored as

S1
0
~U1L1

0
U1

T ð9Þ

and the sum of the corresponding eigenvalue matrices L1 and L
0
1

will be a unit matrix:

LzL
0
~I ð10Þ

Combining equations (4) and (6)–(10), we have

U1
T P

� �
C1 U1

T P
� �T

z U1
T P

� �
C1
0

U1
T P

� �T
~I ð11Þ

S1 and S
0

1 share common eigenvectors and the sum of

corresponding eigenvalues for these two conditions will always

be one.

From equation (11), the variance accounted for by the

eigenvectors corresponding to the m largest eigenvalues will be

maximal for S1, and minimal for S
0

1. Therefore, the transforma-

tion of the STFT matrix X onto eigenvector space will maximize

the variance difference between S1 and S
0

1. The projection matrix

W1 is

W1~U1
T P ð12Þ

A 2m-by-M spatial filter W1L was built with the first and last m
rows of W1. Then, the STFT matrix X is filtered with this spatial

filter:

Z1~W1LX ð13Þ

The filtering of the STFT matrix X leads to a new time-

frequency matrix Z1. The pattern is designed such that the Z1 that

results from the X filtered with W1L has maximum variance for S1

and minimum variance for S
0

1. In this way, we can extract the

common spatial patterns specific to S1; i.e., condition 1.

In the same way as above, we can build spatial filters W2L, W3L

and W4L to get the filtered time-frequency matrices Z2, Z3 and Z4

for the remaining conditions 2, 3 and 4, respectively.

Classification
Feature vectors for four different conditions are obtained:

fi~log
VARi

P4
i~1

VARi

0
BBB@

1
CCCA, i~1,2,3,4 ð14Þ

where VARi is the variance of Zi among time points (1-by-2m). A

composite feature vector (1-by-8m) is defined as:

f ~ f1,f2,f3,f4½ � ð15Þ

As a state-of-the-art classification methodology, the support

vector machine (SVM) [27] has sound theoretical foundations and

has served as a powerful tool for solving classification problems

[28]. With respect to the recognition of a small sample of

nonlinear and high-dimensional data, SVM has better adaptabil-

ity, stronger classification ability and higher computational

efficiency. In this study, we used the LIBSVM package [29] to

implement SVM classification, and traditional C-support vector

Single-Channel Brain-Computer Interface
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classification (C-SVC) [30] was used as the support vector

classifier.

The basic idea of SVM is to look for the optimal decision

hyperplane that best separates the data points into different classes

with a maximum margin, while allowing errors during separation;

i.e., map the input x onto a high-dimensional feature space

(z~w(x)) and construct an optimal hyperplane defined by

w:z{b~0 to separate examples into different classes, where w
is the normal vector and b is the bias of the separation hyperplane.

This is done by solving the primal problem:

min
1

2
EwE2zC

Xn

i~1

ji,

s:t: yi w:zi{bð Þ§1{ji, ji§0

ð16Þ

where xi is the i-th input sample, yi is the class label value

corresponding to xi, n is the number of input samples, ji is the

slack variable that allows an example to be in the margin

(0ƒjiƒ1, also called a margin error) or to be misclassified (jiw1),

and C is a penalty factor.

The equation (16) can be solved by its dual problem using

Lagrange optimization; i.e., we solve the quadratic programming

(QP) problem

max
Pn

i~1
ai{

1

2

Xn

i~1

Xn

j~1

yiyjaiajK xi,xj

� �
,

s:t:
Pn

i~1
yiai~0, 0ƒaiƒC

ð17Þ

where ai is the Lagrange multiplier from the QP problem, and

K(xi,xj) is the kernel function.

Because of the nonlinear properties of EEG signals, in this

study, the radial basis kernel function (RBF) is selected as the SVM

kernel function:

K xi,xj

� �
~exp {cExi{xjE2

� �
, cw0 ð18Þ

where c is the kernel parameter. The kernel parameter c and

penalty factor C are the main parameters that affect the

performance of the SVM. c decides the distribution of the

transformed data in space, and the penalty factor C controls the

degree of punishment for right or wrong classification, thus

balancing classification violation and the margin. Therefore, c and

C play an important role in improving the correct rate and

classification efficiency of the SVM. In this study, the grid search

method [31] was used to optimize c and C. To prevent the

overfitting problem, we used a 10610-fold cross-validation

procedure. In this procedure, the training set is divided into 10

subsets of equal size. Sequentially, one subset is tested using the

classifier trained on the remaining nine subsets. The optimal c and

C are obtained when the cross-validation accuracy is a maximum.

The final classification accuracy is the mean result of the 10-fold

cross-validation procedure.

Results

The main free parameter affecting the classification accuracy is

m, which is the number of projections to CSP used to build the

feature vector. The classification accuracies for participants K3,

K6 and L1 with different m values were compared in the range

from 1 to 10 (see Figure 3). According to the curve of averaged

accuracy, it was clear that the classification accuracy peaked when

m~7 for all three participants.

Table 1 presents accuracy values for different time ranges and

electrodes for participants K3, K6 and L1. The time ranges are set

as four different ranges: 3,4, 4,5, 5,6 and 6,7 s. Table 1 also

gives accuracy values for different EEG electrodes (i.e., Fp1, Fpz,

Fp2, C3, Cz and C4) and for all the three participants. Two-way

analysis of variance (ANOVA) was employed to investigate the

effects of the time range and electrode selection. There were no

significant difference for either the time range (P~0:62) or the

electrode selection (P~0:91).

Discussion

Past work [7,15,32–36] used few- or single-channel EEG data to

classify four-class motor imagery using the 2005 BCI competition

dataset, which was used in our study. We list the classification

accuracy results obtained in these studies in Table 2.

Most past research used more than two electrodes to extract

features. Only Schlogl et al. [15] used the best single channel of 60

EEG channels for classification. However, since they used all 60

channels of data and then picked the best single channel, their

method differs from that of using only single-channel information

Figure 3. Accuracy values at different m values for participants
K3, K6 and L1. The mean accuracy value peaked at m = 7 for all
three participants.
doi:10.1371/journal.pone.0098019.g003
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to detect motor imagery.The best classification result in past

research was obtained by Li et al. [35], who used three combined

channels and got 83.1, 84.4 and 85.6% for participants K3, K6

and L1, respectively.

Unlike past research that used at least two combined channels

or selected the best channel from multiple channels, our method

used only single-channel data to get 73.4, 78.3 and 75.2% from

the Fp2 channel, and 71.3, 88.1 and 71.2% from the C4 channel

for each participant respectively. This result is relatively better

than the results of most of the previous studies.

Although the averaged accuracy for the 4,5 s time range was

considerably higher than that for other time ranges, the ANOVA

result showed that there were no significant differences in other

time ranges. Wang et al. [32] found that the best accuracy for

Table 1. Accuracy values for different time ranges and electrodes for participants K3, K6 and L1.

Time Range

CH Ppt 3,4s 4,5s 5,6s 6,7s Avg

K3 0.52 0.74 0.58 0.58Fp1

K6 0.63 0.83 0.63 0.63

0.63

L1 0.55 0.58 0.56 0.78

K3 0.53 0.60 0.64 0.58Fpz

K6 0.55 0.83 0.53 0.63

0.62

L1 0.78 0.58 0.67 0.54

K3 0.56 0.64 0.73 0.67Fp2

K6 0.63 0.78 0.51 0.63

0.65

L1 0.55 0.75 0.67 0.67

K3 0.64 0.85 0.69 0.64C3

K6 0.56 0.73 0.50 0.63

0.64

L1 0.50 0.58 0.67 0.67

K3 0.75 0.60 0.56 0.56Cz

K6 0.80 0.60 0.60 0.57

0.64

L1 0.56 0.67 0.63 0.75

K3 0.71 0.64 0.67 0.70C4

K6 0.88 0.63 0.63 0.63

0.65

L1 0.56 0.50 0.63 0.71

Avg 0.62 0.67 0.61 0.64

doi:10.1371/journal.pone.0098019.t001

Table 2. Best accuracy for different feature-extraction and classification methods.

Feature Extraction Classifier Channel Accuracy(%)

K3 K6 L1

AAR MDA Best single channel of 60 ch [38] 56.9 46.5 48.5

AAR MDA Three best single channels of 60 ch [38] 66.6 38.5 49.5

CAR+CSP NN C3 and C4 [44] 41.6 41.7 49.5

Barlow method SVM C3 and C4 [12] 53.3 42.5 55.8

Barlow method SVM C3, Cz and C4 [12] 63.3 45.0 60.0

WPD ME C3, Cz and C4 [14] 90.8 66.0 76.9

WPD+CSP SVM+NN C3, Cz and C4 [27] 83.1 84.4 85.6

PLV SVM+Quicksort C3, Cz and C4 [22] 86.0 82.0 77.0

Sparse PCA+Sparse CSP SVM 60 ch [39] 85.1 81.6 80.1

STFT+CSP SVM Fp2 [our Method] 73.4 78.3 75.2

C4 [our Method] 71.3 88.1 71.2

?Since there are four classes of imagery movements, the chance level is 25.
AAR: adaptive autoregressive; MDA: minimum distance analysis; CAR: common average reference; CSP: common spatial pattern; NN: neural network; SVM: support
vector machine; WPD: wavelet packet decomposition; ME: mixture of experts; PLV: phase-locking value; PCA: principal component analysis; STFT: short-time Fourier
transform.
doi:10.1371/journal.pone.0098019.t002
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different participants was obtained for different time ranges. Our

result supports their conclusion.

The ANOVA result for electrode selection verified that there

were no significant differences in accuracies obtained with the

electrodes used in this study. The accuracies obtained using C3,

Cz and C4, which are over the sensorimotor area, were equivalent

to those obtained using Fp1, Fpz and Fp2, which are far from the

motor cortex. As a result of volume conduction [37], the local

EEG activity field also produces a far-field potential [38] and the

active potential will not only be recorded directly above the

generator but will also appear as a function of current spreading

over the skull and scalp [39]. Fried et al. [40] reported that the P14

component, which is generated by the parietal lobe, can be

similarly recorded by both parietal and frontal lobe electrodes.

Nunez [41] reported high coherence of EEG channels over large

distances. More directly, Li et al. [42] found high correlation in the

event-related potential, frequency domain and event-related

spectral perturbation between forehead-area EEGs and sensori-

motor-area EEGs during a motor imagery task. These past studies

and our result confirm that forehead EEG electrodes can be used

to detect motor imagery equally as well as using traditional

electrodes over the sensorimotor area.

The CSP algorithm has been shown to be one of the most

popular and efficient algorithms for BCI detection [6–9]. A

disadvantage of the CSP method is the large number of electrodes

needed [10]. The accuracy will be poor if the number of electrodes

is insufficient [43]. In this study, employing the STFT, we

transformed the time domain signal of a single channel into

multiple frequency-domain signals. If we treat such multiple

frequency-domain signals as a form of multi-channel information,

the CSP can be applied to single-channel EEG. Using the STFT,

the time-domain signal is converted to a time-frequency domain

signal. Thus, the one-dimensional feature in the time domain is

expanded to two-dimensional features in the time-frequency

domain. Past studies have shown that the frequency feature plays

an important role in BCI detection [14,35,43,44]. Our method

expands time features to time and frequency features, allowing

more feature vectors to be used in feature detection. In this study,

we used such a method to examine the classification accuracies of

different single electrodes. The results demonstrate that expansion

of a single time-domain signal to multiple frequency-domain

signals is an efficient approach to obtain high classification

accuracy of motor imagery with a single-channel EEG.

Open Questions

Compared with the traditional motor imagery research that is

based on sensorimotor area EEGs, detecting motor imagery based

on forehead area EEGs is a novel approach. From the perspective

of convenience and comfort, forehead-type BCI systems may be

highly possible and practical for usage in everyday life in the

future. However, forehead area EEGs also inevitably involve

electrooculography (EOG) and electromyography (EMG) signals.

BCI research must ensure that it is only EEG signals, but not EOG

or EMG signals, that play a key role in classification. Although, we

had already tried to reduce EOG and EMG effects in our research

by excluding visually identified artifacts, more research and

discussion about this problem based on a large number of data

is needed in the future.

In this research, we selected sites C3, C4 and Cz near the

sensorimotor area, which are considered to have a relationship to

motor imagery and are widely used in BCI studies. Moreover,

considering usage in everyday life, we also selected Fp1, Fp2, Fpz

at the forehead area, which are easy to locate and set. Although

higher classification accuracies were obtained from those elec-

trodes in this study, it is hard to conclude that those electrodes are

the optimum channel(s) for all other participants. Our research has

just shown that these electrodes would be good candidates for

single-channel BCI system.

Another limitation of this study is that the dataset from the 2005

BCI competition that is used in this research only contains 3

participants. Further verification with more datasets is needed to

demonstrate the robustness of our proposed method.

Conclusions

In this study, we applied STFT to decompose single-channel

EEG signal into the time-frequency domain to construct multi-

channel information. Based on these reconstructed data, we used

CSP combined with a SVM to obtain equivalent high classification

accuracies from both the sensorimotor and forehead areas, which

suggests that motor imagery can be detected with a single channel

not only from the traditional sensorimotor area but also from the

forehead area.
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