
Citation: Ali, M.A.S.;

Balasubramanian, K.;

Krishnamoorthy, G.D.; Muthusamy,

S.; Pandiyan, S.; Panchal, H.; Mann,

S.; Thangaraj, K.; El-Attar, N.E.;

Abualigah, L.; et al. Classification of

Glaucoma Based on

Elephant-Herding Optimization

Algorithm and Deep Belief Network.

Electronics 2022, 11, 1763. https://

doi.org/10.3390/electronics11111763

Academic Editor: Maciej

Ławryńczuk
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Abstract: This study proposes a novel glaucoma identification system from fundus images through
the deep belief network (DBN) optimized by the elephant-herding optimization (EHO) algorithm.
Initially, the input image undergoes the preprocessing steps of noise removal and enhancement
processes, followed by optical disc (OD) and optical cup (OC) segmentation and extraction of
structural, intensity, and textural features. Most discriminative features are then selected using the
ReliefF algorithm and passed to the DBN for classification into glaucomatous or normal. To enhance
the classification rate of the DBN, the DBN parameters are fine-tuned by the EHO algorithm. The
model has experimented on public and private datasets with 7280 images, which attained a maximum
classification rate of 99.4%, 100% specificity, and 99.89% sensitivity. The 10-fold cross validation
reduced the misclassification and attained 98.5% accuracy. Investigations proved the efficacy of the
proposed method in avoiding bias, dataset variability, and reducing false positives compared to
similar works of glaucoma classification. The proposed system can be tested on diverse datasets,
aiding in the improved glaucoma diagnosis.

Keywords: optic disc; optic cup; elephant-herding optimization; deep belief network; circle Hough
transform; modified Wiener filter; reliefF algorithm; glaucoma
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1. Introduction

Glaucoma is a type of ocular neuropathy which threatens vision if left untreated [1].
It is a gradual condition that develops as the ocular pressure rises [2]. Nearly 80 million
people are affected by glaucoma globally [3]. Optic nerves are impaired gradually due to
high ocular pressure [4,5]. Approximately 75–80% of the glaucoma cases are identified only
at the developed stage, which cannot be cured. One cannot visualize any known symptoms
of glaucoma except for narrowing of vision at a later stage [6]. The progression is slow and
painful at certain levels [6]. It requires lifelong treatment, and it is impossible to reinstate
vision loss. Hence, early detection of glaucoma and treatment stands as the best means of
prevention. Concerning the fundamental issue, there is a critical need to build a system that
can function well without the need for excessive equipment, qualified medical practitioners,
or time. Computer-assisted techniques could help detect the disease at its early stages
using advanced machine-learning and deep-learning methods. Trained deep-learning
models could take advantage of minor changes, such as retinal layer thinning, that human
specialists cannot notice.

Nevertheless, the optic nerve damage precipitated slowly develops, and as symptoms
stem from it, the disease advances significantly [7]. Nevertheless, the most up-to-date
technology can probably hinder glaucoma development in patients [8,9]. Figure 1 shows
sample images of normal and glaucomatous eyes.
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Figure 1. Eye shape (normal and glaucomatous eye).

To scrutinize various glaucoma traits, ophthalmologists utilize confocal scanning laser
ophthalmoscopy (CSLO) [10], Heidelberg retina tomography (HRT), optical coherence
tomography (OCT), along with fundus images [11]. For instance, numerous retinal features,
optic nerves head (ONH), peripapillary atrophy, and retinal nerve fiber layer, are perceived
for glaucoma diagnosis [12]. Assessment of increased IOP, abnormal visual field (V.F.),
damaged ONH, etc. are usually investigated for glaucoma [13–15]. The OD is split into
three disparate areas: the cup (central region), the neuroretinal rim, and parapapillary
atrophy [16,17]. The white cup-like structure located in the disc center is the OC. The
ratio of OC size to OD size is normally an important measure analyzed in glaucoma
diagnosis, denoted as the cup-disc ratio (CDR). The main contributions of this paper can be
summarized as follow:

1. Developing an optimized model employing a deep belief network classifier (DBN);
2. Employing modified Wiener filter (MWF), circular Hough transform (CHT), and

Otsu’s thresholding for OD and OC segmentation, respectively;
3. Generating a distinct hybrid feature set to aid in diagnosis;
4. Selecting relevant features through the ReliefF algorithm based on predictive impor-

tance weights;
5. Fine-tuning DBN by elephant-herding optimization algorithm (EHO);
6. Investigating the model’s robustness to noise such as Gaussian and salt-pepper;
7. Analyzing the isolated and combined feature set contribution in glaucoma identification.

The paper is structured as follows: Section 2 outlines various works related to the
proposed method. Section 3 presents the adopted architecture of the method proposed.
Experimental outcomes along with dataset preparation are explored in Section 4. The
conclusion is elucidated in Section 5.
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2. Related Works

A brief literature review based on feature extraction and neural network classifier for
glaucoma detection is elucidated in this section. Raja et al. [18] described a statistical feature
extraction method based on the hyper analytic wavelet transformation (HWT) in which
statistical characteristics were extracted and passed to a support vector machine (SVM).
The particle swarm algorithm is used to adjust the HWT and SVM-RB simultaneously
to get the optimum fit. Issac, A. et al. [19] and Koh J.E. et al. [20] presented a similar
feature extraction strategy for glaucoma classification. Haralick’s features-centered cate-
gorization of glaucoma using back propagation neural networks (BPNN) was suggested
by Samanta et al. [21]. The results of the experiment revealed good accuracy, sensitivity,
and specificity.

Acharya, U. et al. [22] proposed an effective technique that included preprocessing,
picture convolving with filter banks, and the chosen features fed into the KNN classi-
fier. Jun et al. [23] demonstrated a super-pixel-based OD and OC segmentation model
for diagnosing glaucoma. The unreliable results exhibited scope for improvement. Gift
and Nirmal [24] suggested gray wolf optimized NN produce enhanced accuracy for glau-
coma detection through a sequence of steps. Preprocessing, image normalization and
feature extraction were done, and the features were given to the GWO-NN classifier.
Anushikha et al. [25] presented an automated diagnostic system utilizing wavelet features
from the segmented OD, which was extorted for analysis in addition to classification.
Experimental outcomes signified an accuracy of 0.947. Ajesh et al. [26] reported a new
multi-feature extraction approach for glaucoma identification and classification by integrat-
ing discrete wavelet transform (DWT) and ML algorithms that produced an accuracy of
95% in glaucoma identification.

For fine-imaging analysis, DWT was computationally intensive. Diaz-Pinto et al. [27]
provided an automatic technique using retinal structural features and Luv color space for
OD and OC segmentation, obtaining 81% specificity and 87% sensitivity. Studies have
reported numerous methodologies for recognizing glaucoma through CAD. They use
either conventional machine learning, deep learning, or both. Several works related to
the diagnosis of glaucoma using CNN have been demonstrated in the literature [28–32].
The CNN employed was constructed from scratch, and different datasets were used to
investigate the models. Data augmentation via rotation, random flip, image translation,
etc. was performed to increase the dataset size artificially. OCT images were also used to
segment the retinal vasculature apart from the fundus images. The deep networks were
employed to extract and learn the layer properties of the retina using a pretrained backbone
network and reinforcement learning. A multiscale feature generated could then be used
on modules, such as the encoder–decoder, to retrieve retinal information and capture
finer retinal boundaries. Many optimization algorithms are also used to solve the various
optimization problems. A blended approach is adopted in our method, where the features
extracted are selected and passed to an optimized deep network for classification.

3. Proposed Method

This paper reports using the DBN classifier, a robust, novel, and efficient glaucoma
detection method on retinal fundus images (RFI). Input is acquired from fundus databases
and preprocessed for noise removal using MWF. Utilizing CHT, the OD is then segmented
from the noise-removed image. The OC is cropped from the OD image using Otsu’s
thresholding algorithm. Structural and functional features are extorted and fed to the
DBN classifier. The EHO algorithm optimizes DBN’s parameters to obtain a minimum
cost function and the best solution for healthy and glaucomatous classification. Figure 2
illustrates the schematic diagram of the system.
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Figure 2. Flow diagram of the proposed approach.

3.1. Preprocessing

The fundus image collected must be preprocessed to highlight the vessel and other
morphological features. Given the benefits of grayscale images, RBG is converted to
grayscale first [33], then filtered to remove background noise [34]. A modified Wiener filter
is employed to prevent impulse noise while preserving the edges [35]. The noise reduction
aims to protect crucial structural content for disease detection, besides determining noisy
pixels [36].

3.2. OD and OC Segmentation

OD segmentation is done on the image after noise removal. First, the OD location is
identified. Subsequently, edges are calculated through the Canny edge filter. As the OD
in the retina is a circular object, the circle detection Hough transform (CHT) is applied to
identify the area. The boundary positions along with the region of the OD are obtained.
The ROI termed OD is cropped from the original image for further OC segmentation. The
OC is segmented from pre-segmented OD using Otsu’s thresholding [37].

3.3. Feature Extraction

Structural, textural, and intensity-based features contributing to the disease diagnosis
are extorted in this phase [38]. Table 1 lists the set of features generated through this process.

Table 1. List of features extracted.

Structural Features Cup to Disc Ratio (CDR), Neuro Retinal Rim (NRR), Cup Shape

Textural features
Wavelet-based features, gray level co-occurrence matrix (GLCM)
features—energy, correlation, homogeneity, contrast, and entropy gray-level run length—low gray level
run emphasis, gray level non-uniformity, segmentation-based fractal texture analysis (SFTA)

Intensity features Brightness, color moments, super pixels, enhanced local binary pattern (ELBP), speeded-up robust feature
(SURF), pyramid histogram of oriented gradients (PHOG), local energy-based shape histogram (LESH)
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Using the procedure described above, the 111 features extracted are then selected
using the relief F algorithm before being fed to DBN for classification.

3.4. Feature Selection

This stage is critical because rarely discernible characteristics are deleted, putting the
modeling process under more computational strain. In this work, the ReliefF algorithm is
preferred for dimensionality reduction due to its promising results, as explained in [38].
ReliefF ranks features according to their weight participation, with the most active features
being placed first. As illustrated in Figure 3, other features contribute far less to the last
features. As a result, we can choose the 15 most potent features based on their weight and
exclude characteristics that add to the model’s computational cost.
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Figure 3. Weight ranking of features.

ReliefF chooses T, some instances at random, but subsequently, k searches for the
closest same-class neighbors, which are referred to as the nearest hit values of H. The
k-nearest neighbors are the one–one scores among the multiple classes, also known as
the M(T) nearest misses. The number of nearest neighbors is set at three in our study.
The 111 features are reduced to 15 optimal features based on their participation at the top
of the weighted list for the highest accuracy using the procedure described above. The
remaining ones are ignored because there is not much difference in output, which increases
the computing weight of a model. Figure 4 depicts cumulative accuracy vs. a number of
features, and 15 contribute more than the total variations.
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3.5. Classification
3.5.1. Deep Belief Networks (DBN)

The DBN class of neural network (NN) can be considered a generative model that
uses a set of Boltzmann machines as basic building elements [39]. Each layer of the DBNs
has a restricted Boltzmann machine (RBM). DBN extracts H.L. features from the data slated
for training to improve the between-classes separation power. The training is performed
on all the layers through supervised mode, and the backward propagation mode modifies
the weight in the network to reduce over-fitting. This work develops a DBN model trained
using greedy layer-wise learning [40] by stacking up RBMs, as shown in Figure 5.
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Figure 5. Stacked up RBMs model DBN.

RBM concentrates on a particular layer during its learning procedure and ignores
others. We assume we have a DBN with L levels, with Wi being the RBM’s weight matrix
at layer i. In addition, the hidden units at the ith layer form the layer (i + 1) input unit. In
the model proposed, the set of weight matrices is assigned as W = {W1, W2, W3} and the
set of hidden layers as h = {h1, h2, h3}. The weight matrix between layers ith and (i + 1),
which is denoted by Wi, while the jth hidden layer is denoted by hj. The following energy
function was used to compute the combined distribution of the hidden and visible layers:

p(v, h) =
e−E(v,h)

∑v,h e−E(v,h)
(1)

where E(v, h) denotes RBM’s energy function,

E(v, h) = −∑
i=1

aivi −∑
j=1

bjhj −∑
i,j

vihjWij (2)

Wij denotes the weight between the visible and the hidden layer, ai and bj describe
the visible and hidden layer coefficients. This study uses the stochastic gradient descent
(SGD) method following log-likelihood (L.L.) to accomplish optimal training. This is
accomplished by optimizing the RBM’s parameters a, b, and wij. The derivatives of the
log p(v, h) w.r.t Wij, ai and bj must be computed to update the weights and biases. The
resulting equations are

Wt+1 = Wt + η
(

p(h | v)vT − p(h | v)vT
)
− λWt + α∆Wt−1 (3)

at+1 = at + η(v− ṽ) + α∆at−1 (4)

bt+1 = bt + η
(

p(h | v)− p
(

h̃ | ṽ
))

+ α∆bt−1 (5)

where p
(
hj = 1 | v

)
= σ

(
∑m

i=1 wijvi + bj
)
, p(vi = 1 | h) = σ(∑n

j=1 wijhj + ai), and σ(·) rep-

resents the logistic sigmoid function. ṽ and h̃ denote the reconstructed v and h, respectively.
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N is the number of hidden nodes, η, the learning ratio, α, the momentum weight, and λ,
the weight decay. The weight matrix and accompanying bias vectors of the visible and
hidden nodes are learned using contrastive divergence (CD) and persistent contrastive
divergence (PCD). This optimization process uses the BP with the conventional gradient
ascent algorithm to tune the weight matrices to optimal values. The optimization algorithm
considers the outcome of an extra layer built over the DBN after its previous greedy training
to minimize some error metrics. Softmax, or logistic units, are frequently used in this layer.

3.5.2. Elephant Herd Optimization (EHO) Algorithm

The EHO algorithm was introduced by Wang et al. in 2015 [41]. Elephants behave
socially and encompass a complex structure of calves and females. An elephant group
comprises numerous clans with a matriarch as the leader and her calves or other related
females. A female forms a clan. EHO concerns the succeeding assumptions.

• The elephant group is classified into clans, and each such clan comprises specific
elephants.

• A specific number of male elephants (ME) depart their clan to live independently.
• Each clan has a leader termed the matriarch.

The matriarch group keeps the best solution in the elephant herd. The entire elephant
population is divided into j clans. Matriarch ci influences the new position of each elephant
ci. The elephant j in clan ci can be calculated using

xnew, ci,j = xcij + a×
(

xbest, ci
− xci,j

)
× r (6)

where xnew, ci,j indicated the new position and xcij denotes the old position for elephant j in
the clan ci. xbest, ci

represents matriarch ci, which denotes the best elephant. a ∈ [0,1] shows
a scaling factor, r ∈ [0,1]. The best elephant is computed for each clan using

xnew,ci,j = β× xcenter, , i (7)

Here, β ∈ [0, 1] indicates the second parameter that guides the impact of the xcenter,ci,d
delineated in

xcenter,ci,d =
1

nci
×

nci

∑
j=1

xci,j,d (8)

where 1 ≤ d ≤ D, and nci represent the number of elephants in clan xci,j,d is the dth
dimension of individual elephant xci,j,d the center of clan ci (xcenter,ci,d) can be updated
(Equation (8)). The separating process could be modelled as a separation operator when
tackling optimization issues. In each clan, the worst valued elephants are moved to the
next position indicated by

xworst, d = xmin + (xmax − xmin + 1)× rand (9)

Here the lower and upper bands of the search space are indicated by xmin and xmax,
respectively. rand ∈ [0,1] signifies the random value picked from the uniform distribution.

The EHO algorithm was examined for various benchmark set functions and in medical
diagnosis [42–46], showing better results. This study employs the EHO algorithm for DBN
parameter optimization. The output of the DBN model is grounded in weights and the
biases of preceding layers in the network. EHO does not employ the previous individuals
in the later updating process as other optimization algorithms. EHO is a swarm-inspired
algorithm that deals with global optimization missions characterized by clan updating and
searching operations. EHO does not resort to relaxation and is less vulnerable to noise.
They perform better in constrained, optimized environments. High convergence rate and
low localization errors with less execution time are the important characteristics of EHO.
The algorithm can tackle non-convex ML problems directly.
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3.5.3. Fine Tuning of DBM

The learning rate, hidden units, momentum weight, and weight decay are the four
basic parameters set up in most RBMs. The use of traditional methods for computing
the error function is an NP-hard problem due to its complexity and differentiation. Meta-
heuristics have been employed to solve this issue. The EHO algorithm is used to optimize
the DBN training by fine tuning the parameters in this work. Here, the parameters set are

n ∈ [5, 100], η ∈ [0.1, 0.9], λ ∈ [0.1, 0.9] and α ∈ [0.00001, 0.01]

A fitness function must be designed to steer the searching process to attain the best
answers to meet the objectives. Mean squared error (MSE) is adopted as the fitness function.
It measures the error between the output and the desired value and is given by

MSE =
1
T

N

∑
j=1

T

∑
i=1

(Dj(i)−Yj(i))
2 (10)

where T—data number, N—number of the output layers.
The EHO looks for a collection of DBN parameters that minimizes MSE. Dj(i) denotes

the value from the jth unit in the DBN’s output layer at the time ‘t’, Yj(i) represents the jth
factor of the desired value. The process is repeated until the halting criteria is met.

The optimization steps of EHO are as follows:

1. Set the EHO parameters and initialize the population.
2. Evaluate the individual fitness value (RMSE) of the DBN, as per the learning rate and

the number of batch learning. Identify the optimal individual.
3. Check if the termination condition is reached; if so, end the iteration and output the

result; or else, go to the next step.
4. Update each individual position. Reinitialize the individuals beyond the lower and

upper limits.
5. Start a new iteration by updating the optimal individual.

4. Results and Discussion

Evaluation of the proposed model’s performance is presented in this section. The
experiment is executed in MATLAB with the following specifications: the Intel Core i7
Processor, Windows 10, 3.20 GHz CPU speed, and 4GB RAM.

4.1. Dataset Preparation

This work uses DRISHTI–GS1, ACRIMA, ORIGA-Light, and LAG datasets for evalu-
ation. The images were captured utilizing a Canon CR-1 fundus camera at 2336 × 3504
resolution with a 45◦ FOV and a disparate acquisition setting. The dataset used in the
methodology is from public and private datasets annotated by an ophthalmologist who
has over 15 years of experience in the field. The list of databases is depicted in Table 2.
A total of 7280 images obtained from various public and private databases are used for
investigating the proposed system’s performance after eliminating a few irrelevant images.
Images are trained and tested in the ratio of 70:30, respectively.

Table 2. Dataset labeling.

Database/Images Normal Glaucoma Total Type

DRISHIT-GSI [44] 12 89 101 Public

ACRIMA [29,45] 309 396 705 Public

OTIHS-lihjy [46] 482 368 650 Public

LAG [47] 3432 2392 5824 Private

Total 4235 3045 7280
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Images that are preprocessed are subjected to OD and OC segmentation. Sample
images and results of the segmentation are given below in Figure 6.
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4.2. Performance Analysis

Experiments are done to show the efficacy of the DBN–EHO on different fundus
datasets. Initially, the investigations are performed to show the efficacy of EHO in optimiz-
ing the DBN. EHO is compared with meta-heuristic algorithms, such as artificial bee colony
(ABC), firefly algorithm (FA), harmony search (HS), cuckoo search (CS), particle swarm
optimization algorithms (PSO), and differential evolution algorithms (DE). A hold-out
technique with 20 training and test sets generated at random, subjected to 10 iterations
for each RBM learning procedure, and a mini-batch of 20 are performed for consistent
comparisons with other works. Five agents of over 50 iterations are employed to achieve
convergence using all strategies in tests. Control parameters for all the algorithms are
outlined in Table 3.

Table 3. Control parameters of all algorithms.

Algorithm Parameters

ABC N = 30, MCN = 100, limit = 20

HS HMCR = 0.7, PAR = 0.7, η = 1

FA γ = 1, β0 = 1, α = 0.2, MCN = 100

CS α = 0.1, pa = 0.25

PSO Wmax = 0.9, Wmin = 0.2, C1 = 2, C2 = 2

DE F = 0.8, C = 0.5

EHO nClan = 5, α = 0.25, β = 0.05

In Table 4, the MSE values of each algorithm on the original LAG dataset considering
DBN. A Wilcoxon signed-rank test with a 0.05 significance level is utilized to analyze
the method statistically. It is observed from Table 4 that EHO outperformed all the other
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algorithms in terms of the lowest MSE employing fewer layers. ABC and FA algorithms
have also performed well next to EHO.

Table 4. Average MSE over the LAG dataset.

Algorithm
Layer-1 Layer-2 Layer-3

CD PCD CD PCD CD PCD

ABC 0.0891 0.8940 0.0881 0.0884 0.0880 0.0878

HS 0.1259 0.1345 0.1256 0.1169 0.1158 0.1156

FA 0.0864 0.0864 0.864 0.0860 0.0864 0.0862

CS 0.1146 0.1146 0.1176 0.1175 0.1164 0.1162

PSO 0.1086 0.1086 0.0988 0.0992 0.1045 0.1046

DE 0.1250 0.1254 0.1254 0.1254 0.1158 0.1156

EHO 0.0756 0.0756 0.0778 0.0778 0.0776 0.774

Taking the performance of EHO, the performance of the proposed work is assessed by
finding ‘true positive’ (TP), ‘true negative’ (TN), ‘false positive’ (FP), and ‘false negative’
(FN) values. TP denotes the instances wherein glaucoma is detected correctly. TN shows
the condition wherein a person with no glaucoma is classified correctly. FP indicates the
number of negative instances recognized as positive. Positive instances recognized as
negative are indicated by FN. Precision, accuracy, F-score, specificity, recall, sensitivity, and
MCC (Mathew’s correlation coefficient) are used in this work, as in Table 5.

Table 5. Performance Metrics.

Parameters Expression

Sensitivity (%) TP
TP+FN × 100

Specificity (%) TN
TN+FP × 100

Accuracy (%) TP+TN
TP+FN+TN+FP× 100

Precision (%) TP
TP+FP× 100

Recall (%) TP
TP+FN× 100

F-score (%) 2 × (Precision)(Recall)
Precision+Recall × 100

Mathew’s correlation coefficient (MCC) (%)
(TP×TN)−( FP×FN)√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
× 100

The performance of the proposed work on individual datasets is provided in Table 6.
It is inferred that a maximum accuracy of 99.34% on the ACRIMA dataset is attained,
followed by 99.31% on the LAG dataset. The classification rate is between 96.95% and
99.34%, ensuring that the DBN–EHO performed better in all the datasets. This indicates
that the images in the set are captured under different illuminations. Specificity of 100% on
the LAG dataset shows that the model can reduce false positive rates.

Table 6. Performance of the proposed method employing DBN and EHO.

Dataset Acc (%) Sens (%) Spec (%) Prec (%) Recall (%) F-Score (%) MCC

Drishti-GS1 96.95 98.56 97.44 97.69 96.86 97.68 0.749

ACRIMA 99.34 97.1 98.2 88.92 95.3 93.5 0.772

ORIGA 98.51 94.73 98.7 98.55 97.92 95.32 0.784

LAG 99.31 99.89 100 96.73 94.56 95.64 0.789
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The impact of isolated and combined feature sets on the diagnosis of glaucoma in
the LAG dataset is depicted in Table 7. The extraction of isolated features yielded an
enhanced result, increasing the algorithm’s efficiency. When the features are combined, an
accuracy of 99.3% is obtained. When the features are combined, better accuracy of 99.34%
is obtained. The feature contribution indicates that the DBN optimization also contributes
to appreciable performance as the accuracy ranges from 95% to 99% on different kinds
of features.

Table 7. Impact of features in detecting glaucoma from LAG dataset.

Features Accuracy (%) Sensitivity (%) Specificity (%)

Structural (SF) 94.87 95.32 93.52

Intensity (IF) 95.98 89.23 92.41

Textural (TF) 96.21 97.28 99.33

SF + IF 95.86 90.74 95.21

SF + TF 96.78 94.23 97.56

IF + TF 90.88 95.79 94.35

Selected features 99.31 99.89 100

The feature contribution indicates that the DBN optimization also contributes to appre-
ciable performance as the accuracy ranges from 95% to 99% on different kinds of features.
A 10-fold cross validation done to reduce bias during testing enhances the algorithm’s
robustness and reduces the classifier’s misclassification rate. From Table 8, it is seen that the
cross-validation accuracy across the datasets is appreciably high, ensuring that the model
is free from bias. The model applies to a wide range of datasets, compensating for any
imbalance. Figure 7 highlights the proposed work against various performance metrics.

Table 8. 10-fold cross validation results.

Dataset Accuracy (%)

Drishti-GS1 97.1

ACRIMA 98.5

ORIGA 96.2

LAG 97.8
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A 10-fold CV is carried out to reduce bias during testing, and the results are shown in
Table 8.

From Table 8, it is seen that the cross-validation accuracy across the datasets is appre-
ciably high, ensuring that the model is free from bias. The model applies to a wide range of
datasets, compensating for any imbalance.

Table 9 reports the outcomes of the classifier when compared with similar conventional
ML classifiers, such as K-nearest neighbor (KNN), random forest (RF), support vector
machine (SVM), and DBN without optimization. The DBN attains a more appreciable
performance than the conventional ML classifiers. The DBN, when optimized for weight
by EHO, still achieves better performance across all the datasets.

Table 9. Performance analysis with dissimilar classifiers.

Dataset Classifier Accuracy (%) Sensitivity (%) Specificity (%)

Drishti-GS

KNN 95.34 90.47 93.08

RF 94.50 91.34 92.33

SVM 95.86 96.87 96.87

DBN 96.23 97.56 96.62

DBN–EHO 96.95 98.56 97.44

ACRIMA

KNN 95.66 90.86 93.78

RF 94.32 91.24 90.84

SVM 97.06 96.64 96.12

DBN 97.26 98.16 97.06

DBN–EHO 99.34 97.1 98.2

ORIGA-Light

KNN 94.22 96.86 97.08

RF 91.34 88.56 89.75

SVM 94.88 95.56 96.69

DBN 96.06 97.65 97.81

DBN–EHO 98.51 94.73 98.7

LAG

KNN 94.24 95.56 95.85

RF 92.78 90.89 91.48

SVM 95.60 95.68 96.45

DBN 97.54 95.67 97.43

DBN–EHO 99.31 100 99.89

From Table 9, it is seen that the DBN classifier attains a more appreciable performance
than the conventional ML classifiers. The DBN, when optimized for weight by EHO, still
achieves better performance across all the datasets. Furthermore, to assess the robustness
of the model, salt-pepper and Gaussian noise are added to the LAG dataset (original image
set). Gaussian noise is predominant if the images were captured under low illumination.
Salt-pepper noise is an impulse noise occurring owing to intense and sparse disturbances.
Figure 8 depicts the original and noise-added image (sample). Experimentation is per-
formed with Gaussian noise and salt-pepper noise, with the variance (σ) and noise density
(d) varying from 0.1 to 0.5, respectively, and the result is reported in Figure 9.
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It is seen from Figure 9 that the accuracy remains fairly the same. This demonstrates
that the suggested model is extremely robust in both original and degraded datasets.

Table 10 compares the proposed model with well-known CNN models employing
transfer learning. Transfer learning is applied to the DRISHTI-GS1 dataset, as the number
of images is small. It is inferred that our model can work well compared to well-known,
pre-trained models using transfer learning. Table 11 illustrates a comparison of similar other
techniques and our technique in diagnosing glaucoma. Many optimization algorithms are
also used to solve the other various optimization problems [48–64].
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Table 10. Comparison of DBN-EHO with CNN models employing transfer learning.

Dataset Classifier Accuracy (%) Sensitivity (%) Specificity (%)

Drishti-GS

AlexNet 93.84 91.57 92.88

GoogLeNet 95.46 90.34 93.36

VGG16 94.12 95.77 96.42

DBN-EHO 96.95 98.56 97.44

Table 11. Comparison of proposed work.

References Features/Methods Classifier Used Images Performance (%)

Karthikeyan and
Rengarajan [65] GLCM BPN Local dataset Accuracy—95

Issac, A. et al. [19] CDR, NRR, blood
vessel features

SVM and ANN 67
Accuracy—94.11
Sensitivity—100

Mookiah et al. [66] Discrete wavelet and
HOS

SVM 60
Accuracy—95

Sensitivity—93.3
Specificity—96.67

Gifta [24] GLCM, HOG, SURF Gray Wolf Optimized
NN

N.A.
Accuracy—93.1
Sensitivity—91.6
Specificity—94.1

Acharya, U.R. et al. [22] 6 features from LM
filter bank KNN NA Accuracy—95.8

Koh, J.E. et al. [20] PHOG, SURF features KNN 910
Accuracy—96.21
Sensitivity—97.42

Samanta et al. [21] Haralick features BPN 60
Accuracy—96.26
Sensitivity—90.43
Specificity—99.5

Acharya et al. [67] Texture and HOF RF 60 Accuracy—91

Acharya et al. [68]
Gabor transformation

and principal
component analysis

SVM 510
Accuracy—93.10;
sensitivity—89.75;
specificity—96.20

Yadav et al. [69]
Homogeneity, Contrast,

energy, correlation,
entropy

N.N. 20 Accuracy—72

Maheshwari et al. [70] Entropy and fractal SVM 488 Accuracy—95.19

Bajwa M. N et al. [71] ROI, Scaling 2-Stage CNN ORIGA AUC—0.87

Raghavendra et al. [72] - 20 layer CNN 1426 Accuracy—98.13

Chen et al. [73] - 16 layer CNN SECS, ORIGA AUC—0.881

Proposed Work Structural, intensity,
and texture features DBN and EHO 7280

Accuracy—99.34
Sensitivity—100

Specificity—99.89

5. Conclusions

Glaucoma is a class of ocular neuropathy wherein the optic nerve gets vandalized,
resulting in permanent vision loss. Glaucoma detection in RFI using the DBN classifier is
proposed in this work. Input images from different public databases are enhanced through
the preprocessing phase. The OD and OC are then segmented using CHT and Otsu’s
thresholding. The various structural, intensity, and textural features are extorted from the
segmented OC and OD images and fed to the DBN classifier optimized by the EHO algo-
rithm. To investigate the performance, the technique is compared with classifier techniques,
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such as R.F., KNN, SVM, pre-trained CNNs, etc. Experimental outcomes exhibit the perfor-
mance of the DBN classifier in recognizing the absence or presence of glaucoma accurately
compared to other approaches. The proposed work concentrates on some of the important
features contributing to glaucoma disease. The ReliefF algorithm selects the features before
feeding them to the classifier for classifying them into either healthy or glaucomatous. The
classifier performance is improved through an optimization technique where EHO does the
weight update process. Dataset imbalance is also minimized as the model showed better
training accuracy when images were selected randomly from each set using 10-fold cross
validation. One potential drawback of this method is that it is unclear whether the attained
specificities and sensitivities will be generalizable to real-world patient populations with
common comorbidities, such as cataracts and surface ocular disease, which can degrade
the input image quality. The performance of the computational hardware needs to be im-
proved, along with network structure refinement and data dimension reduction, to attain
competitively better computational speed. In the future, a universal domain adaptation
method for various datasets (both public and private) is needed to be developed using
hybrid weighted deep adversarial learning [74] and adaptive on-line validation [75]. In the
future, the detection of glaucoma systems will be enhanced using the feature selection and
ranking phase with different hybrid optimization algorithms. Besides, granular computing
will be embedded in deep neural networks (granulated CNN) to enhance the computation
speed significantly.
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