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Background: Arm use metrics derived from wrist-mounted movement sensors

arewidely used to quantify the upper limb performance in real-life conditions of

individuals with stroke throughout motor recovery. The calculation of real-

world use metrics, such as arm use duration and laterality preferences, relies on

accurately identifying functional movements. Hence, classifying upper limb

activity into functional and non-functional classes is paramount. Acceleration

thresholds are conventionally used to distinguish these classes. However, these

methods are challenged by the high inter and intra-individual variability of

movement patterns. In this study, we developed and validated a machine

learning classifier for this task and compared it to methods using

conventional and optimal thresholds.

Methods: Individuals after stroke were video-recorded in their home

environment performing semi-naturalistic daily tasks while wearing wrist-

mounted inertial measurement units. Data were labeled frame-by-frame

following the Taxonomy of Functional Upper Limb Motion definitions,

excluding whole-body movements, and sequenced into 1-s epochs.

Actigraph counts were computed, and an optimal threshold for functional

movement was determined by receiver operating characteristic curve

analyses on group and individual levels. A logistic regression classifier was

trained on the same labels using time and frequency domain features.

Performance measures were compared between all classification methods.

Results: Video data (6.5 h) of 14 individuals with mild-to-severe upper limb

impairment were labeled. Optimal activity count thresholds were ≥20.1 for the
affected side and ≥38.6 for the unaffected side and showed high predictive

power with an area under the curve (95% CI) of 0.88 (0.87,0.89) and 0.86 (0.85,

0.87), respectively. A classification accuracy of around 80% was equivalent to

the optimal threshold and machine learning methods and outperformed the

conventional threshold by ~10%. Optimal thresholds and machine learning
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methods showed superior specificity (75–82%) to conventional thresholds

(58–66%) across unilateral and bilateral activities.

Conclusion: This work compares the validity of methods classifying stroke

survivors’ real-life arm activities measured by wrist-worn sensors excluding

whole-body movements. The determined optimal thresholds and machine

learning classifiers achieved an equivalent accuracy and higher specificity

than conventional thresholds. Our open-sourced classifier or optimal

thresholds should be used to specify the intensity and duration of arm use.

KEYWORDS

classification, functional, arm use metrics, inertial measurement units, thresholds,
machine learning, real-life, stroke

1 Introduction

Motor recovery after stroke and its response to various

treatment approaches have been studied thoroughly using

standardized clinical assessments (Langhorne et al., 2009;

Persson et al., 2016; Bernhardt et al., 2017; Dromerick et al.,

2021). These assessments measure motor capacity under

standardized conditions at a discrete point in time, and their

relationship to real-world behavior in terms of motor

performance is not fully understood (Gebruers et al., 2010).

Advances in sensor technology and processing techniques

have furthered the field’s understanding of how gains in

motor capacity translate into real-life movement behavior

throughout motor recovery post-stroke.

In the past 20 years, significant progress has been made in

developing and applying clinically meaningful upper limb

outcomes generated from three-dimensional acceleration

signals of wrist-worn sensors during real-world upper limb

use (Uswatte et al., 2000; Rand and Eng, 2012; Bailey and

Lang, 2013, 2015b, 2015a; Urbin et al., 2015b; Waddell and

Lang, 2018). The magnitude of acceleration (g) per time epoch(s)

was unitized to activity counts (0.01664 g/s) in an early

developmental stage of an activity watch manufactured for

research purposes (Tryon and Williams, 1996). Activity

counts, also referred to as Actigraph counts, constitute the

basis for computing multiple outcome metrics that quantify

the intensity, duration, and symmetry of upper limb use

(Lang et al., 2017). Algorithms were made accessible to

compute Actigraph counts (Brønd et al., 2017; Neishabouri

et al., 2022) to harmonize the computation of sensor-based

outcome metrics. This standard metric has provided an

excellent basis for comparing research across studies, groups,

and devices. Despite this, the refinement and validation of

existing outcome metrics remain a critical goal—especially as

data on validity, reliability, and responsiveness are lacking or

show inconsistencies (Lang et al., 2008, 2020; Gebruers et al.,

2010; Hayward et al., 2016; Waddell et al., 2017).

Content validity is defined as the degree to which a

measurement instrument adequately reflects the construct to

be measured (Mokkink et al., 2010). Measuring the construct

of arm use is challenging. Outcome metrics are poorly specified

and there is no consensus concerning the types of physical

activity which should be included in their calculation.

Therefore, continuous measurements typically spanning

12–24-h periods (Lang et al., 2020) contain a mix of

functional arm movements (e.g., reaching, grasping, and

transporting objects) and non-functional movement (e.g.,

walking, resting, and passive movement), whereby the latter

does not per se reflect voluntary arm use. Variation of

unspecified activities, including movements unrelated to

functional arm use, might be inherent to fluctuations in the

clinimetric properties of arm use metrics. Specification of

outcome is particularly granted for metrics regarding the

duration of upper limb use, where a threshold is applied to

distinguish between the duration of functional activity, which is

the outcome of interest and non-functional activity (inactivity).

However, both functional and non-functional classes contain

vital information to profile physical activity in real-life

conditions. More complex evaluations, aiming at extracting

metrics of movement quality, typically target only the

functional class (Okita et al., 2021; Werner et al., 2022).

Quantification and quality analysis are both dependent on the

accurate extraction of target classes. However, wide variation in

movement patterns between individuals and throughout the

rehabilitation process challenges algorithmically separating

functional and non-functional movements.

The conventionally used threshold to classify functional

upper limb activity was validated by video-recorded ground

truth and achieved 98% accuracy in a pioneering work by

Uswatte et al. classifying functional activity with >2 activity

counts per 2-s epochs. (Uswatte et al., 2000; Uswatte and

Hobbs Qadri, 2009). This threshold was implemented in

numerous studies in slightly differing forms by using 1s-

epochs and thresholds, e.g., of >2 activity counts (Bailey and

Lang, 2013, 2015a; Waddell et al., 2017), ≥2 activity counts

(Waddell et al., 2019), and ≥1 activity count (Urbin et al.,

2015a; 2015b) for the unilateral duration of use, and >0 for

bilateral and symmetry metrics (Bailey and Lang, 2013, 2015b;
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Urbin et al., 2015b, 2015a; Waddell et al., 2017). Consequently, a

threshold of >2 per second amounts to twice that of the validated

value, whereas the effect of these variations of thresholds on the

validity of duration metrics remains unidentified. Furthermore, it

remains unconfirmed whether the conventional threshold is

valid for real-life tasks performed by individuals with different

levels of motor impairment. The original study comprised a small

set of tasks with defined content and duration of movement,

performed by post-stroke individuals with an unknown level of

impairment but the ability to perform each task without

assistance (Uswatte et al., 2000). Since hemiparesis is

associated with lower acceleration magnitude (de Niet et al.,

2007) and spatial displacement (Vega-González and Granat,

2005) during real-life conditions, different levels of motor

impairment might have resulted in distinct thresholds for the

affected and unaffected upper limb. However, classifying

functional upper limb movement by acceleration only might

be problematic in moderate-to-severe hemiparesis since the

functional activity’s lower acceleration and displacement

characteristics become more similar to that of non-functional

activity or inactivity.

Machine learning-based classification bears the

advantage of integrating multidimensional data of

additional sensing modalities (e.g., angular velocity, sensor

orientation, and altimetry) registered by modern inertial

measurement units (IMUs). In sensor-based movement

analysis, machine learning is a powerful approach to

model relations of movement characteristics in high-

dimensional feature spaces (using multiple sensing

modalities) to predict an outcome of interest (Jiang et al.,

2017). Machine learning classifiers are being used more

frequently in the field of post-stroke rehabilitation

(Boukhennoufa et al., 2022), mainly targeting the

recognition of physical activity types (e.g., sitting,

standing, walking, and upper limb activities) (Massé et al.,

2015; Boukhennoufa et al., 2021; Pohl et al., 2022) and

movement classification (e.g., specific reaching patterns)

(Derungs et al., 2020; Miller et al., 2020; Werner et al.,

2022). Furthermore, there are a growing number of studies

employing machine learning algorithms for the

differentiation and prediction of functional and non-

functional upper limb activities (Thrane et al., 2011;

Bochniewicz et al., 2017; Lum et al., 2020). Lum et al.

compared multiple machine learning classifiers and the

conventional threshold method to predict semi-naturalistic

functional and non-functional upper limb movement in

individuals after stroke (Lum et al., 2020). While the best

algorithmic classifier showed an inter-subject accuracy of

74%, the conventional threshold method (>2 activity

counts) achieved poor performance as a similar

acceleration magnitude was achieved in both functional

and non-functional movement of the paretic limb (Lum

et al., 2020). The reported accuracy of machine learning

classifiers across various studies was considerably lower for

the affected limb than for the unaffected and healthy controls

(Bochniewicz et al., 2017; Tran et al., 2018; Lum et al., 2020).

Independent of this, the relationship between clinical

impairment levels and classification accuracy remains

unclear.

Classification systems clearly specify movement

characteristics categorizing ground truth data and,

therefore, predefine the outcome to be predicted. The

Functional Arm Activity Behavioral Observation System

(FAABOS) was developed to validate the threshold method

(Uswatte and Hobbs Qadri, 2009) and was subsequently

utilized in labeling data to validate the threshold method

and machine learning-based classification of functional arm

use (Bochniewicz et al., 2017; Tran et al., 2018; Lum et al.,

2020). According to the FAABOS, two very different

movement categories, namely, motionless resting and whole

body movements (such as walking), are labeled non-

functional, which might significantly impact classifying by

the threshold method. Since whole-body movements have

recently been shown to pose bias toward metrics of

unilateral symmetry of upper limb use (Regterschot et al.,

2021a; 2021b), the inclusion of whole-body movements for the

classification and computation of meaningful arm use

outcome might be problematic. Consequently, the accurate

detection of body postures—standing, sitting, and

lying—within real-life conditions is a key prerequisite for

computing meaningful arm use outcomes (Pohl et al.,

2022). Schambra et al. (2019) proposed the “Taxonomy of

Functional Upper Extremity Motion” to the facilitate machine

learning-based classification of upper extremity movement

split into five functional primitives differentiating purposeful

movement and minimal or no motion while excluding any

locomotion activities (Schambra et al., 2019). Hence, this

classification system appears to reflect the measurement

construct of purposeful functional arm use more

adequately. In addition, it is also ideal for both threshold-

based and machine learning methods to classify functional

and non-functional upper limb movements. Comparing

performances between both classification methods reflecting

real-life activities in stroke survivors with mild-to-severe

motor impairment is needed to provide ecological validity

for sensor-based arm use outcomes.

Our study aims to determine the optimal thresholds of

activity counts to discriminate between real-life functional

and non-functional upper limb activity in individuals with

mild-to-severe post-stroke motor impairment. We

hypothesized that the threshold for the affected upper limb

would be lower than for the unaffected upper limb and that

individual thresholds would be correlated with motor

impairment. Furthermore, we aimed to investigate machine

learning-based classification and compare the performance

against validated threshold-based methods.
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2 Materials and methods

2.1 Participants

Individuals with a stroke that were followed up for a

prospective longitudinal observational cohort study were

invited to participate if they had mono- or hemiparesis,

were able to walk independently for at least 5 m (with or

without a walking aid), were living at home, and were aged

above 18 years. Participants were informed regarding the

goal and procedures of the study and provided written

informed consent for their participation. The cantonal

ethics committee in Zurich, Switzerland, provided ethical

clearance to conduct the feasibility study (BASEC No. Req-

2020–00947).

2.2 Measurement device

We used inertial measurement units (IMUs),

including a 3-axis accelerometer, a 3-axis gyroscope, a

3-axis digital compass, an altimeter, a storage capacity of

4 GB, and a rechargeable battery enabling recordings of

up to 72 h (https://zurichmove.com/), to record

movement data. The modules were set to a sampling

frequency of 50 Hz and synchronized via the

corresponding docking station.

2.3 Procedures

A semi-naturalistic protocol was designed to record physical

activities in real-world environments following Lindemann et al.’s

recommendations for such procedures (Lindemann et al., 2014).

Physical activities involved different body postures (lying, sitting,

and standing), including uni- or bimanual activities, and walking

(indoors and outdoors) and stair ascent/descent.

Participants were visited in their home environment and five

movement sensors were attached, of which only wrist sensors

attached to the dorsal side of the affected and unaffected wrists

were relevant for this study. Physical activities were recorded using a

conventional video camera (GoPro Hero7, GoPro. Inc., San Mateo,

United States) with a frame rate of 30 frames per second (fps).

Synchronization of start and end time between video and sensor

data was obtained by videotaping the exact start time of

measurements before individuals performed an instructed

knocking and turning sequence of the unaffected wrist.

Thereafter, participants were asked to perform tasks that are

included in their typical daily activities, beginning with their

morning routine, such as getting up from bed, dressing,

grooming, preparing food or coffee, setting up a table, doing

kitchen work, and eating. For instance, the participant was asked,

“what do you typically do first after getting up?” Thus, basic daily

physical activities were performed by all participants at some point,

but the specific content (duration and order, and ways of how to

perform activities) was open to individual preferences. In addition,

FIGURE 1
Flow chart of the methodological procedure. Icons represent the sensor modalities, accelerometer, gyroscope, and altimeter.
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participants were asked to perform their typical leisure activities

which involved, for instance, desk work, handwriting, reading,

watching TV, exercising, and playing a musical instrument. The

individuals were asked to perform tasks as usual, whereby no

instruction was given on how to use their upper extremities. We

provided guidance to continue tasks in a natural manner if the

storyline was interrupted or the participant was distracted by the

presence of the observer.

Upper limb motor capacity was assessed by the Fugl-Meyer

Assessment (FMA) upper extremity subscale (Fugl-Meyer et al.,

1975) and the Action Research Arm Test (ARAT) (Lyle, 1981).

Walking ability was assessed by the Functional Ambulation

Categories (FAC) (Holden et al., 1984), and the ability to

perform activities of daily living was assessed by the modified

Rankin Scale (Dromerick et al., 2003).

2.4 Data processing and evaluation

The preprocessing steps of data labeling and segmentation

were identical for all three classification methods. The further

processing steps, separated by sensor modalities and

classification models, are shown in Figure 1.

2.4.1 Labeling and segmentation
We labeled video data on a frame-by-frame base using Labelbox

online software (Labelbox, Online, 2022. Available: https://labelbox.

com) with 33.3% of data labeled by a second labeler, and agreement

across labels was evaluated for quality control.

The labeling criteria for upper limb movement were in

accordance with the “Taxonomy of Functional Upper

Extremity Motion” (Schambra et al., 2019). The four functional

primitives were collapsed into two, namely, functional activity and

non-functional activity, which were annotated for the affected and

non-affected upper limbs separately. Upper limb movement was

labeled functional if it contained the primitives reach (movement

with the purpose of contact with an object), reposition (movement

toward or from an object with no contact at the endpoint), and

transport (movement to convey an object in space). Movements

that served the purpose of communication were considered

functional (reposition/reach), although this task was not

specifically classified in the taxonomy (Schambra et al., 2019).

Minimal or no motion of the respective upper limb was labeled

non-functional, defined by the primitives stabilize (holding an

object still) and idle (steady position, no movement). Whole-body

movements such as gait, transfers, and wrist movement secondary

to other body parts that did not involve functional wrist

movements were labeled whole-body movements (WBM). We

excluded these ground truth labels to reduce bias on the non-

functional class induced by secondary wrist acceleration caused by

whole-body displacement, which does not necessarily involve

purposeful upper limb motor control. The labeling criteria are

presented in detail in Supplemantary Table S1. Annotated labels

for the body postures, lying, sitting, standing, and other activities

(gait and transfers) that were used for descriptive reasons were

derived from the complementing project of gait and posture

detection (Pohl et al., 2022), of which algorithms can be

retrieved https://github.com/StimuLOOP/activity-detection.

Finally, we labeled the sensor data by resampling the 30 fps

video labels to 50 fps which corresponds to the sampling

frequency of the IMU sensors.

2.5 Activity count thresholds

We computed activity counts with the open-source script

to allow conformity of results with the widely used Actigraph

counts (Brønd, 2022), which generate actigraphy counts

from raw acceleration data (Brønd et al., 2017) over 1-s

epochs. We computed activity counts by the vector

magnitude of the three axial-accelerometer signals (axes x,

y, z):
����������
x2 + y2 + z2

√
.

2.5.1 Conventional thresholds
Following standard methods, conventional thresholds were

validated against ground truth labels after dichotomization by a

cut-off value > 2 activity counts for functional unilateral activity

(affected side and unaffected side) and a cut-off >0 for functional
bilateral activity (Bailey and Lang, 2013).

2.6 Optimal thresholds

Optimal thresholds for activity counts to discriminate

dichotomized ground truth labels (1 = functional; 0 = non-

functional) were determined for the total dataset by computing a

receiver operating characteristic (ROC) separately for the

affected and non-affected sides. An area under the curve

(AUC) of ≥0.75 was considered clinically useful (Fan et al.,

2006). The optimal threshold was set at simultaneous

maximal sensitivity and specificity, thus representing the point

between the most correctly classified and the least classified

(Unal, 2017). Statistical software R (version 4.05) was used for

statistical analysis and the cutpointr package (Thiele and

Hirschfeld, 2021) to determine the optimal thresholds.

As an exploratory approach, we additionally computed ROC

analyses on an individual level to determine the distribution of

thresholds and their relationship to motor impairment as

assessed by the FMA. In addition, relationships between

classification accuracy and motor impairment were analyzed

for each method. Interrelations were evaluated by Spearman

correlations with a significance level of p < 0.05.

2.6.1 Logistic regression
We compared movement classifications based on activity

counts (optimal and conventional thresholds) with a standard
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model from the machine learning literature to demonstrate its

advantages and applicability. More specifically, we fit a logistic

regression classifier on a rich feature set extracted from the

gyroscope, accelerometer, and altimeter time series of the

IMU sensor. Compared to activity count thresholds, we note

that this method takes more effort to apply due to

hyperparameter optimization, data preprocessing, and feature

extraction and it requires access to additional sensor data

(gyroscope, altimeter). Labeled 1-s splits of data containing

signals of the accelerometer, altimeter, and gyroscope were

processed by a pipeline of filter operations and feature

extraction (Figure 1) identical to those proposed in a previous

work for classifying various physical activities (Moncada-Torres

et al., 2014).

We processed the IMU data with consecutive filter

operations to suppress noise spikes and to separate

gravitational acceleration components from posture and

activity data. We then extracted a set of features from the

spatial and frequency domains of the signal, following the

data pipeline introduced by Moncada-Torres et al., 2014.

Details of the extracted features are listed in Supplemantary

Table S2.

After extracting the features from all windows, we fit a

logistic regression classifier to the labeled data. To optimize

the model, we performed a grid search over the

hyperparameter space. We evaluated each hyperparameter

combination by performing leave-one-subject-out cross-

validation, meaning that we partitioned validation splits by

patients. We then took the hyperparameters that achieved the

best accuracy during cross-validation by taking the mean over

the validation splits for each laterality. To implement the

machine learning method, we used Python (3.9.7) and its

Scikit-learn Library (0.24.2).

2.6.2 Evaluation
Classification validity of optimal thresholds, conventional

thresholds, and machine learning classifier was validated

with video ground truth for affected, non-affected, and

bilateral activity. Bilateral activity was computed for

epochs in which the affected and non-affected sides were

labeled as functional. Bilateral activity was dichotomized

(1 = functional; 0 = non-functional) using optimal

thresholds (affected and non-affected), probabilistic

thresholds (0.5), and conventional thresholds (>0). If both

arms were considered functional by a given method, bilateral

activity was set to true. If either arm was not classified as

functional, then the label for bilateral activity was set to false.

Classification performance was evaluated by sensitivity,

specificity accuracy, positive predictive value, and negative

predictive value (Eq. 1 to Eq. 5). Due to class imbalance, the

performance measures PPV and NPV were also analyzed by

motor impairment levels. Motor impairment was categorized into

three groups by established Fugl-Meyer cut-off scores: mild (43–66),

moderate (29–42), and severe (0–18) (Woytowicz et al., 2017).

Sensitivity (true positive rate, Eq. 1): the proportion of

correctly classified functional movements amongst all

functional ground truth labels.

Sensitivity � ( true positives

true positives + false negatives
).

Specificity (true negative rate, Eq. 2): the proportion of

correctly classified non-functional movements amongst all

non-functional ground truth labels.

Specificity � ( true negatives

true negatives + false positives
).

Accuracy (correct classification rate, Eq. 3): the proportion of

correctly classified functional and non-functional movements

amongst all functional and non-functional ground truth labels.

Accuracy � ( true positives + true negatives

true positives + false positives + true negatives + false negatives
).

Positive predictive value (PPV) Eq. 4: the proportion of

correctly classified functional movements amongst all

movements classified functional.

PPV � ( true positives

true positives + false positives
).

Negative predictive value (NPV); Eq5: the proportion of

correctly classified non-functional movements amongst all

movements classified non-functional.

NPV � ( true negatives

true negatives + false negatives
).

TABLE 1 Participants’ demographic data.

Characteristics Median (Range)

Age 73 (50–91)

Gender (female, %) 50 —

Time post-stroke (months) 12 (4–15)

Weight (kg) 75.5 (53–95)

Height (cm) 169.5 (152–186)

Handedness (right, %) 86 —

Dominant affected (%) 36 —

FMA (/66) 38 (16–65)

ARAT (/57) 15.0 (5–57)

mRS (/6) 2 (1–3)

FAC (/5) 4 (3–5)

Legend: ARAT, Action Research Arm Test; FAC, Functional Ambulation Categories;

FMA, Fugl-Meyer-Assessment upper extremity subscale; mRS, modified Rankin Scale,

gender, handedness (right), and dominant affected are relative frequencies.
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3 Results

A total of 14 individuals with mild-to-severe upper limb

motor impairment (Table 1) were visited in their home

environment, and a total duration of 379 min of real-life

activities was recorded. The agreement rate between labelers

was 93.5% for all annotated labels. At the group level, the

proportion of all movements labeled as functional vs non-

functional was 12 versus 36%, respectively, for the affected

upper limb and 23 versus 27% for the unaffected upper limb,

respectively. The remaining movements were classified as

whole-body movements and were, hence, excluded from this

analysis. After removing whole-body movements, the

prevalence of arm movements labeled as functional was low

and highly variable across individuals for the affected (mean

25%; SD 19.4) and for bilateral activity (mean 20%; SD 14.9)

but higher for the unaffected upper limb (mean 46%; SD

11.9). Distributions of activity counts by labels are

presented in Table 2 and Figure 2. In the synthesis, we

encounter an imbalance of 1:4 for functional versus non-

functional labels.

3.1 Optimal thresholds

Predictive power discriminating between functional and

non-functional labels was good, with an AUC (95% CI) of 0.88

(0.87, 0.89) for an optimal threshold of ≥20.1 activity

counts for the affected side and an AUC (95% CI) of 0.86

(0.85, 0.87) by a threshold of ≥38.6 activity counts for the

unaffected side (Figure 2). Thresholds determined on the

individual level (mean threshold (SD) of 23.9, SD 13.8)

were not significantly correlated to the FMA scores (ρ =

-0.14, p = 0.64). The classification performance of

thresholds optimized for each individual is presented in the

online Supplemantary Figure S1, S2, and Supplemantary

Table S2.

3.2 Classification accuracy

All performance measures are shown in Table 3, including

unilateral and bilateral metrics for all investigated approaches.

The distribution of performance is displayed by figures regarding

accuracy, sensitivity, and specificity (Figure 3).

Classification accuracy for unilateral and bilateral

functional labels was similar (around 80%) for both the

TABLE 2 Descriptives of activity counts across labels.

Label Affected side Non-affected side

Body postures n median AC (Q1; Q3) n median AC (Q1; Q3)

lyinga 1,090 14.0 (0; 84) 1,090 40 (0; 138)

sittinga 4,564 0 (0; 43) 4,564 34 (0; 113)

standinga 5,982 6.4 (0; 48) 5,982 39 (0; 126)

Other activities 10,653 44.6 (19; 85) 10,653 72 (31; 130)

Upper limb

functionala 2,561 78.9 (37; 139) 5,151 118.0 (61; 191)

non-functionala 7,811 0 (0; 16) 5,964 0 (0; 35)

WBM 11,227 43.8 (21; 72) 10,801 65.4 (34; 122)

Legend: abody postures corresponding to upper limb labels; “other activities” labels are included in whole-body movement (WBM) labels; AC, activity counts; n, frequencies of 1-s epochs,

Q1, quartile 1; Q3, quartile 3.

FIGURE 2
Distribution of activity counts for the affected and unaffected
sides across body postures and other activities (A), and upper limb
movements labeled as functional, non-functional, and whole-
body movements (WBM) (B).
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optimal threshold method and the logistic regression classifier

(Figure 4). Minor differences between 3 and 7% were found

between the optimal threshold method and logistic

regression regarding their sensitivity and specificity.

Accuracy was lowest for classification by the conventional

threshold ≥2 activity counts across metrics (71–75%).

Compared to the conventional threshold >2 activity

counts, optimal thresholds resulted in lower sensitivity (by

8.9–16.0%) but higher specificity (by 13.9–18.7%) across

outcome metrics.

On the individual level, classification accuracy was unrelated

to motor impairment across methods (p > 0.05).

3.3 Predictive value

The full sample’s positive and negative predictive values

are shown in Table 3 and distribution by the level of motor

impairment in Figure 5. Across classification methods, total

PPVs were low for functional movement of the affected side

(46.0–55.6%) and bilateral activity (39.3–50.7%) but higher for

the non-affected side (65.9–75.3). PPVs were widely

distributed by levels of upper limb impairment in all

classification methods. Within mildly impaired, the PPV

ranged between 68.7–83.6% using optimal thresholds and

logistic regression and was lower (59.0–70.5%) using

conventional thresholds. The PPV decreased by the severity

of impairment for functional affected and bilateral

movement approximating 50% for moderate and 20% for

severe impairment. The NPVs range between

81.7 and 94.1% using optimal thresholds and logistic

regression but were slightly higher using conventional

thresholds (93.1–97.2%). Patient variability was low, and

differences by impairment were minor. Predictive values by

impairment are presented in the online Supplemantary

Table S3.

4 Discussion

Our study aimed to establish cut-off values to distinguish

between real-life functional and non-functional upper limb

activities in individuals with mild-to-severe motor impairment

after stroke. We used labeled video ground truth data to compare

movement classification from a conventional threshold-based

method with two novel approaches. Specifically, one approach

used only the accelerometer to compute optimal thresholds,

while the second leveraged all typical sensors included in an

IMU: accelerometer, gyroscope, and barometer for a machine

learning approach. We examined the validity of optimal

thresholds computed by both approaches for affected, non-

affected, and simultaneous bilateral activity and compared

classification performances to the conventionally used

thresholds.

4.1 Activity count thresholds

We achieved good accuracy by optimal cut-offs

of ≥20.1 counts per second (affected side) and ≥38.6 counts

per second (non-affected side)) correctly classifying functional

and non-functional activity in 80% of our data. To our

knowledge, these are the first threshold values for activity

counts for a wide range of movements that are validated for

stroke-specific movement characteristics in real-life conditions.

It is to be noted that these thresholds are one order of magnitude

greater than the conventionally used threshold of 2 activity

counts.

We provided full disclosure regarding the distribution of

classification performance across individual subject data to

facilitate the interpretation of our results. By including

individuals with mild-to-severe motor impairment of the

upper limb and recording habitual daily tasks in a non-

scripted manner, we allowed for a natural variance of

TABLE 3 Classification performance across methods.

Method Laterality Threshold Sensitivity Specificity PPV NPV Accuracy

Optimal thresholds Affected ≥20 85.51 77.60 55.58 94.23 79.55

Non-affected ≥38 83.87 76.29 75.34 84.56 79.80

Bilateral ≥20/≥38 76.08 82.33 50.66 93.52 81.13

Logistic regression Affected ≥0.5* 78.56 79.89 56.15 91.91 79.56

Non-affected ≥0.5* 79.46 75.05 72.26 81.71 77.04

Bilateral ≥0.5/≥0.5* 79.13 79.41 47.81 94.10 79.35

Conventional threshold Affected >2 94.42 63.68 46.01 97.21 71.27

Non-affected >2 95.03 57.56 65.92 93.06 74.93

Bilateral >0 92.08 66.08 39.29 97.22 71.08

Legend: optimal thresholds on group level; pdefold value of probability for logistic regression.
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magnitude and prevalence regarding functional upper limb

use. These differences in abilities by motor impairment

resulted in a wide range across individuals of movements

classified as functional, especially for the affected limb

(1–63%). The described imbalance between functional

and non-functional classes, exacerbated for individuals

with high impairment, resulted in low PPVs independent

of the applied classification method (Figure 5). Considering

that data recorded in real-world settings will demonstrate

similar imbalances, it is most relevant to interpret

sensitivity (true positive rate) and specificity (true

negative rate) (Trevethan, 2017).

The fact that the optimal threshold magnitude of the

unaffected side was almost twice the magnitude of the affected

side confirmed our hypothesis and aligned with previous results

of overall higher acceleration magnitude recorded on the non-

affected side (van der Pas et al., 2011; Rand and Eng, 2012;

Strømmen et al., 2014). Accordingly, Fanchamps et al. found

thresholds to differ between the affected and unaffected upper

limbs using different wrist sensors and classification categories

but achieved a classification accuracy of 78% for the affected and

73% for the non-affected side (Fanchamps et al., 2018). However,

our results did not achieve the near-perfect classification

accuracy of 98% shown by Uswatte et al. using a threshold of

2 activity counts for both the affected and non-affected upper

limbs (Uswatte et al., 2000). It seems reasonable that this

classification accuracy was due to precisely defined, timed,

and ordered tasks delimited by periods of motionless resting.

However, it remains unclear how the inclusion of whole-body

movement led to a minor threshold of >2 activity counts

(Uswatte et al., 2000). In contrast, we excluded labels of

whole-body movement but intended to constitute real-life

FIGURE 3
Distribution of accuracy, sensitivity, and specificity across
individuals for functional movements of the affected side (aff.,
blue), non-affected side (nonaff., orange), and bilateral activity
(bilat., blue). Classification methods displayed by panels: OT;
optimal thresholds; LR, logistic regression; CT, conventional
thresholds.

FIGURE 4
Receiver operating characteristic curves with optimal
thresholds for the affected side (red) and the non-affected side
(green).
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conditions featuring highly variable tasks and idle periods where

motion was present naturally to obtain thresholds validated for

the real-time setting. Considering generated acceleration

magnitudes and the fact that the lowest non-zero value was

4 activity counts in our recordings, a threshold of >2 activity

counts might instead classify motionless inactivity but not

functionality. Therefore, the cut-off >2 activity counts showed

high sensitivity, classifying every non-zero activity as functional,

but low specificity classifying a large proportion false-positively

as functional. The low specificity leads to a gross overestimation

of functional activity in arm use metrics.

Pioneered by Bailey et al., the metrics’ bilateral magnitude

and magnitude ratio were introduced, containing the summed

magnitude of both upper limbs and the ratio between the affected

and non-affected side for non-zero epochs (Bailey and Lang,

2013). We implemented optimal thresholds to investigate the

validity of functional bilateral magnitude, accounting for the

distinct functional contribution of the affected and non-affected

sides during simultaneous bilateral activity (Bailey and Lang,

2013; Urbin et al., 2015a; Lang et al., 2017). As expected, these

improved classification performances compared to the

conventional threshold. Although the accuracy and specificity

of functional bilateral classification were significantly higher than

with a single conventional threshold, the lower and widely

distributed sensitivity indicated a large proportion of false-

negative classification. It is to be noted that low-level

functional activities such as handwriting or typing may

amount to the acceleration of magnitudes below our

thresholds (Bailey and Lang, 2013) and are consequently

misclassified as non-functional. However, wrist sensors are

FIGURE 5
Distribution of the positive predictive value (PPV) and negative predictive value (NPV) across individuals bymotor impairment levels: mild (n = 6),
moderate (n = 4), and severe (n = 4). Classification methods displayed by panels: OT; optimal thresholds; LR, logistic regression; CT, conventional
thresholds.
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not sensitive enough to appropriately register isolated hand or

finger movement; therefore, functionality cannot be classified

validly (Friedman et al., 2014; Lee et al., 2019).

Functional activity can be understood as motion that occurs

in the context of intention or purpose (Lang et al., 2009; Dietz

and Schrafl-Altermatt, 2016; Schambra et al., 2019). Categorizing

the complexity of upper limb motion into defined functional and

non-functional activity classes is challenging because real-life

data contain movements where intention and purpose are

inconclusive. Although the clearly defined taxonomy led to

high agreement between video labelers, it is inherent in the

wide range of human motor behavior that a single threshold

on the population level will always remain lacking without a

certain level of personalization. Personalizing thresholds was

possible within our annotated dataset (see Supplemantary

Table S2 for details) and slightly improved classification

performance. However, the magnitude of the personalized

thresholds was not related to motor impairment, indicating

the importance of personal movement patterns independent

of the impairment level. Creating annotated ground truth data

on a personalized level is extremely time-consuming and, in our

opinion, not feasible for large-scale datasets. Nevertheless, the

application of our proposed optimal thresholds is feasible and

does not require complex classification algorithms, but it still

achieved equivalent accuracy comparable to those achieved by

our machine learning method.

4.2 Logistic regression classifier

It was our goal to compare the classification performance of

accelerometer-based activity count thresholds and a machine

learning-based approach using high dimensional features of

additional sensor modalities (gyroscope and pressure sensor).

On average, logistic regression exhibited similar classification

accuracy and specificity as the activity count-based method. We

observed a smaller variance in sensitivity across patients for all

three metrics than in optimal thresholds, indicating robustness

across stroke severity levels. The underlying lower proportion of

false-negative misclassification is a major advantage compared to

the acceleration-based classification.

Classifying functional upper limb movement in real-life

conditions using only wrist sensors remains challenging.

Thus, perfect accuracy in individuals after stroke to date

remains unattained. Lum et al. (2020) conducted a

validation study with a similar methodology, including a

small set of semi-naturalistic tasks in individuals with

stroke, achieved a lower classification accuracy of 70%, and

reported large incidences of false negatively classified data

(Lum et al., 2020). Other studies also reported classification

accuracy between 70 and 80% (Bochniewicz et al., 2017; Tran

et al., 2018) obtained by random forests, k-nearest neighbor,

and support vector machine classifiers, indicating only

marginal differences between classifiers for stroke

individuals. However, these approaches included larger

window sizes (4–5.12 s), which were associated with

reduced misclassification rates (Bonomi et al., 2009).

Additionally, comparison to our classification performance

is limited because the mentioned studies used the FAABOS

where whole-body movement and gait are classified as non-

functional (Uswatte and Hobbs Qadri, 2009). We used the

“Taxonomy of Functional Upper Extremity Motion,” which

breaks down complex movements into functional primitives

and excludes unrelated whole-body movements. Detection

accuracy and extraction of whole-body movements should be

considered when interpreting our results. Exemplary

classification of whole-body movement including gait (e.g.,

over ground walking and stair ascent/descent) achieved a

mean classification accuracy of 93% in real-life conditions of

stroke survivors wearing additional sensors on at least one

ankle (Pohl et al., 2022). Using the aforementioned

taxonomy, Kaku et al. recently achieved a classification

accuracy of 70% for all four functional movement

primitives (Kaku et al., 2020). However, in their study,

classification accuracy was especially low (30–40%) in

patients with severe motor impairment. A low

classification accuracy among individuals with moderate-

to-severe impairment could be especially problematic in

longitudinal investigations where the level of impairment

changes by motor recovery (e.g., from severe to moderate)

but the change in the classified functional movement would

not only be due to a gain in motor ability but also due to lower

misclassification probabilities. In contrast, our approach

resulted in accuracies ranging from 71–95%, including

moderate and severely impaired individuals.

4.3 Implication for thresholds in research
and clinical use

The validity of sensor-based metrics builds the foundation

for an increasingly large research body regarding post-stroke

recovery, modeling the transfer of gains in motor capacity into

real-life performance. Concurrent validity with motor capacity or

perceived performance and sensor-based metrics have been

shown to be low and inconsistent (Gebruers et al., 2010; van

der Pas et al., 2011; Noorkõiv et al., 2014; Hayward et al., 2016).

The field of stroke rehabilitation requires valid and reliable

sensor-based metrics from real-world situations to

understand how interventions affect real-world behavior. In

this regard, movement duration and intensity metrics are

relevant, but the quality of given functional movements

post-stroke is increasingly important (David et al., 2021a,

2021b; Okita et al., 2021; Werner et al., 2022). Our work

strives to refine the content validity of sensor-based outcome

metrics by validated classification of upper-limb movements
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during standing, sitting, and lying positions into functional

and non-functional activity. Optimally, sequences of these

body postures can be accurately detected in real-life data

(Pohl et al., 2022) and extracted for subsequent

classification of functional and non-functional upper limb

movement. This classification can be performed for arm use

outcome of intensity, duration, and symmetry domain, using

thresholds or a machine learning classifier that still allows for

quantifying both the functional and non-functional classes.

Misclassification leads to the degradation of duration,

intensity, and symmetry domain metrics. Nevertheless,

applying validated functional classification for the duration,

intensity, and symmetry domain metrics might positively

affect the outcome’s properties.

First, duration metrics would be specified to the duration of

functional use totaled within the recording length. Considering

that conventional thresholds classify any registered movement as

activity, the duration of functional arm use classified by our

validated thresholds might lead to lower values.

Second, the mean and median of intensity metrics

recorded would be shifted toward higher acceleration

magnitude values by cutting off non-functional low activity.

Inherent to low false-negative rates, our validated methods

correctly classified 81.7–94.2% (NPV) of non-functional

movements. Continuous measurements usually exhibit

highly skewed distributions with disproportional high

frequencies of very low acceleration magnitudes

(Berkemeyer et al., 2016; Giné-Garriga et al., 2020). Hence,

excluding non-functional activity might improve the

responsiveness of sensor-based outcomes, which was poor

in some studies (Lang et al., 2008; Waddell et al., 2017).

Third, symmetry metrics would be specified coherently

since they are commonly computed by the ratio of affected

(nominator) to non-affected (denominator) arm use (Bailey

and Lang, 2013; Lang et al., 2017). By applying validated

thresholds distinctly for the affected and non-affected

bilateral arm use and symmetry, the metrics appropriately

correspond to hemiparetic movement characteristics. The

aforementioned arguments might be especially relevant for

longitudinal investigations on the recovery of arm use and

their interpretation. Recently, Lang et al. (2021) fitted a

logistic regression model for duration metrics using

conventional thresholds and found that recovery plateaus

were reached 24 days after stroke for use duration ratio and

41 days post-stroke for paretic arm use duration (Lang et al.,

2021). When considering the large proportion of false-

positive classified activity by conventional thresholds

shown in our results, the recovery plateau might be

shifted to later time points when a validated classification

is applied.

However, applying the classification of functionality

comes at the cost of accepting inevitable misclassification.

Functional movements of very low intensity (below

thresholds) such as handwriting and typing (Bailey and

Lang, 2013), or stabilizing an object with very low

acceleration magnitude are misclassified as non-

functional. Misclassification or detection failure of

isolated hand and finger movements or static holding

tasks should be understood as a limitation of wrist-worn

sensors that are not ideal for detecting such tasks by nature.

Hand and finger-mounted sensors promise the capability to

detect and differentiate fine motoric hand and finger

movements (Friedman et al., 2014; Kim et al., 2019; Lee

et al., 2019). However, these systems remain research-grade

and are not suited for mass deployment in real-world

environments.

Our sample represented a wide range of motor

impairments, including four severely impaired individuals

with no hand function and minimal or no ability to lift

their paretic arm against gravity. These individuals showed

a minimal prevalence of functional movement, and the

proportion of falsely positive classified incidences was high.

Accordingly, amongst all movements classified as functional,

only 20% of epochs in severely impaired and 50% of epochs in

moderately impaired were indeed functional (PPV). Although

the classification accuracy was independent of motor

impairment, the PPVs exposed the risk of misinterpretation

of sensor-based metrics in severely affected individuals. It is

important to note that the magnitudes of optimal thresholds

were not affected in severely impaired individuals. Removing

the severely impaired individuals in a sub-analysis showed

robust thresholds for the affected (≥20) and the non-affected

side (≥41). However, in the absence of upper limb motor

function, sensor-based arm use outcomes might contain large

amounts of unrelated motion, and therefore, monitoring

physical activities such as gait or sedentary time might be a

preferable and more relevant outcome for this sub-group.

Physical activity has been classified with high accuracy in

individuals with stroke (Massé et al., 2015; Pohl et al., 2022),

enabling highly specified outcome analysis and improving

individualized clinical decision-making.

4.4 Future directions

In the course of continuous improvement of sensor-based

upper limb outcomes, future work should investigate the effect

of classifying functional movement on its clinometric

properties. Classification by the threshold of machine

learning classifiers should be applied coherently to outcome

domains of intensity and duration of upper limb use. An

essential refinement of outcome constitutes the extraction of

periods of lying, sitting, and standing to confine upper limb

outcome by excluding whole-body movement using physical

activity classification algorithms. To ensure high-quality

outcome measures, our classification methods should be
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further evaluated regarding their effect on longitudinal

responsiveness and concurrent validity with benchmark

clinical outcome measures.

5 Limitations

Our study has several limitations. First, our sample was

small but contained heterogeneous motor impairments, which

might have influenced the robustness of classification

performance. However, this wide range of impairments was

necessary to transfer our results to a representative population

of individuals post-stroke. Future investigations should aim

for a larger sample, including balanced numbers within motor

impairment subgroups.

Second, our semi-naturalistic activity protocol contained a

range of individual habitual tasks that did not include long

continuous tasks of higher activity such as laundry folding or

cooking. The intensity of functional activities might not have

negatively influenced our threshold estimates but may have

increased classification accuracy. In contrast, a more

standardized protocol’s higher prevalence of functional activity

could have positively influenced positive predictive values.

Consequently, future work should implement a hybrid

data collection, including standardized upper limb tasks, a

semi-structured protocol, and free-living conditions for the

training and validation of classifiers (Allahbakhshi et al.,

2018). This more complex study design has recently been

shown to improve the classification accuracy in real-life

conditions of elderly individuals (Allahbakhshi et al., 2020).

Third, the classification validity applies to bouts of static lying,

sitting, and standing but excludes whole-body movements such as

gait activity transfers and wrist movement secondary to other body

parts. Therefore, end-to-end validation may require additional

sensors to accurately detect and extract whole-body movements

by a preprocessing pipeline. Fourth, our protocol’s magnitudes of

functional and non-functional movements do not translate to

continuous recordings of 24 h but represent the intensity of

included tasks. Finally, we did not provide separate thresholds

for bilateral functional activity. Assuming that each side could

contribute differently during simultaneous activity, we determined

thresholds separately for simultaneous epochs, but classification

performance was equivalent. The threshold for the affected side

was identical and, thus, not presented in our results. Determining

thresholds for bilateral activities would optimally require a

different method, including a selection of purposeful bilateral

tasks, which should be addressed in future studies.

6 Conclusion

Wearable movement sensors can be a valuable source of

information for clinical professionals regarding post-stroke

individuals’ real-life movement behavior. Differentiating

types of upper limb activity, such as functional and non-

functional (activity versus inactivity), is paramount for

quantifying arm use, and eventually, quality analysis of

movements classified as functional. Popular metrics to

describe arm use after stroke rely on the accurate

distinction between functional and non-functional

movements. Our work compares the validity of three

different approaches to classifying functional from non-

functional movements of the upper limb using wrist-

mounted movement sensors in a stroke population in their

home environment. A total of two thresholding methods were

employed using activity counts for classification: traditional

and optimized thresholds based on a group level for the

affected and non-affected sides. We compared thresholding

methods to a machine learning classifier and found equivalent

classification performance between determined optimal

thresholds and machine learning-based classification. Our

results indicate that conventional thresholds have low

specificity and tend toward overestimated activity levels.

Accurate identification of functional movements is the

prerequisite for quantifying upper limb use and movement

quality in the next step. We here provide two validated

classification methods that are accurate and easy to apply

to neurorehabilitation research. These will contribute to the

harmonization of calculations of upper limb outcome metrics.

By providing comprehensive disclosure of classification

performance and open-sourcing our dataset and

algorithms, we peruse contributions to this expanding field

of applied neurorehabilitation research.
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