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Classification of gene signatures for their information value

and functional redundancy
Laura Cantini1, Laurence Calzone1, Loredana Martignetti1, Mattias Rydenfelt2,3, Nils Blüthgen2,3, Emmanuel Barillot 1 and

Andrei Zinovyev1

Gene signatures are more and more used to interpret results of omics data analyses but suffer from compositional (large overlap)

and functional (correlated read-outs) redundancy. Moreover, many gene signatures rarely come out as significant in statistical tests.

Based on pan-cancer data analysis, we construct a restricted set of 962 signatures defined as informative and demonstrate that they

have a higher probability to appear enriched in comparative cancer studies. We show that the majority of informative signatures

conserve their weights for the genes composing the signature (eigengenes) from one cancer type to another. We finally construct

InfoSigMap, an interactive online map of these signatures and their cross-correlations. This map highlights the structure of

compositional and functional redundancies between informative signatures, and it charts the territories of biological functions.

InfoSigMap can be used to visualize the results of omics data analyses and suggests a rearrangement of existing gene sets.

npj Systems Biology and Applications (2018)4:2; doi:10.1038/s41540-017-0038-8

INTRODUCTION

The majority of the studies exploring gene expression data result
in one or more gene signatures, i.e., list of genes sharing a
common pattern of expression that can be employed to classify
groups of samples in any independent dataset. Together with
such data-derived signatures, a priori knowledge-based signatures
can be produced from the available gene ontologies or pathway
databases. In recent years, data–derived and a priori knowledge-
based signatures have been widely employed to interpret the
results of gene expression data analyses (e.g., differential
expression, clustering). The number of available signatures is
getting larger allowing users to benefit from a more exhaustive
coverage of the existing biological processes. However, not all the
signatures contained in these compendia are equally informative
and the number of gene sets representing the same biological
process is not equilibrated. These two phenomena affect the
results of classical transcriptomic data analysis with heavy p-value
corrections producing a high number of false negative results.
Conceptually, the aforementioned gene set redundancy can be of
two types: compositional or functional (see Fig. 1a). Composition-
ally redundant signatures are characterized by a large intersection
in terms of the genes composing them. On the opposite, two
signatures may represent two different transcriptional read-outs of
the same biological process, we will refer to them as functionally
redundant. These two types of redundancy do not always co-exist,
in fact two signatures can be functionally redundant even if
having no overlap. The existence of multiple functionally
redundant signatures affects results of classical transcriptomic
data analysis by highly scoring multiple gene sets belonging to
analogous/related biological processes. These multiple compar-
isons of redundant signatures can potentially hide relevant hits. Of
note, any estimation of the functional redundancy is conditioned

by the context (e.g., certain cancer type) and therefore depends
on the type of data used to evaluate the redundancy.
To our knowledge, few methods have been proposed to

address the problem of gene signature redundancy.1–6 Currently,
the best attempt to define a robust and non-redundant collection
of signatures is represented by MSigDB Hallmarks (H).7 H was
obtained by merging compositionally redundant signatures and
then refining the genes of the resulting signatures based on their
ability to discriminate the associated phenotype. This methodol-
ogy involves a manual curation, which might create a certain bias
vis a vis an expert’s opinion. More importantly, H, as all the other
currently proposed procedures, takes into account only composi-
tional redundancy without exploiting the problem of the
functional one.
In this paper, a new approach to prioritize and classify gene

signatures is proposed. Our method is based on the concept of
“an informative signature”, which is a gene set capable of defining
a natural ranking of samples in unsupervised way. Considering the
simplest case of a gene signature composed of only two genes X
and Y, their co-variance can define three possible scenarios of
sample distribution (ranking), as reported in Fig. 1b. Whereas the
ranking defined by informative signatures presents a distinguish-
able axis (corresponding to the direction of the first principal
component), no naturally distinguished sample ranking can be
observed in the non-informative ones. As a consequence, when
the dysregulation of an informative signature is tested on a
transcriptomic dataset whose samples are divided according to
two conditions (e.g., tumor vs. normal), in most cases, a significant
enrichment score will be observed whenever two requirements
are met: (i) the direction of the largest variance sufficiently
separates the samples belonging to the two conditions and (ii) this
variance is significantly greater than randomly expected (the gene
set is “overdispersed”). In all other cases, a very specific
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distribution of the sample labels is needed to obtain a significant
enrichment score. Therefore, informative signatures, defining in
many datasets robust and “objective” sample ranking along the
principal variance direction, are more valuable for data analysis.
Starting from a vast collection of signature compendia, composed
of 12096 a priori knowledge and data-derived signatures, we
defined a restricted set of 962 informative signatures, which is
made available to the users for further applications. The collection
was defined by exploiting various pan-cancer The Cancer Genome
Atlas (TCGA) transcriptomic profiles (32 cancer types with totally
8991 samples). Among the databases under investigation, the
Signaling Pathway Enrichment using Experimental Data sets
(SPEED)8 signatures, including 11 gene sets, proved to be the
most informative with 6 of them being part of our prioritized
collection. The reliability of our signature collection was then
validated by comparing its performances with those of the
complete collection in some typical data analysis scenarios. In all
the examples, the informative gene sets were found much more
frequently significant than the others, confirming the rationale
behind the selection procedure proposed here.
As a result of our analysis, in each dataset, a set of weights is

also assigned to the genes composing the signatures. These
weights correspond to the contributions of the genes to the
direction of the first principal component and we refer to them as

eigengene, according to the definition introduced by Langfelder
et al.9 The eigengene associated with a signature can be used to
compute the sample activity profile or metasample (see Methods

section). We then define a signature “conserved” when its
eigengenes are highly correlated across different cancer types.
Here we found that informative signatures tend to be more

conserved than the others, a further proof of the reliability of our
collection. The collection of informative gene signatures was then
classified by computing the average correlation between the
sample activity profiles of all signatures across 32 cancers types.
This metrics was used as a measure of functional redundancy in
our analysis (see Methods section). We found that many
signatures are functionally redundant and this does not seem to
be always linked to the intersection between two gene sets.
Therefore the H and the other previous works, only measuring the
intersection in terms contained genes, are underestimating the
scale of signature redundancy. In order to visually and inter-
actively represent the structure of functional redundancies
between informative gene signatures, we developed InfoSig
Map (http://navicell.curie.fr/pages/maps_avcorrmodulenet.html),
a user-friendly interactive Google Maps-based tool, where nodes
correspond to our informative signatures and the edges represent
the two types of redundancies (compositional and functional).
InfoSigMap can be used for data visualization to provide a quick
navigation into any set of scores associated with the informative
signatures (e.g., enrichment scores), as shown here for some
typical data analysis scenarios.

RESULTS

Informative signatures represent a small fraction of the widely
employed gene sets

A large TCGA compendium of gene expression data derived from
32 solid cancer types was employed to restrict the input collection
of 12,096 gene signatures to 962 (see Supplementary Table S2)
informative ones (see Methods section). The selection involved the

Fig. 1 Schematic explanation of the basic notions used in this study. Panel a schematically summarizes the two possible forms of redundancy
between two gene sets. (1) Compositional redundancy corresponds to gene set overlap. (2) Functional redundancy represents instead
different transcriptional read-outs of the same biological process and it is possible even for the gene sets with no overlap. Measuring
functional redundancy depends on the way a sample is scored based on the expression of its genes and the chosen corpus of data. Panel b
explains the difference between non-informative (1) and informative (2) gene sets. A signature composed of two genes X and Y is here
considered. The circles denote biological samples and the two colors correspond to two different labels: class 1 and class 2 (e.g., metastatic vs.
primary tumors). Scatter plots are used to represent the expression values of gene X (x-axes) and gene Y (y-axes) in each sample. Three types
of samples distributions are shown. In (1) (isotropic case), no naturally distinguished axis in the points' distribution, labeling of samples is
needed to define their ranking. In (2) instead, it exists as a distinguishable axis in the data distribution that allows a robust ranking of the
samples independently on their labeling. Both second and third scenario leads to overdispersion and coordination of the corresponding gene
set and are selected in the analysis
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correction of p-values for multiple testing and the choice of
stringent thresholds. To ensure a proper control of the False
Discovery Rate (FDR), the number of false positive results of the
performed analysis was estimated on 1000 random signatures (see
Methods section). None of them resulted to be informative,
according to the procedure here proposed. We thus estimate an
FDR to less than 0.1%. Of the 962 identified informative signatures,
the majority were data-derived (706 data-derived, 231 knowledge-
based, 15 from MSigDB H collection, and 10 from MSigDB C1
collection), showing that for cancer-oriented applications, data-
derived signatures tend to be better performing than knowledge-
based ones. To assess which of the input compendia was more
informative, the ratio between the number of informative gene sets
and the total number of contained signatures was evaluated
(Table 1). As shown in Table 1, the most informative compendium
resulted to be SPEED (55% of informative signatures). The reliability
of this database is thus corroborated by our results, suggesting that
this collection particularly fits for cancer transcriptomic data
analysis. Overall, good performances were also obtained by CIT
(28%), the MSigDB C4 (31%), and the H (30%). The best performing
knowledge-based database was Atlas of Cancer Signaling Network
(ACSN), with 13% of informative signatures. Studying the distribu-
tion of the number of cancer types in which the signatures were
found to be informative (Fig. 2a and Supplementary Table S2), we
found that 30% of the informative signatures is cancer-specific
(significant in only 2 cancer types), 14% are associated with >15
different cancer types and only 8 signatures are informative in >25
cancer types. Furthermore, data-driven signatures tend to be more
frequently informative in multiple cancer types with respect to
knowledge-based ones.

Informative gene sets tend to be much more frequently significant
in typical comparative cancer data analyses

Our hypothesis that an informative gene set has higher chances to
be enriched in a typical transcriptomic data analysis, is tested here
(see Methods section for the procedure) in four typical scenarios:
(i) colorectal cancer KRAS mutated vs. wild type;10 (ii) colon cancer
metastatic vs. primary (same samples profiled with two platforms:
RNA–seq and microarrays);11 (iii) tumor vs. normal in four tissues
(lung,12 gastric,13 colon,14 cervix15) and (iv) breast cancer late vs.
early stage (from two independent data sources: TCGA and
METABRIC16). As shown in Fig. 2b, in all four cases, the informative
signatures in the output of the Gene Set Enrichment Analysis
(GSEA)17 were strongly enriched (average p-value 10−41). Note
that, while the selection of the informative signatures was
performed using an unsupervised approach, the validations
presented in this section are realized using a supervised one
(GSEA). Nevertheless, the amount of informative signatures
obtained in the output of the GSEA analysis is significantly higher
than what could be expected at random. Finally, the results of
points (ii) and (iv) prove that this analysis weakly depends on the
platform used for transcriptomics profiling and it is well

reproduced across independent datasets for the same biological
case of study, respectively.

Informative signatures perform better than the MSigDB Hallmarks
in typical cancer data analysis

Given that the only other attempt to prioritize the most reliable
non-redundant signatures is done by the MSigDB H, its
performances were compared with those of our compendium in
the four test cases previously mentioned. The comparison was
done considering: Fisher’s exact test p-values, Fisher’s exact test
odds ratios, and p-value of the Kolmogorov–Smirnov (KS) test for
the Normalized Enrichment Score (NES) distributions (see Methods
section). The p-values and odds ratios resulting from the Fisher’s
exact test are summarized in Fig. 2b, c. As shown in the figure, the
H signatures obtained significant Fisher p-value in all cases
(average p-value 10−5), confirming its reliability. However, the p-
values obtained by the H collection resulted to be always less
significant than those of our informative signatures (10−5 vs.
10−79). Moreover, the Fisher’s exact test odds ratios for the
informative signatures are higher than those of the H in eight out
of the nine cases. Concerning the NES distribution, as shown in
Supplementary Figure S1, the informative signatures tend to be
always associated with absolute NES higher than those of the H.
Indeed, the KS p-values are always <0.05, except for 2 out of the 9
cases. Therefore, not only the informative signatures are more
frequently significant in a GSEA analysis but also in the GSEA
output they tend to be among those with the highest NES score.
This result indicates that our compendium is capturing the
strongest sources of expression variation in all three transcrip-
tomic datasets. As a further check, given that 15 out of the 50 H
signatures are also contained in our informative collection, the
fraction of H signatures present in both the output of the GSEA
analysis and our informative compendium is evaluated: (i)
colorectal cancer KRAS mutated vs. wild type 67%; (ii) colon
cancer metastatic vs. primary 67 and 80% in RNA-seq and
microarray, respectively; (iii) normal tissue vs. tumor in 4 tissues
(lung 48%, gastric 47%, colon 44%, cervix 60%), and (iv) breast
cancer late vs. early stage 33% TCGA and 87% METABRIC. These
results show that, among the 50 signatures constituting the
MSigDB Hallmarks, those that are found significant in the GSEA
analysis are frequently also informative.

The majority of the informative signature eigengenes are
conserved across cancer types

To further investigate the reliability of our informative
collection, we verified whether the properties of the informative
signatures were quantitatively reproduced across different cancer
types. More precisely, we compared the eigengenes (set of
gene weights) resulting from computing the first principal
component restricted to the signature genes, across all 32 cancer
types. We computed the conservation score as described
in the Methods section. Then we compared the distribution of

Table 1. Contribution of each signature collection to the informative set

Signatures collections Data-derived Knowledge-based H C1

SPEED C4 CIT CGP C7 C6 ACSN CP C5 C3

Informative signatures 6 270 11 233 185 1 8 150 64 9 15 10

Total 11 858 40 1698 2436 99 63 1330 1454 615 50 326

Fraction 55% 31% 28% 14% 8% 1% 13% 11% 4% 1% 30% 3%

Number of informative signature, total dimension, and the fraction of the previous two fields are reported for each signature collection

Most informative signature collections are highlighted in bold
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the conservation scores obtained for the informative signatures
with those of the non-informative ones. As shown in Fig. 3a,

informative signatures are associated with conservation scores
higher than those of the other signatures. This distribution
difference is significant with a KS p-value <10−16. Employing a

rather restrictive threshold of 10−6 for the conservation score,
1459 over the 12,096 starting signatures (12%) resulted to be

conserved across cancer types, whereas 703 over the 962
informative signatures (73%) were found to be conserved. This
shows that the signatures selected with our approach have higher

Fig. 2 Properties of the informative signatures in different cancer types. In a, the distribution of the number of cancer types in which the
informative signatures have ROMA L1 and L1/L2 p-values significant is reported (logarithmic scale). The behavior of all informative signatures,
data-driven informative signatures, and knowledge-based informative signatures is represented in black, red, and blue, respectively. In b and
c, the comparison between Informative (black) and Hallmarks (red) signatures is reported in all nine comparative tests cases. Enrichment of
the corresponding subset (informative or Hallmarks) in the output of GSEA is evaluated in terms of Fisher absolute log-p-values and odds ratio,
respectively

Fig. 3 Pan-cancer correlations between the eigengenes of the informative signatures and the sample activity profiles. In a, the distribution of
the conservation scores for the Informative (black) and the remaining signatures (red) is reported. In b, the dependence between informative
gene sets overlap (Jaccard-index) and average correlation between the meta-samples defined by the informative gene sets is reported. Each
point corresponds to an informative signature and their color is proportional to the point density: from red (high density) to blue (low density)
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chances to maintain the same quantitative definition across
different cancer types and thus they tend to be more robust than
the starting ones.

Functional redundancy of gene sets is poorly explained by their
intersection size

Two gene sets with no intersection can represent the same
biological process, being thus functionally redundant. For
example, when data-derived signatures are constructed, only the
genes whose expression is strongly associated with the pheno-
type of interest are kept. This procedure may lead to the
reconstruction of two data-derived signatures associated with
the same phenotype but having a poor/null intersection.18 To
quantify the frequency of this phenomenon, the two redundancy
measures: functional redundancy (computed as described in the
Methods section) and computational redundancy (in terms of
Jaccard-index (JI)) are compared (see Fig. 3b). As expected, the
presence of a high JI value usually results in a high functional
redundancy (i.e., high average correlation between meta-samples
over all cancer types). However, high functional redundancy is
distributed over a large range of JI values with a surprisingly
higher density of points in the area corresponding to poorly
overlapping gene sets. Therefore, in order to reduce the functional
redundancy between gene sets, it is not only sufficient to simply
take into account their overlap but it is important to consider also
their correlation of activity. A first consequence of this result is that
the H collection, based on the JI as a measure of redundancy, is

not able to completely capture analogous signatures. The intrinsic
limitation of such approach is that it requires the wide use of
expression data and thus its output is at least partially data
corpus-dependent.

InfoSigMap a user-friendly interactive representation of the
functional redundancy between informative signatures for
insightful gene set score visualization

GSEA or alternative approaches can be used to score the
informative signatures based on a transcriptomic dataset whose
samples are divided according to multiple conditions. The output
of such analyses usually consists of a table of gene sets with the
corresponding enrichment values. This tabular organization of the
output (which represents a one-dimensional ordering) is not easy
to interpret and it frequently does not help the formulation of
consistent biological hypothesis. To improve the interpre-
tation, we developed InfoSigMap (http://navicell.curie.fr/pages/
maps_avcorrmodulenet.html), following the procedure described
in the Methods section. The obtained network (Fig. 4), whose
nodes are the informative signatures and links denote their
redundancy, contains eight connected components. The largest
connected component is composed of two main clusters: one
associated with core cellular functions (i.e., all those basic
functions that are fundamental for the life of the cell) and the
other to the tumor microenvironment. These two areas of the
network can be then further subclustered. The core cellular
functions can be split into homeostasis and proliferation

Fig. 4 InfoSigMap: user-friendly interactive representation of the informative signatures and their redundancies. The network map of the 962
informative signatures plus SPEED and Hallmarks is here reported as available on the website (http://navicell.curie.fr/pages/
maps_avcorrmodulenet.html). The signatures are organized as nodes of the network. Node colors correspond to the different signature
categories, while the shape is a diamond for informative signatures and circular for those that are also conserved. The links correspond to
redundancy between couples of gene sets (functional redundancy in light gray, dark gray if also the Jaccard–index intersection is significant).
The names annotated on the top of the map denote areas of the network containing signatures associated with the same biological function.
The interactive online version of this map can be browsed as an instance of Google Maps, with the possibility of zooming in and out, getting
description of gene signatures, and visualizing data (various gene set scores, such as GSEA or ROMA scores) on top of the map
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(composed of cell cycle, mRNA translation, splicing, MYC targets,
protein degradation, and oxidative phosphorylation). Of particular
interest is the fact that, in this component, it is possible to clearly
separate the signatures associated with the different cell cycle
phases. The cluster of tumor microenvironment instead comprises:
immune system, inflammation, tumor necrosis factor–α pathway,
interferon, and extracellular matrix/epithelial–mesenchymal tran-
sition (EMT).
The map contains also other seven much smaller connected

components. Among them, there are transcription, neuronal
system, and some small components (not explicitly labeled on
the map) that represent connections between genes system-
atically correlated in previous meta-analyses (GNF219 and GCM20).
The two clusters constituting the largest connected component

are connected through an area of signatures (dark red nodes on
the map) associated with Experimental perturbations of Immune
cells (EI). Indeed, the informative signatures derived from EI are
split into two main areas (see Fig. 4): one belongs to the tumor
microenvironment component and it is strongly linked to the
immune system/inflammation signatures. The second is part of
the proliferation component, strongly linked to the cell cycle area.
We considered that such unexpected configuration could be
caused by the presence of gene sets belonging to the EI category
but obtained from the comparison of two conditions character-
ized by a strong difference in proliferation To test this hypothesis,
the dataset used to define the MSigDB signature “LEE_NAIVE_-
T_LYMPHOCYTE”, obtained from the expression profiling of
human CD4+ T cell during differentiation induction, was re-
analyzed21 (see Supplementary Figure S2). The informative
signatures differentially activated during the experiment (differ-
entiated vs. undifferentiated states) were detected as described in
the Methods section. The two areas of EI signatures show an
opposite behavior coherent with that of the signatures around
them. Indeed, the EI area near cell cycle shows a donwregulation
in the differentiated cells, while the areas belonging to the
immune cluster are upregulated. This confirms our starting
hypothesis that, when EI signatures are used to analyze an
expression dataset, their deregulation can be due to a variation in
proliferation rather than in the immune system functioning. To
avoid this uncertainty, a reorganization of the EI signatures (part of
the MSigDB C7 collection) in several categories would be
recommended for their future use in data analysis.
Another non-intuitive observation is that signatures coming

from the same collection tend to co-localize in the map and data-
derived signatures tend to be clearly separated from knowledge-
based ones. The discrepancy between data-derived and
knowledge-based signatures can be explained by the fact that
the transcriptional readouts of a biological process might be very
different from the genes involved in the process itself. Yet, another
observation is that higher functional redundancy exists between
signatures of the same collection rather than between signatures
describing the same biological function. The only two exceptions
to this trend, to some extent, are the MSigDB H collection and the
SPEED signatures (although several non-informative SPEED
signatures are clustered together). These compendia indeed
resulted to be well spread around the map, confirming that they
are able to efficiently capture the main biological signals encoded
in the transcriptomic data. Nevertheless, some areas such as
mRNA translation, transcription, splicing, and protein degradation
were not covered by any of the H and SPEED signatures, indicating
that other signatures are needed to have a complete portrait of
the transcriptomic landscape.
InfoSigMap was developed to simplify the navigation

and interpretation of the gene set score distributions. In the next
section, some examples of typical analysis scenarios where
InfoSigMap can be used to formulate consistent biological
hypothesis are presented.

InfoSigMap can be used to visualize the results of transcriptomic
data analysis

InfoSigMap is tested to investigate the alterations affecting the
transcriptome of the three aforementioned typical cancer
problems: (i) colorectal cancer KRAS mutated vs. wild type;10 (ii)
colon cancer metastatic vs. primary (same samples profiled with
two platforms: RNA-seq and microarrays);11 (iii) tumor vs. normal
in four tissues (lung,12 gastric,13 colon,14 cervix15), and (iv) breast
cancer late vs. early stage (from two data sources: TCGA and
METABRIC16). The obtained results are shown in Fig. 5 and
Supplementary Figure S3 (for the procedure, see Methods
section). First, we show that the InfoSigMap profiles for the same
type of analyses in the same cancer type stay the same,
independently from data source (case iv) and platform (case ii)
used (see Supplementary Figure S3). Then the biology of cases (i)-
(iii) is discussed in detail:

(i) Colorectal cancer KRAS mutated vs. wild type: The impact of
KRAS mutation on the transcriptome of colorectal cancer
(CRC) is investigated with InfoSigMap (Fig. 5a). KRAS
mutated CRC patients are known to be resistant to standard
epidermal growth factor receptor (EGFR) inhibitory treat-
ments.22,23 The output of our analysis can thus give some
indications concerning possible new processes to be
targeted in KRAS-mutated patients. The strongest effect
reported in Fig. 5a (bright red area) is the upregulation of a
subset of the metastatic signatures. This result fits with
previous evidences that KRAS mutation is associated with
metastasis in patients with CRC.24,25 Moreover an alteration
of the metabolism is detectable from an upregulation of the
mitochondria and oxidative phosphorylation areas. This
result fits with previous experimental evidences. Indeed
KRAS mutation has already been shown to induce mito-
chondrial oxidative stress, responsible for the so-called
Warburg effect, a metabolic alteration fundamental for
cancer cell proliferation.26–28 In CRC, KRAS mutation also
causes an alteration of the transcriptional response and
amino acid metabolism machineries, two processes involved
in cancer cell proliferation and maintenance.29,30 This effect
is captured in our analysis by the upregulation of the mRNA
translation/protein metabolism areas of InfoSigMap.

(ii) Colon cancer metastatic vs. primary: The differential module
activity between metastatic and primary colon cancer (CC) is
investigated (Fig. 5b). As expected, an upregulation of the
collagen/EMT area of the network clearly appears on the
map. An upregulation of the miR-21 targets whose role in
EMT is well known is also observed.31,32 Moreover, the areas:
splicing, mRNA metabolism, and protein metabolism,
resulted to be significantly upregulated. This is not
surprising given that the aberration of the RNA-processing
machinery (stability, metabolism, splicing, and polyadenyla-
tion) is known to be associated with cancer initiation and
progression. In CC, beta-catenin (CTNNB1), involved in the
Wnt pathway, is generally the cause of the RNA-processing
alterations.33–35 This is confirmed in InfoSigMap; indeed
CTNNB1 is found active as shown by the upregulation of its
targets (node FEVR_CTNNB1_TARGETS). The study of the
cancer-specific RNA metabolism is a relatively unexplored
area of research, with potentially significant implications for
the prevention and treatment of CC. The above results
confirm the experimentally observed CTNNB1-mediated
alteration of the RNA-processing machinery. On the other
side, a strong downregulation of the cells’ proliferative
activity can be observed. This phenomenon has already
been documented and found associated with poor prog-
nosis in CRC.36,37 The observed slow proliferation in
metastatic CC may be caused by a high proportion of
cancer stem-like cells. Indeed, stem cells are in a quiescent
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state, which could explain the cell cycle downregulation
identified in our analysis. The hypothesis of a high stem cell
concentration is also confirmed by the significant down-
regulation of the immune area. Indeed, the stem-like
phenotype of metastasis-initiating cells is generally asso-
ciated with immune evasive quiescence, even if this point is
not well documented in CC.38

(iii) Tumor vs. normal in four tissues: We then compare tumor vs.
normal tissue in cervix, colon, gastric, and lung cancer
(Fig. 5c–f). A global feature present in all four tissue types is

the upregulation of the connected component associated
with the core cellular functions. This is not a surprising
result, since cancer cells generally inactivate tumor sup-
pressors and hyperactivate oncogenes to promote sustained
proliferation, alter autophagy and the various steps of the
RNA transcription and translation processing machinery,
develop metabolic imbalances, and enhance resistance to
mitochondrial apoptosis.39 The microenvironment-associated
connected component instead shows a dual behavior. It is
significantly upregulated in cervical and gastric cancer and

Fig. 5 Results of InfoSigMap applied to some typical data analysis scenarios. Four examples showing how InfoSigMap provides an insightful
interpretation of the lists of significantly enriched signatures, which are usually presented in a tabular form. The significant fold changes
resulting from the differential ROMA analysis (see Methods section) are plotted on the top of the map according to a heatmap coloring
highlighting upregulated (red) and downregulated (green) gene signatures. The layout of the map is the same in all six panels as in Fig. 4. The
plots are organized as follows: a KRAS mutated vs. wild type colorectal cancer; bmetastatic vs. primary colon cancer, and c–f tumor vs. normal
tissue in cervix, colon, gastric, and lung, respectively
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downregulated in the colon and lung. The results thus
suggest a different role of the immune system in these four
tumors. A possible explanation is that the tumors are
associated with different levels of antigenicity, i.e., the
extent to which tumor cells display HLA-restricted antigens
that can be selectively or specifically recognized by T cells.40

Tumors with low antigenicity hide against cytotoxic attack
leading to a passive escape from anti-cancer immune
defense. This hypothesis is supported by the observation
that the HLA signature in our network (GNF2_HLA_C) is
concordantly downregulated in the lung and colon and
upregulated in the cervix and gastric. Moreover, lung cancer
association with low antigenicity has already been
reported.41 The tumor antigenicity is one of the aspects
that seem to determine whether a patient will respond to a
given immunotherapy. A comprehensive pan-cancer classi-
fication of the immune component behavior could give
indications regarding those individuals who are most likely
to respond to immune-based therapies.

DISCUSSION

Data-driven and a priori knowledge-based gene signatures are
largely used in cancer studies to score clinical samples according
to distinct tumor subtypes, identify important cellular responses to
stimuli, predict clinical outcomes, and quantify the activation of
signaling pathways. Nowadays, signature collections are getting
larger, providing the benefit of a more complete coverage of the
existing biological processes. However, the growth of these
compendia is posing two main challenges related to the reliability
and the redundancy of the collected gene sets.
Here we developed a new methodology for assessing the value

of a gene set, which is based on the notion of informative
signature, i.e., a gene set able to systematically and robustly rank
tumor samples in many independent datasets. A restricted
collection of 962 informative gene sets is suggested for
transcriptomic data analysis in cancer biology.
The methodology used for the selection of the informative

signatures currently relies on Principal Component Analysis (PCA),
a linear matrix factorization technique optimal for close-to-normal
data distributions. In particular, the gene set overdispersion
estimation is based on a linear model of gene regulation.42 For
complex datasets, recapitulating many different and dynamically
changing transcriptional programs, non-linear and strongly non-
Gaussian features might play an important role. In this case, the
suggested approach should be generalized by using, for example,
principal curves, principal manifolds, or even more complicated
branching data approximators.43–45 This might be particularly
important in the case of exploiting the data coming from the
application of single-cell sequencing technology.46 However, the
concepts of informative gene signature and functional redun-
dancy introduced in this study should be useful and instrumental
independently on the concrete methodology used for quantifying
them. In the current method, we exploit only the major direction
of the variance, reflected in the first principal component; in the
future, we will envisage considering two-dimensional modes of
pathway activation, characterized by activity of two or even more
hidden factors.
The robustness of the information content enclosed in our

compendium is tested here on several scenarios of typical cancer
problems. The results show that an informative gene set has much
higher chances to be selected (enriched) in a typical scenario of
transcriptomic data analyses, even in the ones using supervised
methods, and that the eigengenes of the majority of the
informative signatures tend to be conserved across cancer types.
The redundancy of the informative collection is then investigated,
showing that functional redundancy is a frequent phenomenon

not captured by the previously proposed approaches. We
developed InfoSigMap, a user-friendly interface designed for
insightful data visualization. The advantage of using our map with
respect to the classical tabular outputs of GSEA or analogous tools
is proved by the wide use of pre-existing tools with a similar aim
(e.g., Enrichment Map, GOIorize, and ClueGO). At the same time,
InfoSigMap has multiple novelties with respect to those tools. It is
a map of informative signatures and not only of Gene Ontology
(GO) categories. Moreover, a link between two signatures in
InfoSigMap reflects the existence of a functional redundancy
between the two gene sets, never considered before.
The NaviCell-based implementation of InfoSigMap allows easy

integration of our tool in any pipeline for omics data analysis (from
Java, R, or Python programming languages) using simple REST API.
InfoSigMap is already used for the interpretation of Independent
Component Analysis results in the BIODICA software (https://
github.com/LabBandSB/BIODICA) and of cBioPortal data using
NaviCom web-service.47

InfoSigMap was applied on some typical scenarios of cancer
data analysis. The obtained results showed that a global view of
the concordant behavior of functionally redundant signatures
leads to an insightful interpretation with respect to what can be
deduced from simple lists of significant signatures. In all four
analyzed cases, the obtained results were found to fit with the
previous experimental knowledge, confirming the reliability of our
approach. However, also some indications concerning new
candidate mechanisms to be experimentally investigated were
extracted, showing how InfoSigMap can help in the formulation of
new biological hypothesis.

METHODS

Definition of “an informative signature”

PCA is applied to a gene expression data table where columns correspond
to the genes from a selected gene set and where rows correspond to
samples. If the variance explained by the first principal component
computed for such a table is significantly larger than for a random set of
genes of the same size then the considered gene set is called
overdispersed. Intuitively, an overdispersed gene set has a stronger
contribution to the data variance than expected by chance. Similarly, if the
ratio between the variances explained by the first and second principal
components computed for the aforementioned table is larger than for a
random set of genes, then the given gene set is called coordinated.
Intuitively, the existence of a statistically significant gap between the first
and the second eigenvalue of the covariance matrix corresponds to an
overall increase in the pairwise correlations between the genes of the
signature and what can be observed at random. The advantage of having a
coordinated gene set is that it defines an axis of principal variance in the
multi-dimensional distribution of samples and thus robustly ranks samples
independently on the group to which the samples belong (see Fig. 1). In
the context of cancer biology, we define informative a gene set that is
simultaneously overdispersed and coordinated in more than two cancer
types.

Transcriptomics data used in our analysis

To systematically search for informative signatures, a large pan-cancer
TCGA compendium of gene expression data derived from 32 solid cancer
types (ACC, BLCA, BRCA, CESC, CHOL, COAD, DLBC, ESCA, GBM, HNSC,
KICH, KIRC, KIRP, LGG, LIHC, LUAD, LUSC, MESO, OV, PAAD, PCPG, PRAD,
READ, SARC, SKCM, STAD, TGCT, THCA, THYM, UCEC, UCS, UVM) was used.
The data were downloaded from TCGA and normalized. An overview of the
samples available for the different tumor types is reported in Supplemen-
tary Table S1.

Collections of signatures used in the analysis

A vast collection composed of both data-derived and a priori knowledge-
based signatures was considered as input for our analysis. The signature
collections: Molecular Signature Database (MsigDB v5.2),17 ACSN,48 the top
ontributing genes of the components identified by Biton et al. (here
denoted as CIT),49 and the SPEED,8 have been downloaded, obtaining a
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complete collection of 12,096 signatures. We consider as data-derived
signatures: CIT, SPEED, and some MSigDB categories (clusters of genes co-
expressed in microarray compendia (C4), signatures of oncogenic pathway
activation (C6), the large collection of immunological conditions (C7), and
chemical and genetic perturbations (CGP) part of the MSigDB collection
canonical pathways and experimental signatures curated from publica-
tions (C2)). We consider as knowledge-based signatures: ACSN and the
MSigDB categories: genes sharing cis-regulatory motifs upstream or
downstream of their coding sequence (C3), genes grouped according to
GO categories (C5), and canonical pathways, including the well-known
BIOCARTA, KEGG, and REACTOME databases. The MSigDB collections
genes grouped by their location in the human genome (C1) and the H are
not associated with any of the two previous classifications.

Procedure for the prioritization of those signatures that are
informative in cancer biology

To detect which of the starting 12,096 signatures were informative, we
employed the Representation and quantification Of Module Activity
(ROMA) tool, designed for the robust detection of overdispersed and
coordinated gene sets.42 The activity of each signature was thus evaluated
in all the 32, previously described, expression datasets separately. We
considered two p–values output of ROMA: the first one associated with the
variance explained by the first principal component (ROMA L1 score)
and the second one associated with the ratio between the variances
explained by the first and second principal components (ROMA L1/
L2 score). The two p-values have been corrected for multiple testing
through Benjamini–Hochberg method. We will thus denote in the
following with P_FDRs the corrected p-values. Only those signatures
having the two P_FDRs <0.05 in at least two tumor datasets were
prioritized. To evaluate the number of false positives produced by our
analysis, we designed a null model constituted by 1000 random signatures.
These signatures have been built by sampling the size distribution of the
starting 12,096 signatures and by extracting random genes for each one of
the size percentiles. The genes for the null model have been randomly
picked from the list of all the genes contained in the 12,096 signatures
maintaining repetitions. Therefore, if a gene was present in 100 signatures
in the original collection, it is present in multiple signatures also in the null
model. We are thus preserving signatures dependences at least to some
extent. The procedure described above to detect informative signatures
was applied to this collection of 1000 random signatures. None of these
random signatures was found informative. Finally, we tested whether our
analysis was biased by the use of TCGA data. Six hundred and ninety-two
out of the 962 signatures remain informative for non-TCGA cancer datasets
(colon 98 samples, cervix 33 samples, lung 58 samples, gastric 38 samples,
and METABRIC breast cancer 1454 samples) (Supplementary Table S2)
Note that the non-TCGA datasets, except that of METABRIC, are smaller (in
terms of samples) than the TCGA ones originally used for detecting
informative signatures.

Test of the informative signatures in typical cancer analysis
scenarios

Our hypothesis that an informative gene set is more likely to be enriched
in a typical transcriptomic data analysis, is tested by using GSEA,17 a well-
known and widely adopted supervised approach.17 GSEA was applied to
three typical cancer-related examples using the entire collection of
12,096 signatures. The set of significant signatures was determined
selecting those with a GSEA FDR q-value <0.05. The statistical significance
of the number of informative signatures present in the output of the GSEA
analysis was evaluated through a Fisher’s exact test.

Comparison of Informative signatures vs. Hallmarks

The procedure described in the previous section was repeated also for the
MSigDB H. The performances of our informative collection were then
compared with those of the H using both Fisher’s exact test p–values and
odds ratio. The distributions of the absolute GSEA NES for the two
collections were studied, and the significance of the difference between
the two distributions was evaluated through KS test.

Evaluation of the signatures eigengenes conservation across
cancers

Accorginly to the definition introduced in ref. 9, eigengene is one of the
right singular vectors of the gene expression matrix. Considering the

singular value decomposition of a gene expression matrix (gene vs.
sample) X = USV, eigengene is a row vector from matrix V, corresponding
to the largest value on the diagonal of S. The metasample or sample
activity profile is the U vector, corresponding to the largest value on the
diagonal of S. The eigengenes associated with the informative signatures
have been computed on all the 32 analyzed datasets (as a result of the
PCA). For each informative signature, the pair-wise correlation between the
eigengenes obtained in the 32 cancer types were computed and a
conservation score was obtained as the absolute logarithm of the
geometric mean of the Pearson correlation p-values.

Comparison between functional redundancy and intersection size
of gene sets

For each couple of gene sets, we have compared their normalized
intersection size (JI) vs. their functional redundancy. The functional
redundancy for a couple of gene sets was measured according to a two
steps process. First, Pearson correlation coefficients between the
metasamples associated to the two signatures were computed in each
of the 32 cancer datasets. We thus obtained 32 correlation scores for each
couple of signatures. Then to summarize them, their average was
computed.

InfoSigMap construction procedure

The construction of InfoSigMap involved three main steps: (i) creation of
the signature redundancy graph; (ii) definition of its layout, and (iii)
representation of the graph as an interactive online map. In line with what
has been already done in Enrichment Map, GOIorize, and ClueGO,2,4,6 the
first step is performed by organizing the 990 signatures (corresponding to
the 962 informative collection plus all H and SPEED signatures even if they
were not shown to be informative) into a weighted network, where each
signature is a node and links represent redundancy between couples of
gene sets. Differently from the previously mentioned Cytoscape plug-ins,
the links of our network are weighted averaging over two measures of
signatures redundancy: compositional (JI) and functional redundancy
(computed as described above). A link is present between two nodes only
if the corresponding signatures have a functional redundancy >0.7. This
threshold is justified by appearance of distinguishable but still connected
functional components in the graph. For the second step of graph
structure representation, a different shape is used to denote the gene sets
that are only informative (diamond) and those that are also conserved
(circle), while the node size denotes the number of genes in the signature.
Links are also classified into two classes, dark gray is used for those edges
that connect signatures being both functionally redundant and having a
significant JI, while light gray denotes links only associated with functional
redundancy. Finally, the thickness of the links is proportional to their
weights, the standard Cytoscape organic layout is used to spatially
organize the largest connected component of the network and smaller
components or unconnected nodes were positioned by using the structure
of weaker correlations. The areas of the network containing signatures
associated with same biological functions are then identified and manually
annotated on the top of the map to help the navigation of the users. In
addition, also a purely data-driven layout was computed by applying tSNE
dimension reduction method to the matrix of average pairwise correlations
between the meta-samples defined by our signatures in all cancer types.
This view of the InfoSigMap is available at http://navicell.curie.fr/pages/
maps_avcorrmodulenet.html (View/tSNE selection in the right-hand panel).
Finally, the representation of the network as an interactive online map is
achieved by using NaviCell,50 powered by Google Maps API.

Using InfoSigMap to have a global view of the signatures behavior

Gene sets can be tested for differential activity across different
experimental conditions using a tool of choice (e.g., GSEA, ROMA). Here
the activity of the informative signatures is evaluated by applying ROMA,
then the differential module activity is evaluated by Student’s t-test, and
fold change applied to the ROMA activity scores. Finally, the fold changes
associated with a significant Student’s t-test p-value (<0.05) are mapped to
the nodes of InfoSigMap as a color gradient, from red (upregulation) to
white (no significant change) to green (downregulation), using the map
staining approach described in ref. 50 The map is thus colored in the
territories around each node creating a continuous colored pattern that
helps a qualitative appreciation of the concordant/discordant behavior of
large map regions.
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Data availability

The pan-cancer transcriptomic datasets used in this study are freely
available on the TCGA data portal https://portal.gdc.cancer.gov. The
InfoSigMap tool together with the.gmt file of the prioritized signatures
are available at http://navicell.curie.fr/pages/maps_avcorrmodulenet.html.
The tools and resources used in this study are publicly available. Custom
codes used in the study are available upon request.
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