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Abstract

In this article, a novel bicepstrum-based approach is suggested for ground moving radar target classification.

Distinctive classification features were extracted from short-time backscattering bispectrum estimates of the

micro-Doppler signature. Real radar data were obtained using surveillance Doppler microwave radar operating at

34 GHz. Classifier performance was studied in detail using the Gaussian Mixture Mode and Maximum Likelihood

decision making rule, and the results were verified on a multilayer perceptron and Support Vector Machine.

Experimental real radar measurements demonstrated that it is quite feasible to discern three classes of humans

(single, two and three persons) walking in a vegetation cluttered environment using proposed bicepstrum-based

classification features. Sophisticated bispectrum-based signal processing provides the extraction of new classification

features in the form of phase relationships in the radar data. It provides a novel insight into moving radar target

classification compared to the commonly used energy-based strategy.

1 Introduction
In recent years, radar analysis of human motion

using measurements of evolutionary Doppler frequency

variations has been under intensive study [1-9]. Recog-

nition, identification and classification of persons mov-

ing in a vegetation cluttered environment using ground

surveillance Doppler radar systems have a number of

applications including security, military intelligence and

battlefield purposes. One of the particular and effective

discriminative features for the classification of moving

persons is the micro-Doppler (m-D) contributions con-

tained in the backscattering radar signature [4,5].

The m-D signature of a target is a time-varying

frequency modulation contribution arising in radar

backscattering and caused by the movement of separate

parts of the target. Joint time-frequency (TF) analysis is

the basis of most of the existing methods used to extract

m-D features [1-3]. The time-varying trajectories of the

different instantaneous m-D frequencies mapped into the

TF domain are robust discriminative features belonging
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to a person or a group. However, it should be stressed

that the problem of recognizing single, two, three or more

moving persons using their m-D radar signatures is one of

the most difficult problems to solve.

Recently, approaches exploiting the m-D radar sig-

natures for moving person classification have been

reported in the literature [2,4,5,8]. Most approaches

deal with quadratic (spectrogram-based) TF analysis of

non-stationary and multi-component backscattered radar

signals. According to these approaches, discriminative

features are extracted from the energy-based TF dis-

tributions, i.e., estimates of backscattered signal energy

distribution per unit time per unit frequency. Unfortu-

nately, phase and frequency relationships between certain

Doppler spectral components in radar returns that con-

tain important information about phase- and frequency-

coupled m-D contributions are irretrievable lost in the

energy-based TF radar signatures. Therefore, a common

drawback of the energy-based TF analysis is the impos-

sibility of retrieving additional particular information

concerning frequency- and phase-coupling of instanta-

neous frequencies contained in the radar backscattering.

Phase coupling contained in radar backscattering carries

important information about individual target properties.
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Extraction of the latter phase relationships from radar

backscattering could provide additional insight into radar

moving target classification and improve the classification

probability rate compared with commonly used energy-

based classification features such as power spectrum and

cepstrum features.

It has been shown in our previous articles [6,7,10,11]

that sophisticated bispectrum-based signal processing

permits the extraction and use for radar target recog-

nition of the discrimination and classification of phase

coupled harmonics in raw radar backscattering contam-

inated by additive white Gaussian noise (AWGN) and

vegetation clutter. The distinctive benefits of the

bispectrum-based radar signature compared to a common

energy-based spectrogram can be characterized as fol-

lows. First, the possibility of retrieving the phase coupled

contribution which common energy-based techniques

are simply unable to provide. Second, the bispectrum

tends to zero for a stationary zero-mean AWGN, which

means that there are no phase coupled frequencies in a

linear Gaussian process. Therefore, bispectrum-based

signal processing provides suppression of the AWGN

contribution in the TF radar signature. As a result, the

powerful, i.e., the phase coupled contributions unam-

biguously belonging to a moving target are emphasized,

and the weak, i.e., the phase independent spectral contri-

butions belonging to vegetation clutter and AWGN, are

diminished. Therefore, the bispectrum-based approach

allows improved signal-to-noise ratio (SNR) in collected

radar signatures and, hence, provides robustness in its

discriminative features.

In this article, novel discriminative features computed

in the form of bicepstral coefficients extracted by using

bispectral estimation from radar echo-signals are sug-

gested and studied. The performance of the suggested

bicepstrum-based classifier is examined using experimen-

tal radar data processing for solving one of the most

important and difficult problems in radar automatic target

recognition (ATR) systems, which deals with discrimi-

nation and classification of a single walking person and

group of walking persons in a vegetation clutter and

AWGN environment.

The objective of this article is a comparative study of

ATR system performances evaluated by using the com-

mon spectrogram-based and suggested novel bicepstrum-

based approaches. Classification features based on the

bispectrum estimate have been proposed earlier [11,12].

In this article, we extend the comparative analysis of the

proposed features to estimate their advantages and disad-

vantages. In addition, a multilayer perceptron and support

vector machine are used as additional classifiers to com-

pare the results of the different classification schemes.

The article is organized as follows. First, in Section 2

the theoretical background of the solution is considered

and new feature extraction techniques are proposed. Next,

in Section 3 the description of experimental data for

classification is given. Then, the proposed feature extrac-

tion techniques are evaluated and compared in Section 4.

Finally, conclusions are provided.

2 Theoretical background
The idea for the suggested approach deals with the well-

known properties of the bispectral estimation method

described in detail in [13]. Bispectral signal processing

allows the assessment of the magnitude and phase of

the correlation relationships between different harmon-

ics. When a phase relationship exists, the phase-coupled

harmonics contribute considerably to the bispectrum esti-

mate in the form of corresponding peaks arising in the

bifrequency plane. On the other hand, the bispectrum is

identically zero for a stationary zero-meanAWGN. There-

fore, unlike the energy spectrum, the bimagnitude, i.e.,

magnitude bispectrum estimate, contains the peaks in the

bifrequency domain caused only by coherent contribu-

tions in the signal under study.

We have demonstrated in our previous study [6,7] that

the swinging legs and arms of a walking person are not

independent mechanical sources provoking time-varying

instantaneous frequencies (IF) in the m-D spectrum con-

tent, but are related to each other via the “common basis”

or “common carrier” which is the translating and swaying

human torso.

The evident presence of phase-coupled harmonics

retrieved from real radar measurements performed

by a ground surveillance microwave radar has been

shown in [6]. It has also been demonstrated [6] that

multi-component and chirp-like returns collected by

surveillance radar contain the contributions of a num-

ber of correlated scattering centers spatially distributed

on the surface of the moving human body. Extrac-

tion of these bicoherent dependences and studying

their evolutionary behavior enables the acquisition of

a new class of information features for solving the

tasks of radar target recognition, identification and

classification.

The Doppler frequency shift �fD observed in a radar

signal backscattered by a moving person is equal to�fD =

2v/λ, where v is the velocity of target and λ is the radar

emitted wavelength. For a person moving with normal

speed of motion equal to 3–5 km/h, the Doppler fre-

quency shift caused by translating the locomotion of the

human torso, is equal to �fD = 190 − 316 Hz. The lat-

ter frequencies are within the audio signal band. Though

swinging human arms provoke larger Doppler frequency

shift values, they are also within the audio frequency

band. Therefore, the received Doppler signal caused by

backscattering from a moving person can be related to

an audio signal. From this point of view, it is reasonable
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to consider two bispectrum-based algorithms that find

applications in the analysis and recognition of human

speech [14,15].

Themain concept of radar data processing implemented

in this article is shown in Figure 1, where 1, . . . ,M are

the M input segments. In this manner, an entire non-

stationary received signal s can be divided onto a series of

quasi stationary segments x1, . . . , xM using a sliding win-

dow function ψ . The segment xm is assessed as xm(k) =

ψ(k) · s
(

(m−1)L+k
)

, where L is the length of the window

function expressed in the number of temporal samples.

The features are then extracted and conditional posterior

probabilities are computed for those segments.

Each segment is assumed to be independent from the

others. Therefore, the conditional probabilities for each

class of the entire sequence are equal to the product of the

conditional posterior probabilities of each segment. The

decision is made using the maximum likelihood rule.

The integrated bispectrum (IB) proposed in [14] is

defined as

IB(f ) =
1

L − f

L−f
∑

u=1

B(f ,u), (1)

where f = 1, . . . ,K − 1 is the frequency index; B(f ,u) =

X(f )X(u)X∗(f + u − 1) is the signal bispectrum; X is the

Fourier transform of the signal x; L is the width of the win-

dow function; K is the maximum frequency index; and *

denotes the complex conjugation.

Another bispectrum-based algorithm designed for

speech recognition purposes is described in [15]. This

algorithm, referred to as the DFB, deals with the averag-

ing of the bimagnitude samples in the bifrequency domain

along the fixed frequency direction f3 such as f1 + f2 = f3:

DFB(f ) =
1

K

K
∑

f2=1

(

B(f − f2, f2)
)
1
3 . (2)

A bicepstrum is the result of taking the inverse Fourier

transform of the logarithm of the bispectrum. In this arti-

cle, the following bicepstral coefficients denoted below

by CIB(f ) and CDFB(f ) are computed using the bispec-

tral data IB (1) and DFB (2). These bicepstral values are

exploited as the discriminative classification features as:

CIB(f ) =

∣
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Figure 1 Structure scheme of a decision making concept applied in this study. A non-stationary signal can be divided into a series of quasi

stationary segments. The features are extracted and conditional posterior probabilities are computed for those segments. Conditional probabilities

are then multiplied and the maximum likelihood rule is applied.
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To evaluate and compare correctly the performance

of the suggested bicepstrum-based classifier with the

common power cepstrum-based classifier, the following

power cepstrum coefficients C(f ) are considered and

computed in our survey as:

C(f ) =

∣

∣

∣

∣

1

K

K
∑

j=1

log(|X(j)|2)ei2π fj/K
∣

∣

∣

∣

2

. (5)

A human operator can distinguish different targets

listening to the baseband version of the received con-

tinuous wave radar signal [4,16]. The cepstrum coeffi-

cients (5) are commonly used as features for speech and

audio recognition [17,18]. Taking into account the sim-

ilarity in the signals used for speech recognition and

ground moving target classification [16], the selection of

cepstrum coefficients for the comparison seems reason-

able. Moreover, the cepstrum coefficients as a feature for

ground target classification are of great interest to other

researchers [4], and comparison with their research is

sensible.

From the various existing approaches to radar target

recognition and classification, the maximum likelihood

(ML) rule and the Gaussian mixture model (GMM) are

selected to evaluate the bispectrum-based classifier per-

formance. In our opinion, the GMM is a good strategy for

the unknown probability density function (pdf) approxi-

mation [19].

In the general case, the GMM [19] approximates the

probability density function of a feature vector y under

hypothesis H as:

p(x|H) =

N
∑

n=1

rnφ(y|θ
(n)
H ), (6)

where N is the number of mixture components called the

GMM order; rn is the mixture weight of the nth compo-

nent, such that
∑

rn = 1; θ
(n)
H is the parameter referred to

the distribution of component n under the class hypoth-

esis H ; and φ(x|θ
(n)
H ) is the probability distribution of x

parameterized by θ
(n)
H .

The probability distribution of each component given in

(6) can be written as

φ(x|θ
(n)
H ) = (2π)

−D
2

|Ŵ
(n)
H |

1
2

exp(− 1
2 (x − μ

(n)
H )T ·

·
(

Ŵ
(n)
H

)−1
(x − μ

(n)
H )) (7)

where D is the dimension of the feature vector; Ŵ
(n)
H is the

covariance matrix of component n for the hypothesis H ;

and μ
(n)
H is the vector of the mean values of component

n for the hypothesis H. In this article, a full covariance

matrix is used [20].

The posterior class conditional probability for the entire

received signal s is the product of the posterior class

conditional probabilities p(xm|w):

p(s|w) =

M
∏

m=1

p(xm|w), (8)

where w is the class hypothesis.

The decision-making rule exploited in the ATR sys-

tem using the maximum likelihood (ML) method can be

defined as follows:

ŵ = arg max
w=1...W

p(s|w), (9)

where p(s|w) is a likelihood function conforming to the

signal s referred to the classification hypothesis w.

3 Discussion of experimental results
Real radar data were collected by experimental mea-

surement performed with a ground surveillance Doppler

homodyne, monostatic, polarimetric and continuous

wave radar.

The radar backscattering data relevant to three pedes-

trian classes were accumulated and recorded. The follow-

ing scenarios were considered both in vegetation clutter

and open space environments. (1) Single moving per-

son: Person walking towards or away from the radar at

a velocity of 3–5 km/h. (2) Group of moving persons:

Two persons walking towards or away from the radar at a

velocity of 3–5 km/h. (3) Group of moving persons: Three

persons walking towards or away from the radar at a nor-

mal velocity of 3–5 km/h and either synchronously or

asynchronously.

The ground surveillance radar system is shown in

Figure 2. The parameters of the radar are: wavelength—8.8

mm; emitted radar microwave power—15 mW; receiv-

ing/transmitting antenna beam width in both E and H

planes—60°; level of side lobes in the horn antenna

pattern—24 dB; cross-polarization level lower that—

30 dB; receiver noise figure—20.2 dB; two-channel 16 bit

ADC; and a sampling rate in the digital records—8 KHz.

The averaged signal-to-noise ratio (SNR) values are equal

to 4 dB, 6 dB, and 11 dB for single, two and three moving

persons, respectively.

The total length of all recorded wave-files is more than

23 minutes. The measurements were performed during

the autumn period. Despite the radar being able to operate

in both vertical and horizontal polarization modes, only

the horizontal mode was considered for the classification.

Collection of the data for the dataset was performed

as follows. The initial position of a target was fixed at a

few meters from the radar. The person started to walk

away from the radar for approximately 40 s, stopped for

2 s, turned around and came back, stopped for about 2 s

and repeated the motion several times. Each considered
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Figure 2 Ground surveillance radar system used for experimental data collection.Wavelength—8.8 mm, emitted radar power—15 mW;

receiving/transmitting antenna beam width in both E and H planes—60°; level of side lobes in horn antenna pattern—24 dB; cross-polarization

level ≤—30 dB; receiver noise figure—20.2 dB; two-channel 16 bit ADC; and sampling rate in digital records—8 KHz.

class contained six sets of experiments performed with a

person walking away from the radar and five sets of exper-

iments with a person walking towards the radar. The same

persons have participated in all experiments.

Examples of time-frequency radar signatures of a single

personmoving in vegetation clutter are shown in Figure 3.

Three types of TF distributions are shown: a spectrogram

computed in the form of the amplitude of the Short Time

Fourier Transform (STFT), and bispectrum-based radar

signatures computed by IB (1) and DFB (2). The time-

frequency distributions are computed with a Hamming

window of length L = 64 ms, without overlap.

It can be seen from Figure 3 that AWGN is suppressed

better in the bicepstrum-based radar signatures plotted

in both Figure 3b,c compared to the spectrogram repre-

sented in Figure 3a.

It can be seen from the Figure 3 that the analyzed signal

does not contain frequencies higher than 700 Hz, there-

fore, a sampling frequency for the ADC equal to 8 KHz is

a reasonable choice.

Dependencies between the values conforming to the

first and fourth bicepstrum coefficients given in CDFB (4)

and their GMM approximation represented by a 3-order

model at a level of 3σ are illustrated in Figure 4. As can

Figure 3 Time-frequency radar signatures measured in vegetation clutter and represented by: (a) spectrogram; (b) bicepstrum-based

features (1); (c) bicepstrum-based features (2). The spectrogram is computed in the form of the amplitude of the short time Fourier transform

(STFT), and the bicepstrum-based features are computed using IB (1) and DFB (2).
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Figure 4 Bispectrum based features CDFB (4) belonging to one (a), two (b) and three (c)walking persons and their approximation (d)

using the 3-order GMM at the level of 3 σ . The regions occupied by information features corresponding to different classes overlap; therefore, a

sophisticated classifier strategy must be applied.

be seen from Figure 4, the regions occupied by informa-

tion features corresponding to different classes overlap.

Therefore, a feature space with a higher dimensionality is

necessary to discriminate the classes.

Histograms illustrating the distribution laws for the

second cepstral and bicepstral coefficients computed by

using (5) and (4), respectively, are represented in Figure 5.

The histograms show that it is difficult to discern a sin-

gle walking person from two or three persons using just

this one feature. Both histograms in Figure 5a,b referred

to a single walking person but contain the overlapping

domains corresponding to the histograms obtained for

both two and three persons. However, classes belonging

to two and three walking persons are more separated in

the histograms plotted using bicepstral coefficients (4).

Classifier performance can be achieved using the fea-

tures with lower inter-class similarity, i.e., when the same

classifier but different feature vectors are used. To esti-

mate inter-class similarity, the Euclidean metric has been

computed for the sampled cross-correlation function. The

similarity measure (SM) is evaluated as follows:

SM(j) =
1

3K

j
∑

i=1

∑

k=1,2,3
l=2,3,1

||XCF{Yk,i,Yl,i}||, (10)

where j is the number of used cepstral or bicepstral

coefficients; XCF is the cross-correlation function; k, l

are the indexes belonging to three classes; i is the cep-

stral/bicepstral coefficient number; and Yk,i is the set of

cepstral/bicepstral coefficients number i belonging to the

class k.

Dependencies of SM on the number of first cep-

stral/bicepstral coefficients are illustrated in Figure 6. One

can see the benefit of using the bispectrum-based strategy

(see the straight curve in Figure 6) compared to the power

spectrum-based technique (dashed curve in Figure 6).

This benefit can be assessed by comparing the values

belonging to the straight and dashed curves in Figure 6.
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Figure 5 Histograms of the second bicepstrum/cepstrum coefficients related to the single (blue), two (red) and three (green) walking

persons and computed using: (a) (4) and (b) (5). The histograms show that it is difficult to discern a single walking person from two or three

persons by using only this one feature.

It is clearly seen that the correlation values are smaller

for the bispectrum-based feature extraction technique,

which means the latter technique possesses better orthog-

onality of its features. Therefore, a better classifier per-

formance should be achieved for the bispectrum-based

technique.

4 Analysis of classifier performance
4.1 Data separation

Commonly [3,4], to evaluate classifier performance, the

classification dataset is divided into two subsets of the

same size. One subset is used as a training dataset and

the other as a testing dataset. The disadvantage of such an

approach is that the classification probability rates might

vary if the small original dataset is split in a different man-

ner. To obtain more accurate and reliable classification

results, the K = 11 cross-validation technique is applied.

The initial data under analysis are split into K subsets of

Figure 6 Inter-class similarity computed for the feature vector C

(5) (dashed curve) and CIB (3) (straight curve). The correlation

values are smaller for the bispectrum-based feature extraction

technique, which means the latter technique possesses better

orthogonality in its the features.

the same length, and K − 1 subsets are used as a training

dataset, and the remaining one as a testing dataset. The

cross-validation process is repeated K − 1 times (K − 1

folds) with each of the K subsets used as a testing dataset.

The K results from the folds are averaged to evaluate a

single estimation. The most important benefit of the K-

fold cross-validation strategy is that all measured data are

distributed somewhat uniformly within both training and

testing operations.

Eleven diverse experiments were performed for each of

three radar target classes and the 11-fold cross-validation

technique was exploited for target classification. This

implies that the features have been extracted from the

measured radar data ten times for the training dataset and

once for the testing dataset during each experiment, i.e.,

0.91 part of the data collected is used as a training dataset,

and the remaining 0.09 part as the testing (validation)

dataset for each fold.

4.2 Classification scheme

A scheme for the proposed classifier is shown in Figure 7.

The preprocessing block partitions the input signal into

a series of frames of L samples length. The spectrum

estimation block computes the spectrum of each frame

using a Hamming window. The spectrum contains the fre-

quencies higher than can be provoked by human gait, i.e.,

those frequencies that are higher than 900 Hz. Therefore,

in the next block denoted as “Spectrum processing” they

are removed by an ideal low pass filter. It can be seen from

Figure 3 that the maximum frequency in the signal under

consideration is near 640 Hz, therefore, higher frequen-

cies could be removed. Next, features are extracted from

the spectrum at the block denoted as “Feature extraction”.

It could be one of the above-mentioned techniques C (5),

CIB (3), or CDFB (4). The conditional posterior probabili-

ties are computed at the block denoted as “GMM”, and the

decision is made using the ML rule (9).

Some parameters such as the length of segment L, the

number of GMM components and the number of used

classification features must be defined a priori. The exper-

imental system illustrated in Figure 8 is presented for this
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Figure 7 Scheme of the proposed classifier. The main steps necessary to refer a signal s(i) observed at the output of the radar to one of the

possible classes are illustrated.

purpose. An 11-fold cross-validation is applied for the

performance evaluation of the ATR system, where data

mining is carried out and the optimal parameters are esti-

mated. The concept “optimal” means the parameters with

which the best classification performance is obtained.

The scheme illustrated in Figure 8 is used for per-

formance evaluation. The block denoted “preprocessing

features” removes the outliers from the training set, dis-

carding 1% of the highest and lowest values. Next, the

parameters θ of GMM are estimated using the Expecta-

tion Maximization algorithm [21]. The initial estimate of

the parameters is obtained by the k-means algorithm, and

for statistical stability the results of 10 GMMs are aver-

aged. Posterior class conditional probabilities extracted

from the segments are multiplied to obtain the posterior

class conditional probability of the entire received signal.

The latter operation is performed in the block “Integration

of probabilities”.

The optimal number of both power cepstrum (5) and

bicepstral coefficients given by (3) and (4) has been

estimated. From one side, if a small number of them is

selected compared with the information containing in

other coefficients, worse probabilities will be obtained.

From the other side, the so called “curse of dimensional-

ity” can arise if a large number of coefficients have been

selected. We compute the probabilities of classification

only for the training set changing the number of coeffi-

cients from 1 to 50% of their maximum number. Then, the

number of coefficients is selected according to the max-

imum value of classification probability. The estimated

number of used coefficients depends on the segment

length, and decision-making time. Therefore, it is unique

for a fixed set of parameters. We consider 50% features at

most because of their symmetry (see (4), (3), and (5)). The

maximum number of features is z = L/9.

Empirically it was established that by varying the

GMM order, the classification probability rates do not

depend significantly on the GMM order. However, with

increasing feature vector dimensionality, the GMM order

should decrease. When only a few feature vectors are

Figure 8 Scheme of parameter estimation. An 11-fold cross-validation is applied for the performance evaluation of the ATR system, where a data

mining is carried out and the optimal parameters are estimated.
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available GMM requires more components to achieve

good approximation of the probability density function.

However, when the ATR system operates with many fea-

ture vectors, a few components will be adequate. In the

considered case, we deal with a few feature vectors. The

processing data length is equal to 2 s (18 feature vectors

are used for each class within one realization of cross-

validation), and a large quantity of data are used when the

data length is equal to 16ms (2468 feature vectors for each

class are used within one realization of cross-validation).

The GMM order was defined empirically. When the pro-

cessing data lengths were equal to 2 s, 1 s and 512 ms,

the GMM order was selected to be equal to five. For the

lengths of 256 ms, 128 ms and 64 ms, the GMM order was

equal to four and, finally, for 32 ms and 16 ms it was equal

to three.

4.3 Feature ranking

Feature ranking is an important operation contained in

classification algorithms. It ranks features according to

certain information criteria and only the most informa-

tive features are used for classification. The concept for

the criteria used in our feature ranking procedure is based

on Information Theory and came from the article [22].

Assume that we have a feature vector y with available val-

ues {y1, . . . , yJ } and a class label vector z with the values

of {z1, . . . , zW }. The following conditional entropy H(z|y)

can then be computed as:

H(z|y) =
∑

j=1...J

p(yj)H(z|y = yj), (11)

where p(yj) is the probability of y taking the state yj and

H(z) =
∑

w=1...W
p(zw) log2 p(zw) is the entropy of z.

The conditional entropy (11) indicates how much

entropy is left if the state of the feature y is known. The

information gain (IG) indicating the amount of additional

information about the class provided by the feature y is

given as:

IG(z|y) = H(z) − H(z|y). (12)

The features are sorted according to their IG value. We

will vary the number of used features and those having a

higher IG will be used first in the classification.

4.4 Performance evaluation

The proposed classification scheme uses the integration of

probabilities by dividing a non-stationary signal of length

N into M segments of length L. As a result, a sequence of

M quasi stationary signals is obtained.

The probability of correct classification is computed

as:

P =

W
∑

w=1

Ucor(w)

Utotal(w)
Pa(w), (13)

where W is the total number of available classes; Ucor(w)

is the number of correctly classified instances related to

the class w; Utotal(w) is the total number of classified

instances related to the class w; and Pa(w) is a priori

probability related to the class w. Unfortunately, a priori

probability is impossible to estimate using the available

experimental data. Because of this, we assume that a pri-

ori probability related to each separate class is of the same

value and equal to Pa(w) = 1
W ∨ w.

The probabilities of correct classification depending

on the length of input signals and integration time are

given in percentage terms in Figure 9. Each cell in

Figure 9 situated at the intersection of the column cor-

responding to the window width (length of each seg-

ment) and row corresponding to the integration time

parameter, is split onto three subcells. Each subcell cor-

responds to the feature extraction technique considered.

The left subcell shows the probability obtained using the

proposed bicepstrum-based technique CIB (3). The

FFT size (length of observed data) 

16 ms 32 ms 64 ms 128 ms 256 ms 512 ms 1s 2s 

In
te

g
ra

ti
o

n
ti

m
e

2 s 73 79 79 78 83 83 83 87 84 85 87 86 86 87 86 87 88 87 85 87 84 83 75 78 

1 s 72 76 78 76 80 81 80 84 81 81 83 82 82 83 81 82 84 82 80 84 80  

512 ms 70 74 76 74 77 77 76 79 78 76 79 77 76 79 76 77 79 77   

256 ms 67 70 70 70 72 72 71 74 72 70 73 72 70 72 69 The techniques 

given in each cell 128 ms 63 65 65 65 67 67 65 67 66 64 66 65  

64 ms 60 61 60 59 61 61 60 61 60 CIB CDFB C 

32 ms 56 57 56 57 57 57 

16 ms 53 53 52 

Figure 9 The probabilities of correct classification given in percentages. Each cell situated in the intersection of the column corresponding to

the window width (length of each segment) and row corresponding to the integration time parameter, is split onto three subcells. Each subcell

corresponds to the feature extraction technique considered; from left to right: CIB (3), CDFB (4) and C (5).
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middle subcell corresponds to the suggested bicepstrum-

based technique CDFB (4). The right subcell contains

data obtained using the common cepstrum-based tech-

nique C (5). Subcells containing the maximum value

of probability obtained using different techniques with

the same parameters are highlighted according to the

technique used.

The comparative analysis data represented in Figure 9

demonstrate the benefits of the bicepstrum-based tech-

niques compared with the common cepstrum-based tech-

nique. The bicepstrum-based techniques provide better

results with data lengths equal to or more than 64 ms.

The conventional cepstrum-based technique outperforms

the suggested techniques only when the data lengths are

less than 64 ms and the integration time is more than

128 ms. However, the difference between the techniques

under comparison is not very significant. The worst per-

formance of the bicepstrum-based classifier is caused by

low frequency resolution depending on the window width

exploited in the STFT. The considered non-parametric

estimation provides a frequency resolution equal to 63 Hz

and 125 Hz for data lengths of 32 ms and 16 ms, respec-

tively. To improve the frequency resolution in ATR sys-

tems, the parametric bispectrum-based techniques [10]

can be used.

It is well-known that the performances of ATR sys-

tems depend on the classifier, and may vary with different

types of classifier. All the above-mentioned results were

obtained using the statistical-based classifier, GMM with

the ML decision rule. Recently, the popularity of Neu-

ron networks (NN) and multi layer perception (MLP) has

increased in ATR systems. Therefore, it is reasonable to

compare the obtained results with those obtained using

MLP. The MLP is selected to be a feed-forward back-

propagation Artificial Neural Network (ANN) with two

hidden layers (ten neurons are contained in each hidden

layer). Their transfer function is selected to be the tan-

sigmoid. The output layer contains three output nodes

with a purely linear transfer function. The mean squared

error performance function is selected to estimate the

ANN performance. The MLP is trained to estimate the

class conditional posterior probability of the feature vec-

tor, and this is archived using three output nodes. The

ANN is generated using standard Matlab functions.

Figure 10 shows the dependences of the correct clas-

sification probabilities on processing the data length

for a decision making interval equal to 2 s for the

two classifiers. The following peculiarities should be

emphasized in the comparison of the results presented in

Figure 10:

• For both considered bicepstral classifiers, the CDFB

technique (4) provides the best results with data

lengths larger than 64ms and less than 1 s;
• The common cepstrum-based technique C (5)

outperforms the suggested techniques only when the

data length is less than 64ms;
• The best probability of correct classification for a

data length of 2 s is obtained using the bicepstral CIB

technique (3);
• Regularity of the results does not depend on the

classifier.

Figure 10 Probability of correct classification as a function of the processing data length for the GMM classifier (a) and MLP classifier (b)

Decision making interval is equal to 2 s. The regularity of the results does not depend on the classifier.
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Confusion matrices computed with a data length of

512 ms and decision making time of 2 s for all considered

techniques are listed in Table 1:

• The best classification performance for a single

walking person is achieved using the CDFB features

with 90% of the correct classifications outperforming

the other features by 2%;
• The class of two walking persons is the most

complicated for all considered feature extraction

techniques. The highest probability of correct

classification, equal to 83%, is provided using the CIB

features. The probabilities of correct classification

equal to 82% and 81% are provided using the CDFB

and C features, respectively;
• The last considered class of three walking persons is

classified with a probability of correct classification at

a level of 89% using the CDFB and C features. The CIB

features provide 88% of the correct classifications.

Next, classification is performed using the Support

Vector Machine (SVM) with a linear kernel. It is a non-

probabilistic classifier, therefore, “integration of the prob-

abilities” (8) could not be performed. This step is replaced

by a majority voting method. The probabilities of correct

classification are computed using 2-fold cross-validation.

The classification results computed by SVM are shown

in Figure 11. The results are similar to those obtained

Table 1 Confusionmatrices for the considered techniques

with a data length of 512ms and decisionmaking time of

2 s

CDFB features

One person Two persons Three persons

One person 90 4 6

Two persons 6 82 12

Three persons 6 5 89

CIB features

One person Two persons Three persons

One person 88 8 4

Two persons 5 83 12

Three persons 4 8 88

C features

One person Two persons Three persons

One person 88 7 5

Two persons 6 81 13

Three persons 4 7 89

The confusion matrix shows the probability of declaring a class wj if the feature

set from class wi was at the input of the classifier. The three classes examined are

listed in the left column and the declared classes are listed in the top row. The

values within the main diagonal illustrate the probability of the correct

classification when the input class wi is correctly declared as wi .
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Figure 11 Probability of correct classification as a function of the

processing data length for the SVM classifier. The

decision-making interval is equal to 2 s.

60

65

70

75

80

85

1 4 7 10 13 16 19 22 25

P
ro

b
a
b
ili

ty
 o

f 
c
o
rr

e
c
t 
c
la

s
s
if
ic

a
ti
o
n

Dimensionality of feature vector

Figure 12 Probability of correct classification as a function of the

feature vector dimensionality. Parameters: the decision-making

interval is equal to 2 s; the processing data length is 64 ms; the

cepstrum-based technique; and the GMM classifier.
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Figure 13 Elapsed time for feature extraction depending on the processing data length andmethod used. The processing time required for

bispectrum-based techniques is significantly larger than for the cepstrum-based technique. Fortunately, real-time implementation is possible,

because the processing time is smaller than the data length.

earlier. The cepstrum-based technique (C) outperforms

other techniques when the data length is less than

64 ms. The bispectrum-based techniques outperform the

cepstrum-based technique when the data length is higher

than 64 ms, by 2–4%.

The probability of correct classification depending on

the feature vector dimensionality is shown in Figure 12.

The curve is calculated for the cepstrum-based features

and GMM classifier, with a processing data length of

64 ms and decision making time of 2 s. Before calculating

the probabilities, the features are sorted according to the

IG criterion and therefore, more of the informative fea-

tures are used first. It can be seen in Figure 12 that the

function rapidly rises when there are fewer than four fea-

tures. The function has a peak at number of features equal

to seven, and corresponded features are selected to pro-

vide the classification result. The function then decreases

with the increase in feature vector dimensionality.

It should be noted that bispectrum-based techniques

require larger digital signal processing times because of

additional computation for the 3-D-valued bispectral den-

sity. Therefore, it is of practical interest to estimate the

computational time and compare it for all the techniques

considered. Computations were performed by a computer

with the following parameters: Intel Core 2 DUO CPU

3GHz, 3.2Gb RAM, operation systemWindows XP SP 2,

and Matlab R2010a.

Figure 13 illustrates the time required for feature

extraction using the three techniques considered. For all

techniques and all available values of data length, the pro-

cessing time is smaller than the data length. Therefore,

a real-time implementation of all algorithms is possible.

The processing time required for the bispectrum-based

techniques is significantly larger than for cepstrum-based

techniques. This is the cost of better classification perfor-

mance. Fortunately, the signal processing time required

for bispectrum-based techniques can be optimized using

the symmetry properties of bispectra [13].

5 Conclusions
This article proposed bispectrum-based feature extrac-

tion from micro-Doppler radar signatures to classify

moving radar targets. Data were collected using ground

surveillance Doppler radar for one, two and three mov-

ing persons. Pattern features were extracted from inte-

grated and averaged short-time bispectrum estimates

of transient Doppler radar signals in the form of two

types of bicepstral coefficients. Diverse scenarios were

considered and the 11-fold cross-validation test was

employed to improve the classification accuracy. Exper-

imental results demonstrate that it is quite feasible to

recognize three classes of persons moving in a vegetation

cluttered environment using the proposed bispectrum-

based features extracted from micro-Doppler radar

backscattering. Bispectrum-based pattern features extrac-

tion from radar backscattering provides additional insight

into moving target radar classification that is superior to

the commonly used energy-based information features.

The experimental results obtained are useful from the

point of view of practical recommendations for security

and military ATR systems and open new possibilities for

ground moving target recognition and classification.
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