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Abstract Access to potable water for the common people

is one of the most challenging tasks in the present era.

Contamination of drinking water has become a serious

problem due to various anthropogenic and geogenic events.

The paper demonstrates the application of evolutionary

algorithms, viz., particle swan optimization and genetic

algorithm to 24 water samples containing eight different

heavy metal ions (Cd, Cu, Co, Pb, Zn, Ar, Cr and Ni) for

the optimal estimation of electrode and frequency to clas-

sify the heavy metal ions. The work has been carried out on

multi-variate data, viz., single electrode multi-frequency,

single frequency multi-electrode and multi-frequency

multi-electrode water samples. The electrodes used are

platinum, gold, silver nanoparticles and glassy carbon

electrodes. Various hazardous metal ions present in the

water samples have been optimally classified and validated

by the application of Davis Bouldin index. Such studies are

useful in the segregation of hazardous heavy metal ions

found in water resources, thereby quantifying the degree of

water quality.

Keywords Genetic algorithm � Particle swarm

optimization � Heavy metal ions � Water quality � Multi-

electrode � Multi-frequency

Introduction

Establishment of different industries such as fertilizers,

paper, metal plating, batteries, mining operations and tan-

neries has been causing an increased rate of discharge of

the most hazardous inorganic pollutants known as heavy

metal ions (HMI) in the water resources. As a result, the

origin of these pollutants is better to be considered as

anthropogenic rather than natural (Kumar et al.

2012a, b, 2014, 2015, 2016; Karkra et al. 2016). These

pollutants have been deteriorating the quality of water

resources. These toxic elements are non-biodegradable and

primarily enter the body through water, followed by food

and air. They are toxic even at low concentration level and

their toxicity increases with accumulation in water (Bradl

2004); if accumulated in living organisms, they can cause

dreadful diseases such as Alzheimer, Parkinson, kidney

damage and hypertension. As these diseases are pernicious,

proper surveillance systems are required not only to detect,

but also to perform the remedial process of removal of

HMI. Many government agencies have come forward and

employed stringent rules and regulations as these toxic ions

are some of the high priority pollutants and are becoming

the most serious environmental problems. The metal ions

released by industries are copper, arsenic, nickel, cadmium,

mercury, chromium and cobalt (Fu and Wang 2011), which

are of major concern. According to a report by the Indian

National Science Academy (Sahni 2011), these ions are

found in many areas and it lists that 80% of the toxic

pollutants in India are primarily contributed by Gujarat,

Maharashtra and Andhra Pradesh as shown in Table 1. For

the scientist community, it has become the biggest chal-

lenge for preserving our natural heritage, i.e., rivers such as

Yamuna from being affected by the adverse effects of these

pollutants ; the largest tributary of the Ganges is now the
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second most polluted river in India after Ganges (Kumar

et al. 2014; Chawla et al. 2015).

Nowadays, the qualitative and quantitative study of

liquids is done using a multi-sensor array system called

e-Tongue device. In 1985, Otto and Thomas presented the

first e-tongue system (Otto and Thomas 1985). The inspi-

ration behind the design and operation of electronic ton-

gues (ET) systems is the neurophysiology of the senses of

taste. This system not only performs the automatic analysis

of samples with complicated composition and finds their

distinguishable characteristic properties, but also performs

a faster qualitative analysis. There is a fusion of knowledge

from various branches of science like pattern recognition

methods, sensory technologies, chemo-metric tools and

artificial intelligence in the construction of such systems. In

the design of electronic tongues, a wide variety of chemical

sensors can be employed: electrochemical (potentiometric,

voltammetric), enzymatic (biosensors) or optical. There are

various analytical methods that have been used for HMI

determination including atomic fluorescence spectroscopy,

atomic absorption spectroscopy and inductively coupled

plasma-mass spectroscopy (Sanchez-Rodas et al. 2010;

Larivière et al. 2012). The potentiometric method has been

used for measuring and monitoring HMI in rivers (Mi-

mendia et al. 2010a) and can be applied to evaluate cross-

sensitivity of any kind of potentiometric sensors for liquid

media (Vlasov et al. 1997). The major drawbacks of such

potentiometric measurements are the property of temper-

ature dependency, which influences the changes in solu-

tion, and adsorption of solution components, which further

has effect on the nature of charge transfer; however, the

effects of those factors can be minimized by controlling the

temperature (Ciosek and Wroblewski 2007). There is

another technique called electrochemical impedance spec-

troscopy (EIS) that exploits Faraday’s law to obtain elec-

trical measurements for the chemical process.

Electrochemical impedance spectroscopy is one of the

highly used non-selective techniques for heavy metal

detection due to its several advantages over other tech-

niques. It offers better sensitivity and is easy to use com-

pared to other techniques. The main advantage of this

technique is the cost-effectiveness. EIS measures the

impedance of all heavy metals by applying AC perturba-

tion and the sweep of frequency from 1 Hz to 100 kHz

(Reece 2005). EIS is one of the widely used techniques and

gives the physio-chemical information of contaminated

samples and the resulting multi-variate dataset contain all

the hidden patterns and set of information that are needed

to be explored. With the help of the chemometrics method

in combination with other optimizing algorithm, data pro-

cessing and information extraction from chemical data are

carried out (Reece 2005).

Over a period of time, there have been many applica-

tions areas where genetic algorithm has been used for

optimal classification (Vlasov et al. 1997; Turek et al.

2009; Mimendia et al. 2010a, b; Wilson et al. 2012). The

general application areas are in samples of tea, juice (Liu

et al. 2013), wine and water containing HMI. Prominent

works done by Bhondekar et al. (2011), (Kaur et al. 2012)

and (Kumar et al. 2012a, b) in the field of optimum clas-

sification of tea have used techniques such as social impact

theory-based optimizer and support vector machines.

Similarly, Gutiérrez et al. (2011) used principal component

analysis (PCA) and soft independent modeling by class

analogy (SIMCA) for the quantification of grape varieties.

Further, Jańczyk et al. (2010) used ion selective electrode

for detection of micro-encapsulation effect of pharmaceu-

tical ingredients. As far as the classification of water con-

tainments are concerned, Martı́nez-Máñez et al. (2005)

developed an electronic tongue for the qualitative analysis

of natural waters using Fuzzy ARTMAP neural network

with success rate higher than 93%. Hong Men et al. (2005)

have developed an integrated electronic tongue which

includes multiple light addressable potentiometric sensors

and electrochemical electrodes for the detection of Fe(III),

Cr(VI) and HMI.

Though evolutionary algorithms such as genetic algo-

rithm (GA) and particle swarm optimization (PSO) algo-

rithm have been used since a long time in several

applications, in most of the cases PSO remains to be one of

the best optimizers. The potential of GA and PSO for

classification of the water containments is yet to be har-

nessed. The novelty of the work lies in the application of

GA and PSO to the multi-variate data pertaining to multi-

electrode, multi-frequency potable water data for the

Table 1 Contaminated sites in India (Sahni 2011)

City, State Heavy metal ion

Bandalamottu Mines, Andhra Pradesh Lead

Ballia, Uttar Pradesh Arsenic

Ganjam, Orissa Mercury

Kanpur, Uttar Pradesh Chromium

Kodaikanal, Tamil Naidu Mercury

Korba, Chhattisgarh Lead

Malanjkahnd, Madhya Pradesh Copper

Ranipet, Tamil Nadu Chromium

Ratlam, Madhya Pradesh Lead

Singhbhum Mines, Jharkhand Copper

Singrauli, Madhya Pradesh Mercury

Talcher, Orissa Chromium

Tuticorin, Tamil Nadu Arsenic, copper

Vadodara, Gujarat Chromium, lead

West Bengal Arsenic
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classification of heavy metal ions. This work focuses on

classifying the impedance data of potable water of single

electrode multi-frequency (SEMF), single frequency multi-

electrode (SFME) and multi-frequency multi-electrode

(MFME) and GA, with PSO being used to optimize MFME

response. Principal component analysis (PCA) improves

the extraction of the cluster structure (Ben-Hur and Guyon

2003) and is applied in conjunction with cluster validation-

similarity index (S), dissimilarity index (D) and Davis–

Bouldin index (DBI). The results show that the impedance

response of silver nanoparticle (SNP) electrode gives the

best discriminability without compromising the complexity

of the system, for e.g., using SFME, MFME and GA and

PSO optimized response. Overall, PSO optimized the result

with the best combination of electrodes with particular

frequencies for classification. It also shows that we can

improve the cross-sensitivity of electrodes by selecting the

optimum frequency of the optimum electrode.

Methodology

The schematic of the work carried out is depicted in Fig. 1.

Experimental setup and data acquisition

The experimental setup is designed to obtain the impe-

dance spectra of eight heavy metal ions sampled from

reagents such as NiCl2, ZnCl2, CuCl2�2H2O, K2Cr2O7

(Spectrochem Pvt. Ltd.), CdSO4�8H2O, As2O3 and AgNO3

(Merck Pvt. Ltd.) (3 samples for each) at 60 different

frequency ranges from 1 Hz to 100 kHz using electro-

chemical workstation instrument. All the experiments were

carried out at room temperature and the electrodes Au, GC,

Pt and SNP were first polished with alumina slurry and

dried in N2 gas after the removal of residual alumina by

sonication in isopropanol. Further, the impedance spectra

of different heavy metal ions were recorded. The recorded

data are in the form of matrix of size 24 9 60 for each

electrode, where rows indicate 24 different sampled heavy

metal ions and columns represent their sampled frequency

points. The feature selection and cluster analysis of

recorded impedance spectra were done using PCA and

validated using clustering indices.

Feature selection: principal component analysis

Principal component analysis is a statistical tool used for

dimensionality reduction of multi-variate data. It selects

the features from input data to reduce the dimensionality

and tries to keep the informative value of the data intact.

Depending on the number of input variables, it creates

principal components (PC’s) representing the maximum

variability in information data and its variance in

descending order (PC1, PC2, PC3, etc.). Usually, the first

two components (PC1 and PC2) are found to be the best

means to carry out the classification of input variables. In

our work, we performed PCA to form clusters of impe-

dance values of the electrodes at various frequencies, and

analysis and validation of the cluster through the similarity

and dissimilarity factor within the cluster and in between

clusters, respectively.

Clustering analysis

Clustering is an unsupervised process of dividing or

grouping set of input data on the basis of some common

attributes into clusters. It is very difficult to define the

acceptability of clusters due to which two measurements

are generally done:

• Similarity Index (compactness) (S)—This index mea-

sures the value of homogeneity of data in a cluster and

how much it is closely packed in a given cluster. This

compactness factor is generally measured using the

variance.

• Dissimilarity Index (separation) (D)—This index mea-

sures the value of heterogeneity between the clusters

and how far clusters are from each other. The more the

distance between the clusters, the better is the

clustering.

To measure crisp clustering, i.e., having no overlapping

partitioning, one more validity index is used, i.e., Davies–

Bouldin index (DBI) (Kovács and Iváncsy 2006), which is

based on the similarity and dissimilarity measure of the

clusters.

Fig. 1 Schematic of the methodology
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Let E be the set of input data, and Ci the cluster of Ei,

i.e., Ei 2 Ci.Then the similarity index (Si) of Ci is measured

as

Si ¼
1

jNij

X

Tj

j¼1

jEj � Tij
p

( )
1
p

; ð1Þ

where Ni is the number variable in Ci and Ti the centroid of

Ci.

Similarly, we can measure the dissimilarity index (Di):

Dij ¼
X

kr

k¼1

jTki � Tkjj
p

( )1
p

; ð2Þ

where kr represents the kth element of centroid Tr of cluster

Cr and p = 2 (Euclidian distance).

To calculate Rij we need to find the similarity between

two clusters, Ci and Cj:

Rij ¼
Si þ Sj

Dij

; ð3Þ

DBI ¼
1

N

X

N

i¼1

Ri; where Ri ¼ max Rij

� �

when i 6¼ j: ð4Þ

Data processing

The four electrodes (platinum, gold, glass carbon and silver

nanoparticles) are used in experimentation and impedance

is measured in the range of 1 Hz to 100 kHz in 60 steps in

response to the potable water mixture containing eight

heavy metal ions dissolved (1 metal ion has 3 samples). We

use only five frequencies to carry out further analysis to

reduce impedance variables. The data are then arranged in

24 9 5 matrices for each electrode and each frequency,

where rows represent heavy metal ions and columns are the

modulus of impedance of electrodes with respect to fre-

quencies, matrices namely GC, Au, Pt and SNP and fre-

quencies 1, 100 Hz, 1, 10 and 100 kHz. Further, a matrix

containing the data of all electrodes is formed named as

multi-frequency multi-electrode (MFME) of size 20 9 24,

where rows represent a sample and column the impedance

response of each electrode to a particular frequency. The

above matrices have been standardized (i.e. mean centered

and standard deviation scaled). To optimize MFME data, it

is subjected to GA and PSO. It was observed that using

DBI as their fitness function, both GA and PSO select

different sets of electrodes, i.e., GA selected Au—1 Hz,

Au—1 kHz, SNP—1 Hz, Pt—10 kHz and Pt—100 Hz;

and PSO selected electrodes Pt—100 kHz, Pt—1 kHz,

Table 2 Clustering indices values

Input data S D DBI

SEMF-Pt 0.509 2.795 0.079

SEMF-GC 0.414 2.683 0.109

SEMF-Au 0.258 2.897 0.054

SEMF-SNP 0.429 2.816 0.063

SFME–1 Hz 0.599 2.208 0.112

SFME–100 Hz 0.181 2.740 0.031

SFME–1 kHz 0.118 2.750 0.025

SFME–10 kHz 0.121 2.729 0.023

SFME–100 kHz 0.133 2.525 0.035

MFME 0.369 5.734 0.033

MFME–GA 0.227 2.674 0.058

MFME–PSO 0.115 3.108 0.016

Fig. 2 PCA plot for 1 Hz

frequency
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Au—100 kHz, Au—10 kHz and SNP—100 Hz. For all

matrices, the similarity index (S), dissimilarity index

(D) and Davies–Bouldin index (DBI) values are calculated

and shown in Table 2.

Results and discussions

To analyze the impedance values generated by the elec-

trochemical workstation used in the experiment, we have

used PCA to classify the heavy metal ions and genetic

algorithm to check the cross-sensitivity of the electrodes.

We used four electrodes, namely, platinum (Pt), glassy

carbon (GC), gold (Au) and silver nanoparticles (SNPs).

The eight heavy metal ions are arsenic, copper, zinc,

nickel, cadmium, lead, cobalt and chromium. For each

electrode, we had 24 impedance values corresponding to

three sample sets of eight heavy metal ions. The frequen-

cies used are 1, 100 Hz, 1, 10 and 100 kHz. For each

frequency, we have impedance values in the form of a

matrix of size 3 9 8 for each electrode. Such a matrix

corresponds to the data pertaining to single frequency

Fig. 3 PCA plot for 100 Hz

frequency

Fig. 4 PCA plot for 1 kHz

frequency

Appl Water Sci (2017) 7:3679–3689 3683

123



multi-electrode (SFME) configuration. The PCA scattering

corresponding to the SFME configuration for frequencies

1, 100 Hz, 1, 10 and 100 kHz are shown in Figs. 2, 3, 4, 5

and 6, respectively.

It can be seen from Fig. 2 that two heavy metal ions—

Co and Cr, are clearly classified at 1 Hz frequency, and the

rest of the metal ions overlap and as a result are not

properly classified. Figure 3 shows that all the heavy metal

ions are reasonably classified at a frequency of 100 Hz.

Figure 4 classifies As, Pb, Cu, Cd and Zn as forming a

more compact cluster at 1 kHz, whereas the Co, Ni and Cr

compactness of clusters is comparatively less as compared

to the cluster formed at 100 Hz frequency. Figure 5

classifies all the heavy metal ions; the plot is quite similar

to that of 1 kHz. The impedance values at 100 kHz are not

that well classified, as overlapping was present between Co

and Cd as shown in Fig. 6. When the similarity and dis-

similarity indices are compared for all the frequency values

used, it can be observed that the classification corre-

sponding to 1 kHz is the most reasonable, as it has lower S

(similarity index) value and higher D (dissimilarity index)

value among all the five frequencies in the SFME.

The next configuration we have considered is multi-

frequency single electrode (MFSE). For each of the four

electrodes, Pt, GC, Au and SNP, the five frequencies used

are 1, 100 Hz, 1, 1 and 100 kHz. The PCA scatterings of

Fig. 5 PCA plot for 10 kHz

frequency

Fig. 6 PCA plot for 100 kHz

frequency
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MFSE configuration for each electrode are shown in

Figs. 7, 8, 9 and 10.

Figures 7 and 8 show the PCA scattering corre-

sponding to the Pt electrode and GC electrode, respec-

tively, and the classification is very poor because of

excessive overlapping. Figure 9 shows a better classifi-

cation, but overlapping exists. Figure 10 shows the best

classification of metal ions when SNP electrode is used.

Out of all the four electrodes, SNP clearly stands out as

the most optimal electrode in the MFSE configuration

for classification of heavy metal ions with the smaller

S value as 0.429 and a larger D value as 2.816

(Table 2).

The third configuration we have used is multi-frequency

multi-electrode (MFME) whose PCA scattering is shown in

Fig. 11.

Every heavy metal ion Cd, Co, Zn, Ni, Cu, Cr, Ar and

Pb form its own clusters as can been seen and to decrease

the complexity of the MFME configuration and to optimize

the issue of cross-sensitivity of electrodes, i.e., choosing

Fig. 7 PCA plot corresponding

to the Pt electrode

Fig. 8 PCA plot corresponding

to the GC electrode
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optimum electrode at its optimum frequency, we have used

the GA and PSO algorithm.

The GA and PSO algorithm was tuned and ran several

times and selected the electrodes with the best efficiency

on the basis of DBI as the fitness function. The elec-

trodes selected by GA are Pt—1 kHz, SNP—100 kHz,

Au—1 kHz, GC—1 Hz and GC—1 kHz. The matrix of

24 9 5 was formed containing the electrode impedance

values at the particular selected frequency by GA and

PCA scatter plot of MFME. GA successfully classified

the ions and the clusters formed were more compact as

compared to both MFME and SNP results as seen in

Fig. 12.

Further, we have repeated a similar exercise for the

electrodes (Pt—100 kHz, Pt—1 kHz, Au—100 kHz, Au—

10 kHz and SNP—100 Hz) selected by PSO. It is observed

that clusters of nickel and chromium ions that were not

optimized in the GA scatter plot are now more compact in

the MFME PSO PCA scatter plot shown in Fig. 13.

Further, the matrix containing these electrodes of each

optimization technique was subjected to a code written in

MATLAB to calculate the cluster indices. It was found that

MFME–PSO produced a comparatively better result as

compared to all, both similarity index (S) and Davis–

Bouldin index (DBI) decreased, which represents a better

classification of ions.

Fig. 9 PCA plot corresponding

to the Au electrode

Fig. 10 PCA plot

corresponding to the SNP

electrode
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Conclusions

In this work in the SEMF system, it is found that SNP

gives better classification of HMI as compared to Pt,

GC and Au. Overall, the PSO-optimized response gives

better clustering indices values; its system complexity

is more, as multiple electrodes are used, but classifi-

cation and compactness of the clusters formed is much

more distinguishable as compared to SNP. The PSO-

optimized multi-frequency multi-electrode system

could be used for discrimination of heavy metal ions

residing in potable water. Also, it is important to keep

in consideration that cross-sensitivity of electrodes

could enhance more and opens up the window for

more qualitative and quantitative analysis of liquids for

exploration.

Fig. 11 PCA plot

corresponding to MFME

Fig. 12 PCA plot

corresponding to MFME–GA
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