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Abstract

Background: Classification methods of DNA most commonly use comparison of the differences in DNA symbolic

records, which requires the global multiple sequence alignment. This solution is often inappropriate, causing a

number of imprecisions and requires additional user intervention for exact alignment of the similar segments.

The similar segments in DNA represented as a signal are characterized by a similar shape of the curve. The DNA

alignment in genomic signals may adjust whole sections not only individual symbols. The dynamic time warping

(DTW) is suitable for this purpose and can replace the multiple alignment of symbolic sequences in applications,

such as phylogenetic analysis.

Methods: The proposed method is composed of three main parts. The first part represent conversion of symbolic

representation of DNA sequences in the form of a string of A,C,G,T symbols to signal representation in the form of

cumulated phase of complex components defined for each symbol. Next part represents signals size adjustment

realized by standard signal preprocessing methods: median filtration, detrendization and resampling. The final part

necessary for genomic signals comparison is position and length alignment of genomic signals by dynamic time

warping (DTW).

Results: The application of the DTW on set of genomic signals was evaluated in dendrogram construction using

cluster analysis. The resulting tree was compared with a classical phylogenetic tree reconstructed using multiple

alignment. The classification of genomic signals using the DTW is evolutionary closer to phylogeny of organisms.

This method is more resistant to errors in the sequences and less dependent on the number of input sequences.

Conclusions: Classification of genomic signals using dynamic time warping is an adequate variant to phylogenetic

analysis using the symbolic DNA sequences alignment; in addition, it is robust, quick and more precise technique.

Background

The classification of biological sequences (e.g. DNA, RNA,

or protein) based on their similarity is a well-known pro-

cedure. The similarity between two DNA sequences deter-

mined by their evolutionary distance can be used to

evaluate the evolutionary relationships of organisms. The

evolutionary tree of all living organisms was constructed

this way. However, all common methods use a symbolic

notation of biological sequences (e.g. symbols A, C, G, T

for notation of DNA bases). These methods are usually

slow due to high computational complexity. They have

low level resistance to errors in the sequences and the

application of mathematical evaluation is difficult. The

transformation of the biological sequence to a digital

genomic signal is a known approach; however there exist

only a few methods for subsequent signal analysis [1,2].

One of the possible DNA representations as a genomic

signal is a phase determination of complex numbers

assigned to the four symbols of DNA record [3,4]. The

phase curve of DNA has a characteristic shape for differ-

ent organisms. This specificity has been proved especially

for complete genome [5]. We show that individual genes

identified in different species can have a specific character
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too. For example, the coding segments with different fre-

quencies of symbols have the similar trend. These seg-

ments are variously distributed in different sequences

because their noncoding sections have different length.

The mutations in few nucleotides slightly affect the shape

of signals, but the specific trend is preserved. Application

of the dynamic time warping (DTW) adjusts positions of

these specific sections, but the level of signals remains

unchanged. The local differences between sequences can

be still compared. This technique is adequate to global

multiple alignment of symbolic sequences, but it seems

that the dynamic time warping offers wider application

than only sequence alignment in comparative genomics

[6] and the alignment of DNA in signal representation

does not require the substitution matrix. The alignment of

symbols depends on individual symbol changes. Therefore,

the alignment of coding segments is problematic and must

be often corrected manually. Very often, the symbolic

sequence alignment is the source of large number of inac-

curacies in various applications [7-9].

Phylogenetic analysis represents the typical application

of multiple alignments. However, each incorrect assess-

ment causes many imprecisions resulting to incorrect tax-

onomical classifications [9,10]. This paper presents a new

robust method for alignment of biological sequences

based on the dynamic time warping applied to genomic

signals.

Methods

Data description

Actin is a globular structural protein occurring in almost

all eukaryotic cells. The highly conserved primary struc-

ture between all eukaryotes is one of the most unique

properties of actin. The difference in the primary structure

of the human and the yeast actin consists in about 5 per-

cent of amino acids. The actin coding genes in different

organisms are also very similar. We chose these genes to

demonstrate the proposed classification method, because

every individual change of a position in a symbolic repre-

sentation influences a result of mutual similarity. There-

fore, the comparison of sequences is complicated.

The actin occurs in six different isoforms differing in a

function and a sequence structure. We chose one of

them, the alpha actin 1 (ACTA1), which is expressed in a

skeletal muscle cells [11]. Ten different organisms were

chosen for our comparative study, their characterization

is summarized in Table 1. The set of sequences was com-

piled for demonstration of differences between close

organisms and also distant ones. Nine of them are mam-

malian ACTA1 and a one ACTA1 sequence was obtained

from bird tissue. All sequences in this study were

obtained from NCBI database (http://www.ncbi.nlm.nih.

gov/). The sequences represent complete ACTA1 genes

from whole genome shotgun sequences with segments

corresponding to mRNA splicing (introns) and they do

not reflect only final protein product, but complete

genetic information of ACTA1. The length of used

sequences is about 2900 ± 200 bp. The corresponding

protein products have the same length of 377 aminoa-

cids, without substitutions.

Conversion of DNA sequence to genomic signal

The first step of the DNA classification method is the

transformation of DNA symbolic record to numerical

form. This procedure is very important, because all bio-

logical properties described in the original symbolical

form must be maintained in the final genomic signal.

We chose the method of conversion representing DNA

sequence by the cumulated phase [4].

The transformation technique replaces each of four

symbols by its complex value: A [1,j]; C [-1,-j]; G [-1,j];

T [1,-j]. The final cumulated phase corresponds to the

value of gradually accumulated sum of angles in com-

plex representation of a DNA sequence and can be cal-

culated for every single position in the DNA sequence

by: (1)

�cum =
π

4
[3 (nG − nC) + (nA − nT)] (1)

where nA, nC, nG, and nT are numbers of adenine,

cytosine, guanine, and thymine nucleotides in the

sequence, from the first to the current location.

The representation of the DNA sequence by cumulated

phase maintains the chemical and structural information

about original sequence [3,4]. The positional information

must be kept to enable the mutual comparison of two

sequences. Three curves of cumulated phase for human,

rhesus macaque and chicken are shown in Figure 1a. The

graphical representation of all 10 genomic signals in a

single picture would appear too complex. The pairs of

close sequences (human - rhesus macaque) and distant

sequences (human - chicken) were selected for demon-

stration of each step of signals processing. The similarity

between human and rhesus macaque cumulated phase is

well evident. The curve of chicken ACTA1 cumulated

phase is the most different from all other chosen organ-

isms, because other organisms are mammals. However,

the certain degree of similarity is still distinguishable.

This fact points to the suitability of the alignment tech-

niques to assess the similarity of sequences. The classical

symbolical methods for reconstruction of the similarity

diagram from the set of sequences employ the global

multiple sequence alignment. These techniques find local

similarity in equal positions in sequences and thus are

errors inclinable. An approach based on evaluation of

similarity between complete signals is expected to be

more robust. The resulting distance between genes

depends on a trend of each curve.
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The dynamic time warping seems suitable for adjustment

of derived genomic signals. DTW originally serves for pro-

cessing of digital signals sampled at defined time instances.

In genomic signals, time instances are represented by

indexes of nucleotides. The signals based on cumulated

phase carry not only useful information, but also noise.

Genomic signals preprocessing is necessary to accentuate

the position information.

Genomic signals preprocessing

The preprocessing of genomic signals consists of four

steps. The aim is to obtain size adjusted signals suitable

for time alignment or, in our case the signals with adjusted

size of phase suitable for sequence position alignment. In

the first step, the genomic signals were filtered by a simple

median filter with a window size of four samples. This sig-

nal modification ensures that the values of individual sam-

ples do not affect the similarity comparison, but only the

significant trend in the signal.

One of the main disadvantages of the symbolic sequence

alignment is the requirement to compare all positions.

Alignment of the signal representation of genes compares

the common segments. Thus, we need to keep only the

important components of the signal and we do not need

all samples. The second step of preprocessing consists in

resampling of signals. The resampling (downsampling)

depending on spectral distribution of signal components

represents the second stage of preprocessing. The ratio of

resampling was estimated based on the power spectrum of

genomic signals. The downsampling factor was set to the

value of 10. The new sampling frequency (fs) of the signal

was set with respect to preserve 99.5 % of signal spectral

energy.

In the third step, normalization of signals level between

1 and 0 was performed using the linear transform function

to ensure the consistent range of values of all signals.

Signals of cumulated phase contain significant trend

caused by principle of evaluation of the phase. However,

the trend does not carry useful information regarding

alignment. The trend has nonlinear character and it is

necessary to remove it for comparison of local genetic

information regardless of the position in the signal. Thus,

polynomial detrendisation procedure is the final (fourth)

step of genomic signals preprocessing. The estimation of

polynomial trend and resulting signal after its removal is

shown in Figure 1b. The fourth order polynomial function

was found the most suitable for this purpose.

Three signals from Figure 1a were replotted after all

mentioned modifications and are shown in Figure 1c. The

signals of human and rhesus macaque are almost identical.

Table 1 The specifications of ten DNA sequences from different organisms coding ACTA1

Organism Chromosome Accession Region (sequence position) Sequence length (bp)

Homo sapiens (human, Hominidae) 1 NC_000001.10 229566993.. ..229569844 2852

Pongo abelii (Sumatran orangutan, Hominidae) 1 NC_012591.1 20230379.. ..20233215 2837

Macaca mulatta (Rhesus macaque, Cercopithecidae) 1 NC_007858.1 227524284.. ..227527141 2858

Callithrix jacchus (Common marmoset, Cebidae) 19 NC_013914.1 15737624.. ..15740450 2827

Mus musculus (House mouse, Muridae) 8 NC_000074.5 126415668.. ..126418637 2970

Rattus norvegicus (Brown rat, Muridae) 19 NC_005118.2 54081497.. ..54084509 3013

Sus scrofa (Wild boar, Suidae) 14 NC_010456.4 65236451.. ..65239197 2747

Bos taurus (Cattle, Bovidae) 28 NC_007329.5 427530.. ..430286 2757

Equus caballus (Horse, Equidae) 1 NC_009144.2 68408850.. ..68411788 2939

Gallus gallus (Chicken, Phasianidae) 3 NC_006090.3 39337938.. ..39340802 2865

Figure 1 Genomic signals preprocessing. a) The record of cumulated phase of the DNA sequences of tree different organisms. b) The

principle of detrendization of genomic signal of human ACTA1. c) The resulting preprocessed genomic signals ready for DTW.
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The signals of human and chicken are more different with

a several similar segments, which are shifted in amplitude

and position.

DTW of genomic signals

The dynamic time warping is mostly used for the speech

analysis [12]. The same spoken word in the speech of dif-

ferent people has the same meaning (signal has the same

shape), but its timing and offset is specific for each person.

The dynamic time warping method can adapt the timing

and offset of signals [13]. This property can be used for

DNA analysis if the DNA sequence is in the form of geno-

mic signal. The time variable is transformed to the nucleo-

tide position and amplitude to the cumulated phase of

signals. The word from a spoken language is reflected as a

common motive of sequences, most often exons.

We know that ACTA1 protein sequences have 100 %

consensus in amino acids. The differences between organ-

isms are only in sequence segments of gene, which are not

translated to protein i.e. introns. These segments have

dynamic position in sequences; therefore it is necessary to

use the methods of dynamic programming, such as DTW.

The principle of biological signal alignment using DTW is

shown in [14]. This technique aligns sample values based

on the minimization of the distance between pairs of sam-

ples. Stretching of one or both signals is realized by repeat-

ing of the selected samples. The criterion for alignment

and repetition of samples is determined by the table of

accumulated distances. The values of accumulated dis-

tance are calculated from pairwise distances for each pair

of samples in accordance with (2).

D(i, j) = min[D(i − 1, j − 1), D(i − 1, j), D(i, j − 1)] + d(i, j) (2)

where D symbolizes accumulated distance and d is a

value of pairwise distance. The value of accumulated dis-

tance D (i, j) is determined by pairwise distance d (i, j)

and minimum from the previous values of accumulated

distances. This set of accumulated distances for each pair

of samples forms a table. The results sequence warping is

derived on the basis of minimization of the backward

way from the right upper corner to the left lower corner.

The application of the DTW on genomic signals is

shown in Figure 2. It is no surprise that the signals of

ACTA1 from rhesus macaque and human are not very

different. The use of the DTW in the case of alignment

of human and chicken ACTA1 was more necessary. The

resulting signals in Figure 2 (lower image) are signifi-

cantly positionally adapted. The difference between

aligned signals is caused by an insufficient amplitude

adjustment.

The proposed method is based on alignment of each

pair of genomic signals. The described genomic signals

preprocessing in combination with a pairwise alignment

by the DTW allows mutual adaptation of signals pairs.

The resulting genomic signals have generally different

lengths than the both original signals.

Similarity analysis

The similarity of two adapted signals is determined by

their Euclidean distance normalized to the length of

aligned signals. The distance matrix for cluster analysis is

constructed from the mutual similarity values calculated

for each pair of signals adapted by the DTW. The dis-

tances were normalized to the range <0,1>, because the

level of signals pairwise similarity does not have any phy-

sical meaning for evolutionary relationships in final den-

drogram. These normalized values reflect only the

mutual similarity of the set of genomic signals without

information about length and amplitude of genomic sig-

nals, which is desirable.

Results

The result of our new approach for sequence similarity

analysis is represented by the dendrogram reconstructed

from 10 genomic signals of ACTA1. The same dendro-

gram or phylogenetic tree was reconstructed from the

same 10 ACTA1 in classical symbolic form. The method

UPGMA (Unweighted Pair Group Method with Arith-

metic Mean) was used for phylogenetic tree reconstruction

[7]. It allows appropriate comparison with our dendro-

gram [15]. The evolutionary distance in phylogenetic tree

was evaluated by Jukes-Cantor method [16]. The set of

DNA sequences was aligned using the global multiple

alignment with setting gap penalty equal to 8 for gap open

and gap extension too.

The result trees are shown in Figure 3. The Figure 3a

represents the dendrogram reconstructed from genomic

signals analysed by the proposed method. The classical

phylogenetic tree is shown in Figure 3b.The grouping

into clusters in lower tree corresponds to vertebrate phy-

logeny. Especially the mammals’ distribution into two

clusters of euarchontoglires (supraprimates) and laura-

siatheria is correct. The mammals’ clustering in phyloge-

netic tree reconstructed by a classical phylogenetic

method from symbolic records of sequences is not identi-

cal with this.

The robustness of trees is represented by operational

taxonomic unit (OTU) Jackknife analysis [17]. The stan-

dard technique for testing of tree topology robustness is

bootstrapping, but this technique can not be used for

genomic signals [18], because our methodology depends

on a trend of signals, not only on one position of original

sequence. The impact of every single position was elimi-

nated by downsampling and median filtration. The OTU

Jackknifing evaluates robustness of the tree as stability of

all its nodes. The stability is computed as percentage of

occurrence of the each original node in pseudotrees with

removing random number of OTUs.
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The result values of OTU Jackknifing are evaluated in

both trees. The topology of the tree reconstructed by our

method (Figure 3a) will not change if we remove any

sequences. The standard phylogenetic tree (Figure 3b)

does not have sufficiently robust three nodes, because

even a single missing sequence can affect multiple align-

ment and thus the whole phylogenetic analysis. However,

the result accuracy depends on setting of preprocessing

parameters (i.e. order of polynomial function of trend,

window length of median filter and downsampling fac-

tor). These parameters are based on analysed sequences,

especially on a sequence length and a gene type.

The utilisation of the proposed method for very differ-

ent sequences (different genes with different lengths)

Figure 2 Genomic signals after DTW. Upper - the alignment of human and rhesus macaque genomic signals; lower - the alignment of human

and chicken genomic signals.
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could cause inappropriate setting of preprocessing para-

meters and thus errors in similarity evaluation. This

problem is similar to setting of parameters of global

multiple sequence alignment as scoring matrix or gaps

penalties. Low computational load is the greatest advan-

tage of the similarity analysis of DNA represented by

genomic signals. Moreover, the signal processing time

decreases exponentially with increasing downsampling

factor; this fact is presented in Figure 4b. The graph was

evaluated on the basis of processing of 10 sequences.

The elapsed time for global multiple alignment of this

dataset was 49 seconds on standard PC without parallel

processing. The time for evaluation of the DTW of 10

genomic signals downsampled by factor 10 decreased to

2.1 second. The signal still contains more than 99.5 % of

the useful information after downsampling by ratio 10. In

addition, the Figure 4a shows that the increasing down-

sampling factor has no significant effect on distance dif-

ferences. The values of distance difference were

calculated as the percentage value of sum square differ-

ences between distance table calculated for signals with

and without downsampling. The trend of dependence

between the downsampling factor and the distance differ-

ences is almost linear to the value of 10 of downsampling

factor (details in Figure 4a), and then changes very slowly

increase up to the value of 70. Above the value of 70 of

the downsampling factor, the percentage distance differ-

ences begin to increase sharply, but all these changes do

not exceed 5 percent.

Conclusions
The results show that the genomic signal processing

should have an important place in DNA analysis. Our

application of digital signal processing for the similarity

analysis is only one of the possible solutions. The main

principle of DNA sequences alignment using the geno-

mic signals is an adequate variant to the symbolic DNA

sequences alignment; in addition, it is robust, quick and

more precise technique. The advantage of alignment of

the whole joint sections in signals, not only one position,

suggests the use for finding the common motifs or the

coding segments. Moreover, the signal character is so

specific that the decoding of his features can bring a new

perspective on the issues of content and coding of DNA

sequences.
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Figure 3 The results of genomic signals classification. Similarity analysis of 10 ACTA1 genes presented as a dendrogram constructed from

distance values calculated by: a) Euclidean distance between aligned genomic signals after DTW; -b) the evolutionary distance between

sequences of symbols aligned by global sequence multiple alignment.

Figure 4 The influence of downsampling factor of genomic signals.

a) The dependence of change of pair distance on downsampling; b) The

dependence of DTW processing time on downsampling.
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