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ABSTRACT

An important problem in pattern recognition is the effect of limited training samples on
classification performance. When the ratio of the number of training samples to the
dimensionality is small, parameter estimates become highly variable, causing the
deterioration of classification performance. This problem has become more prevalent in
remote sensing with the emergence of a new generation of sensors. While the new
sensor technology provides higher spectral and spatial resolution, enabling a greater
number of spectrally separable classes to be identified, the needed labeled samples for
designing the classifier remain difficult and expensive to acquire. In this thesis, several
issuss concerning the classification of high dimensional data with limited training
samples are addressed. First of all, better parameter estimates can be obtained using a
large number of unlabeled samples in addition to training samples under the mixture
model. However, the estimation method is sensitive to the presence of statistical
outliers. In remote sensing data, classes with few samples are difficult to identify and
may constitute statistical outliers. Therefore, a robust parameter estimation method for
the mixture model is introduced. Motivated by the fact that covariance estimates
become highly variable with limited training samples, a covariance estimator 1is
developed using a Bayesian formulation. The proposed covariance estimator is
advantageous when the training set size varies and reflects the prior of each class.
Finally, a binary tree design is proposed to deal with the problem of varying training
sample size. The proposed binary tree can function as both a classifier and a feature
extraction method. The benefits and limitations of the proposed methods are discussed
and demonstrated with experiments.

Work leading to the report was supported in part by NASA Grant NAGS5-3975.
This. support is gratefully acknowledged.



CHAPTER 1: INTRODUCTION

1.1 Background

Remote sensing technology involves the measurement and analysis of the
electromagnetic radiation reflected from the earth's surface by a passive or an active
source. The radiation responsesin various wavelengths indicate the types or properties of
the materials on the surface being measured and collectively form a multispectral image.
Early on, multispectral scanners were developed which measured radiation in 3 to 12
spectral bands. Current sensors can gather data in hundreds of spectral bands and
generate hyperspectral data. For example, the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) collects data in 224 spectral bands covering 0.4-2.5 pm
wavelength region with 20 m spatial resolution. By representing the spectrum of a pixel
in a multispectral image as a random process [1] statistical pattern recognition methods
have been successfully applied to process multispectral data. Figure 1.1 illustrates the
representation of a pixel as multivariate data.

p: Number of Spectral Features
{Dimensionality)

Figure 1.1 A Multispectral Image
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The process of designing a classifier using training samples from the classes of

interest is referred to as supervised classification. A typical supervised classification
system for multispectral data consists of several stages as shown in Figure 1.2.

-
Data }__’ . L_> > Results
Collection ‘ PrOCCSSlng Classification Evaluation

[ Labeled Samples

Figure 1.2 Multispectral Data Processing System

Before classifying the data, some form of processing is usually performed on the
data. The purpose of the processing stage is to obtain a better representation of the data
based on the available labeled samples in preparation for classification. If the probability
density functions (pdfs) of the classes are assumed known, a better representation usually
means a good set of parameter estimates for the pdfs. The common approach in remote
sensing is to assume normally distributed classes and estimate the mean vectors and
covariances matrices using the training samples. The processing stage may then involve
covariance estimation, statistics enhancement using an expectation maximization (EM)

algorithm and feature extraction.

The types of classifier can be broadly divided into two categories: pixel-based and
spectral-spatial classifiers. A pixel-based classifier assigns each pixel to one of the
classes by applying a decision rule. In other words, each pixel is classified individually
based on its spectral measurements alone. Usually, the decision rule can be written in
terms of the pdfs of the classes or their parameters. In spectral-spatial classifiers, it is
assumed that the classes of neighboring pixels are not independent. Therefore, the
decision can either be formed on a group of adjacent pixels or can take into account the
classes of neighboring pixels.

After the classifier is designed, it is usually tested by measuring the error
probability, which can be obtained from classifying the labeled samples. In practical

situiitions, the number of these labeled samples is limited so one must decide how to



divide them to both design and test the classifier. An unbiased estimator is provided by
using a set of samples for design and the other set of samples for testing the classifier.
This approach, called the holdout method, is adopted for this thesis.

1.2 Objective of Research

The increase in spectral resolution brought about by the new sensor technology has
offered new possibilities and challenges. It is the goal of this thesis to investigate the

problems presented by the new sensors.

The availability of a large number of spectral bands should allow more detailed
classes to be identified with higher accuracy than previously possible. However, for
remote sensing applications, the needed number of labeled samples for designing and
testing the classifier remains expensive and difficult to acquire. For example, the ground
truth information may be gathered by visual inspection of the actual site or by matching
the spectral responses of the samples against the responses of known samples. As a
result, the class statistics have to be estimated by the limited training sample set. When
the ratio of the number of training samples to the number of features is small, the
parameter estimates become highly variable causing the classification performance to
deteriorate. Typically, the performance of the classifier improves up to a certain point as
additional features are added, and then deteriorates. This is referred to as the Hughes
phenomenon [2] (See Figure 1.3). The number of training samples required for different
classifiers to obtain reasonable parameter estimates has been studied in [3]. Thus, the
goal of this research is essentially to circumvent the Hughes phenomenon caused by

limited training set size.
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Figure 1.3 The Hughes Phenomenon [2]

1.3 Organization of this Report

In Chapter 2, the problem of limited training set size is addressed by including
unlabeled samples for parameter estimation under the mixture model. It is common to
view remote sensing data in terms of a mixture model fitted with normally distributed
components (spectral classes). Then the parameters of the mixture moclel are estimated,
for example, using the expectation maximization (EM) algorithm. For the EM algorithm
to perform well, the classes must be exhaustive. In other words, the existence of
statistical outliers may degrade the performance. As a direct consequence of increased
spectral and spatial resolution, hyperspecral data consists of more spectral classes with
varying sizes. Some of these classes can be small and tedious to identify and may
constitute outlying pixels which are not consistent with the statistics of the other classes.
Therefore, a robust estimation method for estimating the mean vectors and covariance
matrices under the mixture model is presented in Chapter 2. The proposed method gives
reduced weights to pixels which are considered as statistical outliers and thereby limiting

their influence in estimating parameters.

In Chapter 3, the issue of small training sample size is addressed as a parameter

estimation problem, in particular, covariance estimation. When the training sample size
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is small compared to the dimensionality, the sample estimates of the parameters becomes
highly variable. The problem of limited training samples is especially severe for
covariance matrices since sample covariance estimates become singular as the number of
training samples is less than dimensionality. In such circumstances, several studies have
found that a linear classifier often performs better than a quadratic classifier. However,
the choice between either a linear or quadratic classifier is quite restrictive. A covariance
estimator is therefore proposed which can be viewed as an intermediate approach
between linear and quadratic classifiers. The proposed estimator is derived using a
Bayesian formulation, which is desirable when the classes have varying sizes and the

training sample size is proportional to the class sample size.

In Chapter 4, the problem posed by limited training samples and numerous classes
is addressed by introducing a binary tree algorithm for classification and feature
extraction. In a single stage classifier, the same number of features have to be applied for
all classes. In a complex image with classes of varying sizes, those classes with very
limited training samples may impose a serious constraint on the total number of features
to be used for classification. Motivated by the need for a more flexible classification
procedure in which different number of features can be applied to discriminate different
classes, a binary tree design is proposed. In addition to performing a:sa classifier, the
proposed binary tree design can also function as a feature extraction method to generate
features for a single-stage classifier. The detail of implementation and experimental

results are presented in Chapter 4.

Finally, a general conclusion and directions for future research are presented in
Chapter 5.






CHAPTER 2: ROBUST PARAMETER ESTIMATION FOR
MIXTURE MODEL

2.1 Introduction

In a mixture model, data are assumed to consist of two or rnore component
distributions mixed in varying proportions. For remote sensing applications, it is a
common practice to consider several "spectral subclasses" within each "information
class" or ground cover type. Each of such spectral subclasses is assumed to be normally
distributed and classification is performed with respect to the spectral subclasses. Under
this model, remote sensing data can be considered as a mixture model fitted with
normally distributed components.

To estimate the model parameters in a mixture, a common approach is to apply the
expectation maximization (EM) algorithm to obtain the maximum likelihood (ML)
estimates. For the EM algorithm to converge to the global solution, several conditions
have to be met. First of all, the initial estimates must be reasonably good. Usually the
training samples provide a good starting point for the iteration. Moreover, the defined
classes must be exhaustive. This means that all samples are accounted for by the
component distributions in the mixture. Unfortunately, for the analysis of remote sensing
data, to arrive at a set of exhaustive classes is an iterative process by trial and error, and
usually depends on the expertise of the user. In addition, there might be some scattered
background pixels which are difficult or tedious to identify. These pixels form the so-
called "information noise" whose spectral responses may not be consistent with the
majority of samples. Such statistical outliers are usually eliminated using a chi-square
threshold before applying the EM algorithm. This method can be viewed as a hard
decision. However, a suitable threshold value is difficult to select and is usually
arbirary. Consequently, "useful” pixels might be rejected as outliers.



-8-

In this chapter, a robust method is proposed to estimate the mean vector and
covariance matrix for classifying multispectral data under the mixture model. This
approach assigns full weight to the training samples, but automatically gives reduced
weizht to unlabeled samples. Therefore, it avoids the risk of rejecting useful pixels while
still limiting the influence of outliers in obtaining the ML estimates of the parameters.
The experimental results show that the proposed robust method prevents performance

deterioration due to outliers in the image as compared with the EM approach.

2.2 Expectation Maximization Algorithm for Mixture Density Estimation
2.2.1 Previous work

There has been extensive research on the problem of parameter estimation for a
normal mixture density over the past few decades. An excellent review can be found in
[4]. Karl Pearson [5] first employed the method of moments to decompose a finite
mixture of distributions in the case of a mixture of two univariate distributions with
different variances. The likelihood estimation of parameters in a mixture model was first
proposed by Rao [6] who used Fisher's method of scoring for a mixture of two univariate
distributions with equal variances. Later, it was shown that the methed of moments is
inferior to likelihood estimation of a mixture model [7]. The solution for the likelihood
approach was then presented and formalized in an iterative form as the expectation
maximization (EM) algorithm by Dempster, Laird and Rubin [8]. They :proposed the EM
algorithm as a solution to the maximum likelihood (ML) problem involving missing data,
of which the mixture identification problem is an example. In the review article [9], the
EM equations for obtaining the ML estimates of the parameters and their properties were
studied in detail. The convergence properties were investigated in [ 10].

In [11], the EM algorithm has been studied and applied to remote sensing data. It
was shown that by assuming a mixture model and using both training samples and
unlabeled samples in obtaining the estimates, the classification performance can be
improved. Also, the Hughes phenomenon can be delayed to a higher dimensionality and
hence more features can be used to obtain better performance. In addition, the parameter
estimates represent the true class distributions more accurately. However, the
unrepresented pixel classes have been dealt with by rejection using a chi-square
threshold. In the next section, the EM algorithm is reviewed and discussed.
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2.2.2 Expectation Maximization Algorithm

The Expectation Maximization (EM) algorithm is an iterative method for
numerically approximating the maximum likelihood (ML) estimates of the parameters in
a mixture model. Alternatively, it can be viewed as an estimation problem involving
incomplete data in which each unlabeled observation on the mixture is regarded as

missing a label of its origin [12].

Under the mixture model, the distribution of the data x € R? is given as:
L
f(x;®@)= Zaifi(x;‘pi)
i=1

where a,,...,o, are the prior probabilities or the mixing proportions, f, is the component
density parametrized by ¢, and L is the total number of components. The mixture

density f is then parametrized by ® = (a,...,a, ¢,,...,¢L).

Under the incomplete data formulation, each unlabeled sample x is considered as
the :labeled sample y with its class origin missing. Therefore, we can denote y=(x,i)
where i=1---L indicates the sample origin. Let g(x|(I>) be the probability density
function (pdf) of the incomplete data x =(x,,...,x,,) and f(y|(1>) be the pdf of the
completely labeled data y=(y1,..., y"). The maximum likelihood estimation then
involves the maximization of the log likelihood of the incomplete data
L(®) = log g(x|®). The estimation is complicated by the fact that the sample origin is
missing. Hence, the EM algorithm uses the relationship between f(y|®) and g(x|®) to
maximize the incomplete data log-likelihood L(@):logg(xkb). Using an iterative
approach, the EM algorithm obtains the maximum likelihood estimates by starting with
an initial estimate ®° and repeating the following two steps at each iteration:

E-Step) Determine Q((I)

(DC) = E{logf(y|(l>)|x, (DC}.

M-Step) Choose ot = argmaxQ(tb

@°).

The next and current values of the parameters are denoted by the superscripts “+”
and “c” respectively. The algorithm begins with an initial estimate and it: has been shown
that under some relatively general conditions the iteration converges to ML estimates, at
least locally. Since the convergence is only guaranteed to a local. maximum, the
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algorithm usually has to be repeated from various initial points. However, the training

samples, if available, can provide good initial estimates.

Assume that y = (y],..., ymi) are the m; training samples from class i. Also, there

are L Gaussian classes and a total of n unlabeled samples denoted by x = (x,,..., xn).

The parameter set @ then contains all the prior probabilities, mean vectors and
covariance matrices. The EM algorithm can then be expressed as the following iterative
equations [9]:

E-Step:
7 = 7(x,167) = aff,.(x,w.-‘)/i o f,(x,195) 2.1

t=1

where 7 is the posterior probability that x; belongs to class i
M-Step:

ar=N1/n (22)

pr=d 2.3)

i

20 =) - 15 Z( ) - 15)

=L (2.4)

C
m, + Z T
j=1

There are several factors affecting the convergence of the EM algorithm to the
maximum likelihood estimates. First of all, the selection of training samples as initial
estimates can affect the convergence to a great extent. In this work, the training set is
assumed to provide a good initial estimate. Another factor that decides the performance
of the EM algorithm is the presence of statistical outliers. Assume that the number of
components have been decided and given by the training set. Statisrical outliers are
defined as those observations which have great discrepancy from the distributions of the
mixture components. As indicated by Eq. (2.1) through Eq. (2.4), the EM algorithm




assigns each observation to one of the components with the sample's posterior probability
as its weight. Even though an outlying sample is inconsistent with distributions of all the
defined components, it may still have a large posterior probability for one or more of the

components. As a result, the iteration converges to erroneous solutions.

The problem of outliers is not uncommon for practical applications. In remote
sensing, a scene usually contains pixels of unknown origin which form "information
noise". For example, in an agricultural area, there could be pixels belonging to houses,
trees or rural roads. The statistical distributions of these pixels may be significantly
different from those of training classes and constitute statistical outliers. Unfortunately,
these outlying pixels are usually scattered throughout the image and are small in number.
Consequently, identifying these pixels could be a tedious task. A common approach to
eliminate those pixels in the EM algorithm is to apply a chi-square threshold test [11]. In
other words, pixels whose distances are greater than the threshold value are considered as
outliers and are subsequently excluded from updating the estimates. The chi-square
threshold 7, for a given probability a is defined as the squared distance between the
sample x € R? and the mean vector for class i based on the chi-square distribution as

shown in the following:

Pr{f|(x - m,.)Tf;-l (x- m,.) < Ta} =a.

The problem of outliers can be illustrated by the following simulation. The data set
contains three classes and only Class 1 and Class 2 are represented. by the training
samples in the mixture density. These two classes are generated with the normal
densities N(0,2) and N(8,2) respectively. A total of 500 samples are generated for the
two classes and 50 samples are selected as the training samples. A third class with a
normal density N(20,1) is generated to represent outliers. The number of samples for
Class 3 are chosen to be 50. Figure 2.1 shows the densities for these classes. The
experiments are repeated with the sample estimates, the estimates with EM algorithm
after 10 iterations without thresholding and with thresholding. The chi-square threshold
is chosen to be 7, =3.84 and @ =95% for one degree of freedom. The experiment is
repeated 50 times and the mean accuracy and standard deviations are recorded. The
estimated densities are illustrated in Figure 2.2, which demonstrates that the presence of
outliers can have an undesirable effect on the EM algorithm. The classification results
are shown in Table 2.1 and Figure 2.3. The standard deviations are indicated in

—



parenthesis next to the mean accuracy. The results show that the classification

performance deteriorates when the EM algorithm is applied in the presence of outliers.

04 T ; T : T
0.35 | Class 3 -
03} Class 1 Class 2 "Outliers" -
0.25 | 4
0.2 ( 4
0.15 | 4
0.1F -
0.05 | / \ .
(:)10 -2') (I) é 1l0 1'5 2l0 25
Figure 2.1 Probability Densities for Simulation Data
0.35 T T T T T T
0.3 --- EM w/o Threshold -
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0.25 .
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0.1 -
0.05 4
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Figure 2.2 Estimated Probability Densities after Performing EM Algorithm
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Figure 2.3 Mean Accuracy for the Simulation with Class 3 as Outliers

Table 2.1
Experiment Results for the Simulation with Class 3 as Outliers
Class 1 Class 2
True Mean 0 8
True Variance 2 2
Sample Mean -0.08 (.17) 8.09(.19)
Sample Variance 1.82(.34) 1.86 (.34)
Accuracy (%) 100 (.00) 99.93 (.15)
EM: w/o Threshold
Estimated Mean -0.21 (.01) 8.46 (.03)
Estimated Variance 1.48 (.03) 17.50(.17)
Accuracy (%) 96.41 (.69) 100 (.00)
EM: with Threshold
Estimated Mean 0.00 (.01) 8.08 (.00)
Estimated Variance 1.62 (.03) 1.89 (.00)
Accuracy (%) 100 (.00) 100 (.00)

In the above simulation, the samples from Class 3 are not represented in the mixture
model. Since those samples are closer in statistical distance to Class 2., they have high
posterior probability with respect to Class 2. Therefore, the estimated density for Class 2
is degraded as shown in Figure 2.2. The figure also shows that the estimated densities of
Class 1 and Class 2 overlap such that some samples from Class 1 are rnisclassified as
Class 2, causing the decrease in the accuracy for Class 1. By applying the threshold,



marly of the Class 3 samples are excluded from the EM algorithm. Consequently, better

density estimates are obtained.

The thresholding approach can be regarded as performing a hard decision to
eliminate outlying samples before initiating the EM algorithm. Unfortunately, the choice
of threshold is arbitrary and useful pixels could be rejected at the outset. An alternative
would be to assign a different weight to each pixel and use all available unlabeled pixels
for updating the statistics. This method can be regarded as applying a soft decision. In
the next section, the robust EM equations will be discussed and modified to process

remote sensing data.

2.3 Robust Estimation
2.3.1 Previous work

The robust estimation of model parameters was first developed as Huber [13]
proposed a theory of robust estimation of a location parameter using M-estimates in a
non-mixture context. It was later extended to the multivariate case by taking an
elliptically symmetric density and then associating it with a contaminated normal density
[14]. Campbell [15] derived the M-estimates for the mixture density and obtained an
EM-like algorithm but with a weight function assigned to each pixel as a measure of
typicality. The outlier problem in remote sensing has been addressed in [16]. The author
proposed a modified M-estimation of the parameters to deal with the situation when the
training samples of a certain information class contain samples of other classes. This is
typical for a mixture model. The modified M-estimates were shown to be robust with
respect to the contamination in the training samples as compared to the least-square
estimates. However, the use of unlabeled samples in updating statistics was not
addressed. The next section will describe the method of robust EM algorithm following

the discussion in [15], and adapting the approach for remote sensing data.
2.3.2 Robust EM Algorithm

The expectation maximization (EM) algorithm first estimates the posterior
probabilities of each sample belonging to each of the component distributions, and then
computes the parameter estimates using these posterior probabilities as weights. With
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this approach, each sample is assumed to come from one of the component distributions,
even though it may greatly differ from all components. The robust estimation attempts to
circumvent this problem by including the typicality of a sample with respect to the
component densities in updating the estimates in the EM algorithm.

To incorporate a measure of typicality in the parameter estimation of the mixture
density, the component densities f,.(xl ¢i) are assumed to be a member of the family of

p-dimensional elliptically symmetric densities with parameters 4; and ;:
-1/2
|Ei| fs{5i(x’° H; Ei)}

where §2 =(x - ui)TZ;."(x - u,.). Typically, fs( ) is assumed to be the exponential of
some symmetric function p(5‘.):

fs(8,)= exP{_p(Si)}-

Then, the likelihood parameter estimation for these component densities can be obtained

by applying the expectation and maximization steps.

Expectation Step

Assume that unlabeled samples {xl,xz,---,xn} are available, Q(¢>‘f¢>c) can then be

written as the summation of two terms:

o(

*)=E{log f (@)@}

iZTj loga, +ZZ logf,.(leqb,.)

i=1 j=1 i=1 j=1

=33 zloga,+ 3 3¢ - toglz, [ £ {8 (%)} 2.5)

i=l j=1 i=1 j=1

a

where 7} = of |Ef|— ( ) Z

squared distance 517 =(x, - ,.)T ! (xj —u,.).

( ) is the posterior probability and 8 is the
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Maximization Step

The maximization of Eq. 2.5 is carried out by taking the derivatives with respect to
the parameters a,, g, and X; and setting these derivatives to zero. The optimization of

o; involves only the first term in Eq. 2.5, and is given by [9]
o = Z T /n

The iterative equations for u; and X, are obtained by solving the following

equations:

5 2_p(afer)=0

and

_Q( cp‘):

The following equations can then be derived from Eq. 2.5:

25 v A8 e 0

l]—

) % {[_-;-jlog|2i|—p(Si(xj;/.t,.,Ei))}=0

a/'tt]l

Substituting p; for u;, taking the derivative and simplifying, one obtains

" c W 616 +
ZT"J' Esgj)(xf —H; )=
J=1 ij

where l}l(S‘)— '(55) is the first derivative of p(&) Rearranging and letting

( ) / ; » the maximum likelihood estimator for 4, is expressed as follows:

n

o c

- z T wuxJ 2 TiJwJ
j=1 i=1



The term w; = 1//(5,.1.)/5,.]. reflects the contribution of sample x; to the ith mean.

Therefore, it is a weight function and provides a measure of typicality for the samples.
Note that the value of the weight function is obtained using the parameter values from the

previous iteration.

To obtain the iterative equation for the covariance matrix, the following equation is

set up:

a < C 1
255/ o] o

i j=1

Using the matrix derivative formulas in [17], the following equations are derived:

Z": T; {—Zf_l + %a’iag(Z:_I) + lgf—;—)— I (xj —u; )(xj - ,ui”)T PRI
j=1 i

Y 610 . +- + + +-
"'__2(55_)‘1“13[21' l(xj —H; )(xj —H; )Tzi 1]} =0

where diag(A) is a diagonal matrix, keeping only the diagonal terms of the matrix A.
Simplifying and multiplying the equation by Z; from left and right, the following

equation is obtained:
C c + +\T _
ZTU[—E,T +w,;f(xj - U )(xj ~ U; ) ]—0.
j=
The value of the weight function is obtained by using the parameters (I.t,+ ,Zf). Hence,
the iterative equation for X, can be written as:

=7 = 3wy (3, - (s, )T/ 27 26)
j=1

j=1



It was noted that the estimator for Z, in Eq. (2. 6) has two disadvantages [15]. First

of all, the weights are not incorporated into the denominator. Secondly, using the weight
function w; to estimate the covariance matrix fails to bound the influence of large

atypical observations. Therefore, the estimator for X; is modified and given as:
+ \ c 42 + AT /< c. +2
2= Zrijwij (xj -U; )(xj - U; ) ZTUWU .
j=1 j=1

Assuming that both training and unlabeled samples are available, the iterative

equations then become:

=

n

;

(4 c

PRTAMED WA
+ _ j=1 j=1

“;

=L =
C C c
2 w; + 2 TiWi

j=1 j=1

el e ik el el
== =

< 2 - 2
z + z Copyt

wij + T’-jWU
j=1 j=1

The weight function has been chosen to be (s)/s where s=4, and
;= (x e ,u,-)T z! (x i ,u,.). A popular choice of (s) is the Huber's y -function which
is defined by W(s)=—y(~s) where for s>0
$ 0<s<k(p)
y(s)=
k(p) s> k(p)

for an appropriate choice of the "tuning" constant k(p), which is a function of the

dimensionality p. This selection of y(s) gives:



b(P)s-k3(p) 5> k(p)

The value of the tuning constant k,(p) is a function of dimensionality. It also

depzsnds on the amount of contamination in the data. Since the amount of contamination
is usually not known, the value of kl( p) is chosen so that the estimators have reasonable
performances over a range of situations. A variety of choices have been suggested in
literature [15][18].

Like other parametric estimation applications, the performance of the classifier for
remote sensing relies heavily on the proper choice of the training samples. Since the
training samples are representative of the classes, it is desirable that they are given more

emphasis in the updates of the estimates. Therefore, in the proposed approach, the
training samples are assigned unit weight. To do so, the value of ,(p) is defined to be

k(p)= max(&'u)

where (23 = (y,.j - ,u,.)T Z‘T‘(y,.j - ,u,.) and y, is the training sample j from class i. In other
words, the tuning constant is selected such that the training samples are given unit weight
and the weights for the unlabeled samples are inversely proportional to the square root of
their squared distance to the class mean. To eliminate further the extreme outliers,
another tuning constant can be applied which allocates zero weights to those samples.

The chi-square threshold is recommended for the second tuning constant k,(p). In

summary, the proposed weight function is defined as the following:

s 0<s<k(p)
y(s)=1k(p) k(p)<s<k(p).
0 s> k,(p)

Alternatively, the weight assigned to each sample can be expressed as:

1 ) d; 1 max(é',.j)
w; = max(ga)/‘du max(é',.j) <d;<T,
0 a,>T,



where d,.f. = (x i ﬂ,.)TZ,.’l(xj - /.t,.) and T, is a user-defined chi-square threshold with a

given probability a. The iterative equations for the mean and covariance estimates can
thent be expressed as:

m;
zyij +ZTCWUxJ
+ _ j=1 j=1

I'li = n
C c
m o+ oW

j=1
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In future reference, the proposed robust version of the EM algorithm is designated as
REM. Also, the tuning constant k,(p) is not used in the following experiments.

2.4 Experimental Results

The following experiments are performed using a portion of an AVIRIS image
taken over NW Indiana's Indian Pine test site in June 1992. The scene contains four
information classes: corn-notill, soybean-notill, soybean-min and grass. By visual
inspection of the image, the list of these ground cover types is assumed to be exhaustive.
A total of 20 channels from the water absorption and noisy bands (104-108, 150-163,
220) are removed from the original 220 spectral channels, leaving 200 spectral features
for the experiments. The test image and the ground truth map are shown in Figure 2.4.
The number of labeled samples in each class is shown in Table 2.2.
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Figure 2.4 Portion of AVIRIS Data and Ground Truth (Original in Color)

Table 2.2
Class Description for AVIRIS Data in Figure 2.4
Class Names No. of Labeled Samples
Corn-notill 910
Soybean-notill 638
Soybean-min 1421
Grass 618

Experiment 2.1

The first experiment is intended to compare the expectation maximization (EM) and
the proposed robust algorithm (REM) when no outliers are present in the data. The
experiment is first conducted using simulation data. The data is obtained using the
statistics computed from all the labeled samples of the four classes. A total of 2000 test
samples per class is generated, 500 of which are used as the training samples. Since the
training samples are selected at random, the experiment is repeated 5 tinnes and the mean
and standard deviation of the classification accuracy are recorded. The numbers of
spectral channels are set at 10, 20, 50, 67, 100 and 200. These channels are chosen by
sampling the spectral range at fixed intervals. The algorithms are repeated for 10
iterations and the classification is performed using the Gaussian maximum likelithood
classifier. The maximum likelihood (ML) method using only the training samples to
estimate the parameters is denoted as ML in the following experiments. The results are
shown in Table 2.3 and Figure 2.5. The standard deviation is shown in. parenthesis next

to the mean accuracy.



Table 2.3
Classification Results for Experiment 2.1
with 500 Training Samples and 1000 Test Samples

Dimension ML (%) EM(%) REM (%)
10 91.75 (.31) 91.25(.08) 91.50(.08)
20 96.29(.31) 96.37 (.02) 96.37 (.02)
50 97.80(.30) 98.54(.002) 98.54(.002)
67 98.61 (.20) 99.12(.002) 99.12(.002)
100 99.04(.12) 99.66(.001)  99.65(.001)
200 99.93(.12) 99.98 (.001)  99.98 (.001)

100

98 1

(%)

96 1

Accuracy

02 {f

90 !
10 20 50 67 100 200

Number of Dimensions

—&— ML —8—EM —&— REM

Figure 2.5 Mean Accuracy for Experiment 2.2
with 500 Training Samples and 1500 Test Samples

The results show that when no outliers are present in the data, the EM and REM
algorithms have similar performance and both result in a better performance than the
maximum likelihood classifier using the training samples alone. Since there are many

design samples available, the best performance is obtained at 200 features.



Experiment 2.2

In this experiment, the simulation data from the Experiment 2.1 is used with the
exception that only 250 training samples are selected for each class. The number of test

samples is kept at 1500. Again, no outliers are present in the data. The results are shown
in Table 2.4 and Figure 2.6.

Table 2.4

Classification Results for Experiment 2.2
with 250 Training Samples and 1500 Test Samples

Dimension ML (%) EM(%) REM (%)
10 91.34 (.30) 91.74 (0.12) 91.74(0.11)
20 95.97 (.21) 96.92(0.11) 96.92(0.10)
50 96.19 (.31) 98.60(0.09) 98.60(0.09)
67 96.74 (.31) 99.08 (0.08) 99.08 (0.08)
100 96.48 (.28) 99.68 (0.04) 99.68(0.03)
200 92.56(.62) 99.86(0.04) 99.90(0.03)

(%)

Accuracy

90 + . :
10 20 50 67 100
Number

‘—O—ML—I—EM s~ REM |

200
of Dimensions

Figure 2.6 Mean Accuracy for Experiment 2.2
with 250 Training Samples and 1500 Test Samples

S S —



Since fewer training samples are used, the performance of the maximum likelihood
classifier (ML) using the training samples alone deteriorates. The decline is particularly
obvious at higher dimensionality. Compared to the previous experiment, the accuracy
has dropped 7% at 200 features. However, when unlabeled samples are used for the
mixture model, the performance remains stable even when the nurnber of training
samples declines. The results again show that when no outliers are present in the data,
the EM and REM algorithms have comparable performance and both achieve better

classification accuracy than the NIL classifier without using additional unlabeled samples.

Experiment 2.3

The previous experiment is repeated with only 400 test samples generated for each
class. The number of training samples per class is 250. Again, no outliers are present in
the data. The results are shown in Table 2.5 and Figure 2.7.

Table 2.5
Classification Results for Experiment 2.3
with 250 Training Samples and 400 Test Samples

Dimension ML (%) EM(%) REM (%)
10 91.06 (.74) 91.41 (.18) 91.46 (.24)
20 95.94 (.28) 96.40(.28) 96.40 (.28)
50 96.39(31) 97.61 (.26) 97.61 (.23)
67 96.14 (.76) 97.88 (31) 97.90 (.33)
100 96.44 (.41) 97.56(.52) 97.66 (.50)

200 92.16(1.13) 9231(1.12) 94.10(1.12)
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Figure 2.7 Mean Accuracy for Experiment 2.3
with 250 Training Samples and 400 Test Samples

Compared to the results from two previous experiments in wlnich many more
unlabeled samples were used, the classification results for all three methods deteriorate in
this experiment. This deterioration is manifested as the Hughes phenomenon. Hence, the
likelihood parameter estimation for the mixture model is shown to be affected by the
number of unlabeled samples relative to dimensionality. Specifically, it implies that 650
samples are still inadequate to characterize 200-dimensional Gaussian distribution. The
results again indicate that without outliers, the EM and REM algorithms have comparable
performance and both have better classification accuracy than the ML classifier without
using additional unlabeled samples.



Experiment 2.4

This experiment is conducted using the real samples from the data. Again, since all
four classes are represented by the training samples, the classes are assumed to be
exhaustive. As indicated in Table 2.2, the number of labeled samples is small. To retain
enongh test samples, only about 200 training samples are chosen for each class. The
number of training samples are shown in Table 2.6. Due to the limited labeled sample
size, to obtain reasonably good initial estimates for comparing the EM and REM
algcrithms, the number of spectral channels are selected at 10, 20, 50, 67 and 100. These
spectral features are again chosen by sampling the spectral channels at fixed intervals.

Table 2.6 and Figure 2.8 show the classificationresults at the selected dimensions.

Table 2.6
Training Set Size for Experiment 2.4
ClassNames  No. of Training Samples

Corn-notill 221
Soybean-notill 221
Soybean-min 225

Grass 224
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Figure 2.8 Accuracy for Experiment 2.4 using AVIRIS Data

The results show that the REM algorithm performs better than the ML and EM
methods. This demonstrates that although it is assumed that the scene contains no
outliers, there are some outlying pixels which were not identified. This further justifies
the motivation of using a robust parameter estimation method for the mixture model. The
results also show that all methods exhibit Hughes phenomenon. As discussed previously,
the decline in performance at high dimensionality is caused by the limited number of

unlabeled samples available in the image.
Experiment 2.5

In order to investigate the effect of outliers on the algorithms, the following
experiment is conducted with the class Grass removed from the set of information
classes. Therefore, the pixels other than the labeled samples from the three information

classes are considered as outliers. The samples used for updating the statistics then



include the labeled samples and some outliers. The amount of outliers is varied to
simulate different degrees of contamination. The numbers of outliers are chosen to be
200, 600 and 2000. Since the outliers are chosen randomly from the pool of unlabeled
samples, the experiment is repeated 5 times. The mean and standard deviation of the
classification accuracy are recorded. The results are presented in Table 2.7. The
standard deviation is written in parenthesis next to the mean accuracy. In Figure 2.9 and
2.10, the mean accuracy is plotted against different number of outliers present in the data

for 50 and 100 dimensions, respectively.

Table 2.7
Classification Results for Experiment 2.5 with Outliers
No. of Outliers Dimension= 50 Dimension = 100
ML EM REM ML EM REM
0 84.71 (0) 89.20 (0) 88.42 (0) 82.61(0) 85.34 (0) 84.71 (0)
200 84.71 (0) 90.62 (.20) 90.29 (.11)  82.61 (0) 87.34 (.29) 86.56 (.36)
600 84.71 (0) 88.59(.44) 8B.69(.58) 82.61(0) 87.21(.64) 87.08 (.45)
2000 84.71 (0) 62.57(2.27) 76.34 (1.64) 82.61(0) 83.33(.73) 86.97 (.64)
Dimension = £
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Figure 2.9 Mean Accuracy for Experiment 2.5 for 50 Dimensions
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Figure 2.10 Mean Accuracy for Experiment 2.5 for 100 Dimensions

The results show that the REM algorithm reduces the effect of outliers
contaminating the data as compared to the EM algorithm. The improvement is especially
marked at higher dimensions. This may be attributed to the fact that at higher
dimensionality, the weight assigned to each outlier is much more reduced since the

weight is a function of dimensionality. Therefore, the effectiveness of the REM
algorithm becomes more obvious.



Experiment 2.6

This experiment is conducted using a portion of the Flightline C1 (FLC1) data set,
which is a 12 band multispectral image taken over Tippecanoe County, Indiana by the
M7 scanner in June, 1966. The scene contains six information classes: Corn, Oats, Red
Clover, Soybeans, Wheat and Rye. By visual inspection of the image, the list of these
ground cover types is assumed to be exhaustive. The image and the ground truth map are
shown in Figure 2.11. The training fields are marked in the ground truth map. The
number of labeled samples and training samples in each class is shown in Table 2.8.
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Figure 2.11 Portion of Flightline C1 Image and Ground Truth Map (Original in Color)



Table 2.8
Class Description for Flightline C1 Image in Figure 2.11

Class Names No. of Labeled Samples No. of Training Samples
Comn 1764 128
Oats 1516 78
Red Clover 3548 280
Soybeans 6758 338
Wheat 6846 588
Rye 2385 408

To create outliers in the data on purpose, the class Rye is excluded from the training
class set and its samples are treated as outliers. Therefore, the classification is performed
based on the 5 remaining classes only. The parameters are estimated using the training
sammples alone, the EM algorithm with various threshold settings, and the: REM algorithm.
For the EM algorithm, two chi-square threshold values (1% and 5%) are applied for
comparison. The classification results are shown in Figure 2.12.
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Figure 2.12 Classification Results for Portion of Flightline C1 Image with Outliers

As shown in Figure 2.12, when there are statistical outliers in the data, the
performance of the EM algorithm declines drastically. However, by rejecting outliers
using chi-square thresholds, the EM algorithm shows significant improvement. The
result also indicates that REM and EM with thresholding have comparable performance
and are better than the ML method with training samples alone.



Experiment 2.7

The above experiment is repeated with the entire Flightline C1 image. The image
and the ground truth map are shown in Figure 2.13. The training fields are marked in the
ground truth map. The number of labeled samples and training samples in each class is
shown in Table 2.9. The classificationresults are plotted in Figure 2.14.
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Figure 2.13 Flightline C1 Image and Gound Truth Map (Original in Color)



Table 2.9
Class Description for Flightline C1 Image in Figure 2.13

Class Names No. of Labeled Samples No. of Training Samples
Alfalfa 3375 156
Bare Soil 1230 90
Corn 10625 331
Oats 5781 306
Red Clover 12147 614
Rye 2385 408
Soybeans 25133 631
Wheat 7827 340
Wheat-2 2091 120
Unknown-1 4034 322
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Figure 2.14 Classification Results for Flightline C1 Image

The entire Flightline C1 image contains classes with few pixels such as rural roads,
fannstead and water which are not included in the training set. There may be other
unknown classes which are not identified in the ground truth information. Therefore, it is
highly likely that statistical outliers are present in the image. This is confirmed by
experimental results. The performance of the EM algorithm is significantly lower than
those of ML, REM and EM with thresholding. Again, the experiment demonstrates that
REM has similar performance as EM with thresholding, but without the need of setting a
threshold.
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25 Summary

In this chapter, a robust method for parameter estimation under the mixture model
(REIM) is proposed and implemented for classifying multispectral data. This work is
motivated by the fact that a multispectral image usually contains pixels of unknown
classes which can be time-consuming to identify. These pixels of unknown origin may
have density distributions quite different from the training classes and constitute
statistical outliers. Without a list of exhaustive classes for the mixture model, the
expectation maximization (EM) algorithm can converge to erroneous solutions due to the
presence of statistical outliers. This problem necessitates a robust version of the EM

algorithm which includes a measure of typicality for each sample.

The experimental results have shown that the proposed robust method performs
better than the parameter estimation methods using the training samples alone (ML) and
the EM algorithm in the presence of outliers. When no outliers are present, the EM and
REM have similar performance and both are better than the ML approach. Specifically,
when there are many unlabeled samples available, the EM and REM algorithms can
mitigate the Hughes phenomenon since they utilize unlabeled samples in addition to the
training samples. When the number of unlabeled samples are limited, both EM and REM
methods exhibit the Hughes phenomenon, but still achieve better classification accuracy
than the ML approach at lower dimensionality. Despite the promising results, the
proposed REM algorithm has several limitations. Since the weight function in the REM
algorithm is based on class statistics, the initial parameter estimates are important in
determining the convergence. In particular, a good covariance estimate requires
sufficient number of training samples. When the number of training samples is close to
or less than dimensionality, the covariance estimate becomes singular and the EM or
REM algorithm cannot be applied. This issue is addressed in the next chapter where a

covariance estimation method for limited training samples is proposed.
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CHAPTER 3: COVARIANCE ESTIMATION FOR LIMITED
TRAINING SAMPLES

3.1 Introduction

In Gaussian maximum likelihood classification, the mean vector and covariance
matrix are usually estimated from the training samples. When the training sample size is
small compared to the dimensionality, the sample estimates, especially the covariance
estimate become highly variable and consequently, the classifier performs poorly. In
particular, if the number of training samples is less than the dimensionality, the
covariance estimate becomes singular and hence quadratic classifiers cannot be applied.
Unfortunately, the problem of limited training samples is prevalent in remote sensing
applications. While the recent progress in sensor technology has increased the number of
spectral features, making possible for more classes to be identified, the training data
remain expensive and difficult to acquire. In this chapter, the problem of small training
set size on the classification performance is addressed by introducing a covariance
estimation method for limited training samples. The proposed approach can be viewed as
an intermediate method between linear and quadratic classifiers by selecting an
appropriate mixture of covariance matrices of various forms using the training samples.
The covariance estimator is derived under an empirical Bayesian setting which is
advantageous when the training sample size reflects the prior of each class. The effect of
covariance estimation on discriminant analysis feature extraction technique is also
investigated. Extensive experiments are performed using simulation data and
hyperspectral images. The experimental results show that the proposed covariance

estimator improves classification performance when the training samples;are limited.
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3.2 Preliminaries

3.2.1 Introduction

The purpose of classificationis to assign unlabeled samples to one of several groups
or classes. In the conventional Gaussian maximum likelihood (MIL) classifier, the
classification rule can expressed in the form of a discriminant function and a sample is
assigned to the class with the largest value. A multivariate Gaussian distribution is given
as

fix) =y exp[—%(x —u) = (x - u,.)] 1<i<L

where (4, and X, are the ith class mean vector and covariance matrix, respectively, and

L is the number of classes and x € R?. Assuming a [0,1] loss function, the maximum
likelihood classification rule then becomes

d;(x)=mind,(x) @3.1)
where d, is the discriminant function given by
d(x)=(x- u,.)TZ,TI(x — )+ Iz

This classification rule is also called a quadratic classifier. A special case occurs

when all of the class covariance matrices are identical and it becomes a linear classifier:

=% 1<i<L

In practical situations, the true class distributions are rarely known. Therefore, the
sample estimates are computed from training samples and are used as the maximum
likelihood estimates of the parameters:

"ML

ul i=

Mz

1
—_ x_.
N, 3

a N; T
L )

~.

where N, is the total number of training samples from class i and x;; is the training

sample j from class i.



The performance of Eq. (3.1) can be seriously degraded when the number of

dimensions is large compared to the training set size due to the instabillity of the sample
estimates. In particular, the sample covariance estimate S; becomes highly variable. The

inverse of S; is especially problematic, as can be seen by the fact that ; is not invertible
for p2 N, —1.

One way to deal with the instability of S; is to employ the linear classifier which is
obtained by replacing each S; with their average:
(N, - 1)5, +(N, - 1)S,+--+HN, - 1)$,

S = 32
s P (3.2)

where N is the total number of training samples from all classes. Since S, is a weighted
average of S§;, the number of parameters becomes smaller, and the variances of the
elernents of S, are smaller than the variances of the corresponding elements of S;. Even
if each X, differs substantially, the decrease in variance accomplished by using S,
usually leads to better performance for limited training samples. This has been verified
by several studies [19], [20], [21].

In view of these results, several methods have been proposed vvhere the sample
covariance estimate is replaced by partially pooled covariance matrices of various forms.
In this formulation, some degree of regularization is applied to reduce the number of
parameters to be estimated and thereby to improve classification performance in small

training set size.
3.2.2 Regularization for covariance estimation

Although a linear classifier often performs better than a quadratic classifier for
small training set size, the choice between linear and quadratic classifiers is quite
restrictive. There are less limiting alternatives by applying varying degrees of
regularization depending on the training samples. Thus, regularization techniques can
also be viewed as choosing an intermediate classifier between the linear and quadratic
classifiers.

Regularization techniques have shown much success in solving ill- and poorly-
posed inverse problems [22]. Briefly stated, a problem is poorly posed if the number of
parameters to be estimated is comparable to the training data size and ill-posed if that



number exceeds the training sample size. As a result of limited training set size, the
parameter estimates become highly variable. Regularization methods attempt to reduce
the variance of these estimates by biasing them toward values that are deemed more
"physically plausible" [23]. Therefore, the variance is reduced at the expense of
potentially increased bias. The extent of this bias-variance trade-off is controlled by one

or more regularization parameters .

In general, regularization procedures can be divided into two tasks: 1) the choice

of covariance mixture models, and 2) model selection.

To perform regularization, one must first decide upon a set of appropriate
covariance mixture models that represent a "plausible” set of covariance estimates.

Normally, a covariance mixture of the following form is assumed:

ii=(1—wi)Si+w,.Sp 0<w, <1

11

The regularization or mixing parameter w; then controls the biasing of individual class
covariance sample estimate S; to a pooled covariance matrix SP. However, this partially
pooled covariance estimate may not provide enough regularization even for a linear
classifier. In the case when the total number of training samples N is comparable to or is
less than the dimension p, even the linear classifier becomes ill- or poorly-posed.
Therefore, an alternative covariance mixture is provided by biasing the sample

covariance estimate towards some non-singular diagonal matrix A:

L=(1-w)S+wA 0<w, <]

For given value(s) of the mixing parameter(s), the amount of bias will depend on
how closely the estimates X; actually represent those true parameters X,;. Therefore, the
goal of model selection is to select appropriate values for the mixing parameters which

can be estimated from minimizing a loss function based on the training samples.

A popular minimization criterion is based on cross-validated estimation of
classification error. In the leave-one-out cross-validation error procedure, the
classification rule is obtained from N, -1 training samples excluding x; ,, the sample k

frorn class i, and then used to classify x; .. This criterion has the benefit of being directly

related to classification accuracy even though it is computationally intensive. However,

the process of estimating each class covariance matrix involves the covariance estimates



of all classes, which implies that the same mixing parameter has to be used for all classes.
However, the same choice of mixing parameter might not be optimal for all classes.
Furthermore, the same classification error rate might occur along a wide range of
parameter values and hence the optimal value of mixing parameter is non-unique.

Therefore, a tie-breaking technique is needed.

Another maximization criterion which has been applied is the sum of the average
leave-one-out likelihood value of each class. In this procedure, the likelihood of each x; ,

is obtained using the parameters estimated from N, —1 training samples exclusive of x,,.
This criterion requires less computation than the leave-one-out classification error
procedure. It also has the advantage that each class covariance matrix can be estimated
independently of the others. Therefore, the mixing parameter can be different for each
class. Moreover, not all classes need to be subjected to regularization, especially those
with sufficient training samples. However, a major drawback of this criterion is the lack

of direct relationship with classification accuracy.
3.2.3 Previous work

This section gives an overview of some regularization methods for covariance

estimation based on limited training samples.
REGULARIZED DISCRIMINANT ANALYSIS (RDA)

Friedman[23] has proposed a procedure called "regularized discriminant analysis"
(RDA) which is a two-dimensional optimization over covariance mixtures as shown in

the following:

tr(£,(4))

ii(l: 7)=(1_7)ii(l)+7 v

I 0=<y<l 3.3)

where

1-A)N,-1)S,+A(N-L)S,
(1-A)N;+ AN

A

zi(ﬂ’)=(

0<A<1 (34

and S,, is given by Eq.(3.2).
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The regularization parameters are given by the pair (A, y), which are obtained by
minimizing the leave-one-out cross-validation errors. As mentioned before, the bias
toward a diagonal matrix helps stabilize the covariance estimate even when the linear
classifier is ill- or poorly-posed. Furthermore, choosing the diagonal form to be the
average eigenvalue times the identity matrix has the effect of decreasing the larger
eigenvalues and increasing the smaller ones, thereby counteracting thr: bias inherent in
sample-based estimation of eigenvalues. This diagonal form is also advantageous when
the true covariance matrices are some multiples of the identity matrix.

As mentioned before, although using cross-validation errors to select the mixing
parameters has the benefit of being directly related to classification accuracy, it has some
disadvantages as well. First of all, it is computationally intensive. In addition, the
optimal values of (A, y) are often not unique since the same error rates can take place
over a wide range of parameter values [24]. Therefore, a tie-breaking method needs to be
applied. As a demonstration, an experiment was conducted on two-class simulation data.
The number of training samples per class is 30 for two-dimensional Gaussian data. The
following table indicates the cross-validation errors obtained for the parameter grid:

Table 3.1
Cross-validation Errors for RDA
A

0 0.25 0.5 0.75 1

0 6 5 4 4 4
025 |4 4 |3 3 3]

Y 05 7 6 6 5 4

0.75 8 8 7 6 5

1 9 9 8 8 8

As shown in the table, the optimal value of the mixing parameters occurs when
three training samples are misclassified, which occurs at 1=0.5, 0.75 and 1. Therefore,
the optimal value is non-unique. No studies have indicated the best method for tie-
breaking. As another consequence of using cross-validation errors, the same parameter

pair.has to be used for all classes since the classification procedure requires all covariance
estimates simultaneously. The same value of (A, ¥) may not be optimal for all classes.



LEAVE-ONE-OUT COVARIANCE (LOOC) ESTIMATOR

In [25][43], the covariance matrix is determined from the following pair-wise
mixtures: diagonal sample covariance-sample covariance, sample covariance-common
covariance, and common covariance-diagonal common covariance matrices. Thus, the

estimator has the following form:

) (1- &,)diag(5;) + a5, 0o, <1
Z(o)=49(2- ;)8 +(a,-1)s l<a, <2
(3-a,)S+(a,-2)diag(S) 2<a,<3

where

The variable ¢; is the mixing parameter that determines which estimate or mixture

of estimates is selected so that the best fit to the training samples is achieved by

maximizing the average leave-one-out log likelihood of each class:

LOOL, = Niigln[f (xi,kimi\k’ ii\k(ai))]

where sample k from class i is removed. Once the appropriate value of ¢; has been

estimated, the estimated covariance matrix is computed with all the training samples and
1s used in the Gaussian ML classifier.

Since the leave-one-out class likelihood is used as the optimization criterion, each
class covariance estimate can be computed independently and each has a different mixing
parameter. One benefit of deriving the class covariance matrix separately is that the
computation for classes with enough training samples can be skipped and consequently
the computational load is reduced. In addition, if some classes have many more training
samples than others, the classes may be allowed to have different mixing parameters.
Using an approximation on the diagonal matrices, LOOC also requires less computation
than RDA. However, without the approximation, LOOC is more computationally
expensive than RDA. Also, the average leave-one-out likelihood has no direct

relationship to classification accuracy.
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OTHER COVARIANCE ESTIMATION METHODS

Some earlier works on covariance estimation methods involve the estimation of a
single covariance matrix based on some loss functions. It was shown that Stein-like
biased estimators which shrink the eigenvalues of the sample covariance matrix are
favored over the sample covariance matrix under a variety of natural loss functions [26].
Also, when the class covariance matrices are equal, the pooled covariance matrix can be
replaced by ridge-like estimates [27]. This reduces the ratio of the largest and smallest
eigenvalues of the pooled estimate and thus has an effect similar to shrinking the

eigenvalues of the pooled estimate towards equality.

An empirical Bayesian method [24] was suggested in which the %; are modeled as

outcomes of a common inverted Wishart prior distribution. The form of covariance
mixtures is similar to Eq (3.3) and (3.4) as in RDA except for the pooled covariance
estimate which is formulated under the Bayesian context. The optimal values for (A, y)
are selected by maximizing the sum of average leave-one-out class likelithood. As
mentioned before, this criterion has the merits of fewer computations than cross-
validation errors and of avoiding the need for tie-breaking. However, the criterion is not

directly linked to classification accuracy. Also, this method requires two-way
optimization for the parameter pair (A, y). Therefore, it requires more computation than

LOOC.

3.3 A New Method For Covariance Estimation
3.3.1 Derivation of the proposed estimator

A new covariance estimation method is developed in this section. The proposed
estimator is essentially an extension of previous works in RDA, LOOC and the empirical
Bayesian approach[24].
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Case I: N2(p+1)

The: first form of covariance mixtures is derived by assuming that the total number of
training samples is greater than dimensionality. In this case, the common covariance

matrix is non-singular. Following Anderson [28], the assumption of normally distributed
samples implies that the sample covariance matrices S; are mutually independent with

1
S ~W|—=2.f,
¥ Lz, )

where f, =N, -1 and W denotes the central Wishart distribution with f; degrees of
freedom and parameter matrix X,. Then the family of inverted Wishart distributions

provides a convenient family of prior distributions for the X,.

Assume that each X, has an inverted Wishart prior distribution so that the Z; are
mutually independent with
Z,~Wi((t-p-1)¥,5) t>p+]

where W' is an inverted Wishart distribution with parameters ¥ and . Then the prior
mean ¥ represents the central location of the prior distribution of the Z;, and t controls

the concentration of the X, around V.

Under squared error loss, the Bayes estimator of X, is given by [24]

(¥ =I5 1P
fi+tt—-p-1 fi+t—-p-1
By letting w, = ftL_ll, and ¥ be a pooled covariance estimate S,, the Z; can then
+t—p-

be replaced by partially pooled estimates of the form :

$=(1-w)S+wsS,  0<w<l



This is the form similar to the sample covariance-common covariance mixtures in RDA
and LOOC. The value of ¢ can then be expressed in terms of w;:

Afi-p-1)+p+1
2 ilfimp=1)+p 0<w,<l. (3.5)

1-w,

The sample covariance-common covariance mixture in LOOC is obtained by defining the
pooled covariance matrix to be the unweighted common covariance, thatis, S, =S . In

the proposed method, S, is defined by the generalized least squared estimator of ‘¥,

designated as S,(t), for a given ¢:

S;(t)=[2L, /. J'i f,

S,
o fitt—-p—1 i=1fi+t—p—1‘

Therefore, by letting S, = S; which is the weighted common covariance matrix, another

fonn of covariance mixture is obtained. Observe that when the number of training
samples in each class is equal, thatis, f, = f, =--=f,, § (¢) is equivalentto .

Case2: N<(p+1)

When the total number of training samples is close to or less than the number of
features, even the pooled covariance matrix becomes unstable. In this case, biasing the
sample and common covariance estimates towards some form of diagonal matrix can
avoid the problem of singularity. In LOOC, the sample and common covariance
estimates are biased towards their own diagonal elements. This mixture: is advantageous
when the class covariance matrix is highly ellipsoidal. However, the set of covariance
mixtures should represent a wide variety of covariance matrices including the spherical
structure. This can be achieved using the ridge estimator. The ridge estimator has the
fonn of the sample covariance plus a constant times the identity matrix. With a proper
choice of the constant value, it has the benefit of compensating for the upward bias of
large eigenvalues and downward bias of small eigenvalues. In addition, this covariance
mixture is apparently advantageous when the class covariance is some multiple of the
identity.

Hence, when the ridge estimator is adopted, the proposed estimator of the following

fonn:



(l—ai)ml+aisi 0<a <1

p
£(e)=4(2-)s, +(a;=1)S3(t) 1<a,<2
(3= a)S+(a,-2) ™) 2<q, <3
L P

Observe from Eq. (3.5) that when «; =2, t = . Therefore, the unweighted common

covariance is adopted for ¢; =2. In the following sections, this estimator is designated

as tLOOCI1 (Bayesian Leave-One-Out Covariance estimation).

When the mixture of covariance-diagonal covariance matrices is used, the proposed

estimator is defined as the following instead:

) (1- a,)diag(S;)+ S, 0<q; <l
Z(e)=92- a,)8 +(a,-1)S() 1<0; <2
(3-a,)S+ (a,-2)diag(S) 2<a,<3

This estimator is denoted as bLOOC2 in future reference. In the experiments, the

relative merits of these two estimators are demonstrated and discussed.
3.3.2 Model selection

For the proposed estimators, the leave-one-out average likelihood is used as the
criterion to select the appropriate mixture model. This criterion is equivalent to

minimizing the Kullback-Leiblerdistance measure [29] defined as the following:

o[ )
Jf()lg[ a()]

where f; is the true density function of the ith class and fia’ is the normal density with

sample mean estimates m; and covariance matrix estimate Z,(a,).

Let x,, denote the kth training sample from class i. The average leave-one-outlog

likelihood for class i is then given as:

LOOL,(c: Zlog( fre (%4))-

;kl
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Then following [24] and [29],

E{LOOL(e,)} = E{log(75(x..))}
- E{J’ £(x)log( ,-‘fi(x))dx}
- £{[ .ot 7o)

{jf log[ j{ ((x)]dx} [ £,(x)log(f,(x))dx

—-E{KL (a, )4C.

Therefore, maximizing the cross-validated likelihood is equivalent to minimizing the
Kullback-Leibler distance of the true and estimated densities. The mixing parameter is

then selected so that the average leave-one-out likelihood is maximized.
3.3.3 Computational considerations

The direct implementation of the leave-one-out likelihood function for each class
with N, training samples would require the computation of »,; matrix inverses and

determinants at each value of a, .Fortunately, a more efficient implementation can be
achieved by using the rank-one down-date of the covariance matrix. This section gives
the efficient implementation of the proposed estimator bLOOCI1. The efficient
implementation of bLOOC?2 can be derived from bLOOCI1 and LOOC [25].

Efficient Implementation of the estimator for 0 < ¢, <1:

When the sample k is removed from class i, the sample covariance estimate can be
written as follows [30]:



T
Saie = N,L—Z - (x,j _mi\k)(xz i~ mi\k)
ik
='1'V“i:—1|:Si_i7rrT:| where r=Xx;, —m,.
N;-2 (N,. -1) s

The proposed estimator for 0 < a; < I then becomes

ﬁ"i\k(ai) = (1 - ai)ﬂs—}-\k—)li' 0SSy,

P
=(1—ai)ﬂ{1vi_lsi_ N,- rrTJI“'
P N2 (N -1)(N-2)
N, -1 N,
+a,| —/——S§ rr
\Ni=27 = (N, -1)(N,-2)
N: N, -1 N,
=a"1\f,-_s‘+(l_a‘) N=z)" ] (l_a’)p(N_l)(N,—Z)
_ N,
N2
=8 —-al-kr"
where S’ = i—]u S,
N, -2
_(l_a:) N; 2 N;-1
a= p (N,-—l)(Ni—Z)”r" _N,.—Ztr(S')




Denote the eigenvalues of S; and their corresponding eigenvectors as e; and v,

respectively. Then the following matrix inverse is obtained:

(S,-+ - al)_l = 2——-——

Therefore, ﬁi\k(ai)_l can be computed efficiently using the Sherman-Morrison-

Woodbury formula [31]:

ﬁi\k (a,)' = (S‘.‘” —al - klrrT)_1

_ Ty! Y
—(A—zz) where A =, aIandz=\/k_lr
_ A_l N A-IZZTA—I
1-7"A7;
A+ klA_lrrTA"l
1—krTAr

Using the matrix inverse obtained above, the squared generalized distance can then
be expressed as:

dy = (xi.k - Mk )Tii\k (ai )-l(xi,k - mi\k)

2

N. A -1 N,
= TLI rTZi\k(a,-) r where x,-'k My, = ﬁ‘r
N Y KA A
ol v K R orem
N -1 1-kr'A™'r

[ &)

- —A.L—\ -d(l ~kd)+ kldz-I where d =r"A7'r
N; -1 L 1 - k}d

N\ 4
N-1)[1-kd ][
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The: determinant also has a convenient form:
If‘.i\k(ai)| = 'A - rrT|
= |A|(1 —kd )
Therefore, the log likelihood of class i without sample k can be computed as [30]:

N 1 1
In| f X; 1 M Zig (a, )H—Eln(Zn') -5 ln(lAl) -5 ln(l - kld)' .
2 2 2

2
N d 0<a,<1.
2\N-1)|1-kd

The above computation can be further simplified by assuming the trace of the

sample covariance changes little when a single sample is removed, that is,
(tr(Si\k ) / p)I = (tr(S,. )/ p)l . Experiments will confirm the validity of this approximation.

In this case, the mixture can be re-expressed as:

) tr(Si\k)

ii\k (ai) = (1 - _p_I + a8y
=(1- a,.)ﬂh oSy,
p
tr(S;) N, - N,
- —_ . i I . i 3
(me)=” *""[N,.—zs' -2 J
=A, zzzzT
where A, =(1—a.)tl(§—‘ll+a- Nizlg
i p 1Ni_2
L = o;N,
T
Z, =kr



Finally, the log likelihood function is obtained as:

ln[f(xi.k|mi\k' i"i\k (a, )H—gln(Z 7’:) - -;—ln(|A2|) - %ln(l - k,d, ) h

2
o L[ N, d, 0<a <l.
2\N,-1)|1-k4d, '

Efficient Implementation of the estimator for /1 <a,<2:

Consider the sample k is removed from class i. The sample covariance-common

covariance mixture is then given by the following:

ii\k(ai) = (2 - ai)Si\k + (ai - I)S;\k )

r -

= i 1)+t—p—1- Si\k+(fi_1)+t_p_1_S;\k(t)

The weighted common covariance estimate without sample k from class i can then be
derived as:
7 -1
L . - 1
Spwe = Z /, + /

J#1

L f f_l
! . i S.
jgl’fj+t—p—lsj+(fi—l)+t—p—1 i

J#i

- N fJ _ fi + fi_l )
Sf+t-p-1 fi+t-p-1 (fi-1)+t—p-1)

[i fi s fe g4 fi-1

L — S.
S fi+t-p-17 fi+t—-p-1" (f;-1)+t-p-1 i
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i,.\,_(a,.) can then be expressed in terms of S;, S; and r as follows:
Sa(0) = kS (8 + k,S, — kyrr .
where the constants are defined in the following:

k=(a-1(G-G+2-a)) G

N.-1 -1 N-1
k,=(2-a M_2)+(cl-cz+(2-a,.)) (a,.-z){(z-a,.) _ -<,2] and
k=(2-a;) o/ +(¢,-C +(2—a.))_1(a.—l)(2—a.) "
3 YN -DW-2) T o U (N -1)(N; - 2)

and
_ _ fi_l
(2 a’)_(fi—1)+t—p-1
_v__ L
C'_Zl‘fjﬂ—p—l
_ fi
P fi4t-p-1

The mixture can then be re-written as the following using previous derivations:
Zan(@) = kS, (14 K,S, — kyrr”
=4 -5
where A =k S (1t kS,
= \/E r

d,=r"A;'r.



Then, the log likelihood function is given as:

ln[f(xi,k|mi\k’ ii\k(ai))] = —gln(Zﬂ:) - %ln(lAsl) - %ln(l —kyd, ) o

2
_l N, d, 1<a <2,
2\N,-1) |1-kd, !

Effiicient Implementation of the estimator for 2 I ¢, I 3:

For 2T a,I3, the unweighted common covariance S is used: The common

covariance estimate without sample k from class i can be written as follows:

13 1
S\k —Zgl,sj'*'zsi\k

J#i

1 & 1 N, -1 N,
- S —-=8S i S — i T
Lz:: J L 1+L(Nl_2)|: i (M_l)grr }

1 N,
=5t L(N,-2) 5= L(N,-1)(N, -2

!

)rr

The proposed estimator for 2 I ¢; I 3 can then be written as:

tr(S\k) I

ﬁ"i\k(ai) = (3 = ai)S\k +
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where

s* =(3—ai)S+MS

L(N,-2)"
__(ar2N, e (%-2) 6 (g2
b_pL(N,.—l)(N,.—Z)" | P m(S) pL(N;=2)r(S;)
(3-a,)N,

* L(N,-1)(N,-2)

#
i

Derote the eigenvalues of S’ and their corresponding eigenvectors as e/ and v/,

respectively. Then the following matrix inverse is obtained:

# #T

¢ e WY
(87 - bi) _Ze{,_b.

i=l %

Therefore, )A:i\k(ai)_l can be computed efficiently following previous derivation:

A

e = (87 -bl -k ")
— (A -227)"
where A, =S/ -5l
z=AJk,r
d,=r"A'r.

The log likelihood function is then given as:

1

R 1
ln[f(xi,kimi\k’ Iu(a, )):]—gln@ )~ ) ln(|A4|) ) ln(l —-kd, ) -

o4
N ./ 4 2<q <3
2\N 1) | 1=k, i
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The above computation can be further simplified by assuming the trace of the

common covariance estimate changes little when a single sample is removed, that is,

(tr(S\k )/ p)I = (tr(S)/p)I. In this case, the mixture can be derived as:

ii\"(ai) = (3 - ai)s\k + (ai - 2) tr(S\k) I
P
=(3- ), + (o -2) tr(S) I
p
T 1 - o/ rr’ o r(S)
=(3 a,~)[S+ - )S, ) Ho-2) ¢ ,
=45 - Zsst
where A, =(3-0,)S+ L(E'I\7 (fiz) S, +(a, - 2)m(S)
L= \/Er
k, = (3-a)N,
*TLN,-1)(N,-2)
dS = rTAs_lr‘

Finally, the log likelihood function is obtained as:

ln[f(x,._k|m,.\k, ii\k(ai))] = —gln(275) - %ln(|AS|) - %ln(l — ksdy )+

2
. ds 2<a <3,
2\ N 1) |1-kd, '

For notational purposes, in the following sections and experiments, the estimator

with approximation on the diagonal term is designated as bLOOCI1 (Bayesian Leave-

One-Out Covariance estimation), whereas the implementation without approximation is

denoted as bLOOCI1-Exact.



3.4 Use of Covariance Estimation with Feature Extraction

When the number of training samples is few, the use of covariance estimation can
help increase the stability of the covariance estimate and hence improve classification
performance. Another usual way to deal with small training set size is to reduce the
number of features using feature extraction algorithms. The goal of feature extraction is
to project the original data to its subspace of lower dimensionality where the class
sepiirability is preserved as much as possible. There are two feature extraction algorithms
commonly used for remote sensing data, namely, Decision Boundary Feature Extraction
(DBFE) [32] and Discriminant Analysis Feature Extraction (DAFE) [30]. The effects of
covariance estimation on these two feature extraction algorithms are discussed in this

section.

The procedure of DBFE involves finding the effective decision boundary between
classes. For normally distributed classes, the description of decision boundary requires
both the first and second order statistics. Therefore, a good covariance estimate is vital to
the performance of DBFE. For a two-class case, the first step in DBFE uses the
estimated mean vector and covariance matrix to find training samples which lie within
the main body of the distribution using the chi-square threshold test. Then the nearest
training samples from each of two classes are connected and a vector normal to the
decision boundary is found at the point where the straight line connects the two training
samples. Itis desirable that the number of these unit normal vectors is proportional to the
coniplexity of the decision boundary. For example, a linear boundary requires only one
normal vector. Few training samples generates few normal vectors and usually result in
inadequate description of the decision boundary. Hence, the effectiveness of DBFE
depends not only on the covariance estimate, but also on the number of training samples.
In other words, depending on the distribution, even though a reasonable covariance
estimate can be found with no less than three training samples using the leave-one-out
likelihood procedure, much more than three training samples may be required for DBFE
to perform well. When these covariance estimates are extremely biased, a chi-square test
tay fail to find enough training samples for obtaining the effective decision boundary.
Therefore, DBFE may not perform well when the number of training samples is limited,

even with the covariance estimate stabilized.

On the other hand, the criterion used in DAFE procedure is the maximization of the

ratio of between-class scatter matrix to within-class scatter matrix. For DAFE to perform



well, the mean difference cannot be zero and the common covariance has to be non-
singular. These requirements can be met with considerably fewer trairdng samples than
DBFE. When the mean estimates are fixed, it is helpful to reduce the between class
scatter matrix, which is given by the pooled covariance matrix. Therefore, the use of
covariance estimation should help improve the estimation of the within-class scatter
matrix based on available training samples. In addition, when the inverse of the common
covariance estimate approaches singularity, the covariance estimation techniques can be

used for stabilization.

In summary, DBFE requires more training samples and computations than DAFE to
perform well for small training set size even though it works better when classes have
similar mean values. Due to these reasons, only the DAFE is used along with covariance

estimation for mitigating small sample size problem.

3.5 Simulation Studies

In this section, the experimental results from computer generated data are presented.
Seven covariance estimates, namely, the identity matrix, sample covariance, common
covariance, and those obtained from RDA, LOOC, LOOC-Exact, bLOOCI1, bLOOCI-
Exact, bLOOC2, bLOOC?2-Exact are compared. The mixing values are chosen to be O,
0.25, 0.5, 0.75, 2, 2.25, 2.5, 2.75, and 3. Using the identity matrix as the covariance
estimates for all classes is equivalent to the Euclidean distance classifier. The sample
covariance and common covariance estimates lead to the quadratic and linear classifiers,
respectively. The data distributions are generated from four different covariance
structures as adapted from [23]. These simulated data represent the two extremes where
one covariance matrix is spherical and the other is highly elliptical. The purpose of using
these different types of covariance matrices is to demonstrate that the performance of
covariance estimation techniques are affected by the underlying class covariance

structure.

Two sets of experiments are conducted by having different proportions of training
samples. In the first set, 10 training samples are randomly generated from each normally
distributed class. The classification accuracy was estimated using 200 test samples.
Each experiment is repeated 20 times from which the mean and variance of the
classification accuracy are computed. The values of the mixing parameter are also




recorded. Since only 10 training samples are used for dimensions ranging from p =6 to

p = 40, the training set size is small compared to dimensionality.

In the second set of experiments, the number of samples differs for each class. The
three classes are designed to have 100,400 and 2000 samples. Then, ten percent of the
these samples are selected to be the training samples so that the number of training
samples are 10, 40 and 200 for class one, class two and class three respectively. For
p =6 to p=40, the training set size for the first and second classes is considered small.
These experiments serve to represent the setting in which the number of training samples

is unequal and is proportional to the size of test data.

In the tables below, the standard deviation of each result is listed in parentheses

next to the corresponding mean value.
3.5.1 Equal spherical covariance matrices

In this experiment, all three classes have the identity covariance matrix. The mean
of the first class is the origin. The mean of the second class is taken to be 3.0 in the first
variable and zeros in the others, and the mean of the third class is 3.0 in the second
variable and zeros in the rest. The results are shown in Tables 3.2, 3.3 and Figures 3.1,
3.2

(%)

Accuracy

N
\
\
\
\
\
\
\
\
\
\
\
D

A
A

56 12345678 5678

1 9
p=6 p=10 p=20 p=40
1 Euclid 2 Sample Cov 3 Common Cov
41.00C 5 LOOC-Exact 6 bLOOCH
7 bLOOC1-Exact 8 bLOOC2 9 bLOOC2-Exact

Figure 3.1 Mean Classification Accuracy for Equal Spherical Covariance Matrices
(Equal Training Set Size)




Accuracy (%)

Mixing Values

LOOC

LOOC-Exact

bLOOC1

bLOOCI1-Exact

bLOOC2

bLOOC2-Exact

Euclid
Sample Cov
Common Cov
LOOC
LOOC-Exact
bLOOC1

bLOOCI1-Exact

bLOOC2

bLOOC2-Exact

class1
class2
class3

classl
class2
class3

class1
class2
class3

classl
class2
class3

classl
class2
class3

classl
class2
class3

Table 3.2

p=6

88.95 (4.29)
70.68 (17.1)
86.10 (5.78)
85.08 (8.39)
86.90 (7.65)
87.69 (6.83)
87.68 (6.91)
85.08 (8.39)
86.90 (7.65)

0.01 (0.06)
0.00 (0.00)
0.08 (0.33)

2.53 (0.96)
2,66 (0.67)
2.89 (0.29)

1.23 (1.40)
0.09 (1.41)
0.66 (1.28)

1.96 (1.34)
240 (1.05)
246 (1.02)

0.01 (0.06)
0.00 (0.00)
0.08 (0.33)

2.53 (0.96)
2.66 (0.67)
2.89 (0.29)

p=10

85.18 (4.79)
N/A

79.87 (6.54)
80.59 (9.98)
84.27 (7.11)
84.28 (5.40)
84.54 (4.82)
80.59 (9.98)
84.27 (7.11)

0.03 (0.08)
0.00 (0.14)
0.03 (0.08)

2.64 (0.80)
2.93(0.14)
2.80(0.62)

1.35(1.44)
1.92 (1.40)
1.24 (1.45)

1.93 (1.38)
1.75 (1.45)
224 (1.27)

0.03 (0.08)
0.00 (0.14)
0.03 (0.08)

2.64 (0.80)
2.93(0.14)
2.80(0.62)

p=20

85.01 (4.94)
N/A

66.89 (11.25)
76.34 (9.79)
83.70 (6.05)
84.24 (5.83)
84.43 (5.47)
76.34 (9.79)
83.70 (6.05)

0.00 (0.00)
0.00 (0.00)
0.01 (0.06)

2.98 (0.08)
2.96 (0.10)
293(0.11)

1.78 (1.49)
1.49 (1.53)
1.49 (1.48)

2.08 (1.40)
236 (1.22)
1.64 (1.47)

0.00 (0.00)
0.00 (0.00)
0.01 (0.06)

2.98 (0.08)
2.96 (0.10)
293 (0.11)

Classification Results for Equal Spherical Covariance Matrices
(Equal Training Set Size)

p=40
81.65(6.24)
N/A

N/A

70.89 (14.46)
80.34 (7.89)
81.22 (6.80)
81.27 (6.78)
70.89 (14.46)
80.34 (7.89)

0.00 (0.00)
0.01 (0.06)
0.00 (0.00)

2.99 (0.06)
3.00 (0.00)
3.00 (0.00)

1.35(1.53)
1.35(1.51)
1.50 (1.54)

253 (1.47)
1.50 (1.44)
1.66 (1.33)

0.00 (0.00)
0.01 (0.06)
0.00 (0.00)

2.99 (0.06)
3.00 (0.00)
3.00 (0.00)




Accuracy (%)

Mixing Values

LOOC

LOOC-Exact

bLOOC1

bLOOC]1-Exact

bLOOC2

bLQOC2-Exact

Euclid
Sample Cov
Common Cov
LOOC
LOOC-Exact
bLOOC1

bLOOC1-Exact

bLOOC2

bLOOC2-Exact

classl
class2
class3

classl
class2
class3

classl
class2
class3

classl
class2
class3

classl
class2
class3

classl
class2
class3

Table 3.3

p=6

89.19(2.95)
78.02 (5.71)
88.79 (3.32)
87.52(4.27)
89.12 (3.17)
89.19 (3.21)
89.20 (3.14)
87.50 (4.27)
89.30 (3.12)

0.02 (0.08)
0.00 (0.00)
0.02 (0.08)

2.74(0.36)
2.54 (1.06)
0.28 (0.67)

1.71 (1.40)
0.63 (1.19)
0.38 (0.91)

2.51 (0.88)
1.60 (1.45)
1.12(1.42)

0.02 (0.08)
0.03 (0.02)
0.02 (0.08)

2.55(0.20)
231(0.72)
0.28 (0.67)

p=10

89.01 (3.07)
N/A
87.55(3.65)
86.60 (4.48)
88.87 (3.04)
88.96 (3.00)
88.95 (3.08)
86.58 (4.00)
88.98 (3.10)

0.01 (0.06)
0.03 (0.08)
0.00 (0.00)

2.73(0.27)
224(1.27)
0.33(0.92)

1.41 (1.36)
1.15 (1.40)
0.45 (1.07)

2.22(1.10)
1.74 (1.40)
1.65(1.51)

0.01 (0.06)
0.03 (0.08)
0.00 (0.00)

2.54(0.50)
2.40(0.67)
0.23(0.72)

p=20

87.05 (4.05)
N/A

84.52 (4.26)
80.90 (4.63)
86.03 (4.21)
86.58 (4.08)
8645 (4.30)
80.90 (4.63)
86.03 (4.21)

0.03 (0.08)
0.00 (0.00)
0.00 (0.00)

2.87 (0.22)
2.98 (0.08)
0.04 (0.09)

1.30 (1.42)
1.65 (1.51)
0.01 (0.06)

2.11(1.26)
239 (1.23)
0.91 (1.40)

0.03 (0.08)
0.00 (0.00)
0.00 (0.00)

2.87 (0.22)
2.98 (0.08)
0.04 (0.09)

Classification Results for Equal Spherical Covariance Matrices
(Unequal Training Set Size)

p=40

86.35 (3.48)
N/A

81.56 (3.41)
75.67 (3.59)
85.14 (3.31)
86.27 (3.40)
86.20 (3.33)
75.67 (3.59)
85.14 (3.31)

0.00 (0.00)
0.00 (0.00)
0.00 (0.00)

2.96 (0.09)
3.00 (0.00)
0.00 (0.00)

1.64 (1.52)
1.20 (1.50)
0.15 (0.67)

1.46 (1.32)
2.10(1.47)
0.60 (1.53)

0.00 (0.00)
0.00 (0.00)
0.00 (0.00)

2.96 (0.09)
3.00 (0.00)
0.00 (0.00)
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:Figure3.2 Mean Classification Accuracy for Equal Spherical Covariance Matrices
(Unequal Training Set Size)

For both equal and unequal number of training samples, the Euclidean distance
classifier led to higher classification accuracy than any of the other covariance estimates,
followed by bLOOC1 and bLOOCI1-Exact. This result is expected since the Euclidean
distance is equivalent to assuming the covariance matrices are the identity. Similarly, it
is not surprising that the common covariance estimate led to higher accuracy than the
sample covariance since the classes all have the same true covariance matrix. Since there
are only 10 training samples for each class, the sample covariance could not be inverted
for the higher dimensional data (p=10, 20, and 40), and so the classification accuracy
could not be computed. The estimators LOOC, LOOC-Exact have the same performance
as bLOOC2 and bLOOC2-Exact because the mixing values fall within the range of [0,1]
and [2,3], under which these estimators have the same form of mixture:. The estimators
bLOOCI1 and bLOOCI1-Exact perform better than LOOC, LOOC-Exact, bLOOC2 and
bLOOC2-Exact in all four trials as the result of using the ridge estimator. Notice that
bLOOC1 has similar performance as bLOOCI1-Exact, which shows that the
approximation of the trace of the sample and common covariance estimates is valid. On
the other hand, LOOC and LOOC-Exact as well as bLOOC2 and bLOOC2-Exact

produce rather different results when the training set size is moderate or small.



3.5.2 Unequal spherical covariance matrices

In this experiment, the three classes have unequal mean vectors and spherical
covariance matrices. The mean vectors are the same as those in Experiment 3.5.1. The
covariance matrices of class one, two and three are I, 21, and 31 respectively. The results
are presented in Tables 3.4, 3.5 and the mean accuracy are plotted in Figures 3.3, 3.4.
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Figure 3.3 Mean Classification Accuracy for Unequal Spherical Covariance Matrices
(Equal Training Set Size)
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Figure 3.4 Mean Classification Accuracy for Unequal Spherical Covariance Matrices
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Accuracy (%)

Mixing Values

LOOC

LOOC-Exact

bLOOC1

bLOOC1-Exact

bLOOC2

bLOOC2-Exact

Euclid
Sample Cov
Common Cov
LOOC
LOOC-Exact
bLOOC1

bLOOCI1-Exact

bLOOC2

bLOOC2-Exact

classl
class2
class3

classl
class2
class3

classl
class2
class3

classl
class2
class3

classl
class2
class3

classl
class2
class3

Table 3.4

p=6

78.82 (5.69)
62.54 (15.67)
73.95 (7.79)
76.96 (8.31)
77.17 (7.54)
81.40 (5.78)
81.21(6.22)
76.96 (8.31)
77.17 (7.54)

0.00 (0.00)
0.01 (0.06)
0.00 (0.00)

1.94 (0.96)
2.66 (0.84)
1.06 (1.41)

0.05 (0.10)
1.08 (1.40)
0.06 (0.14)

0.34 (0.84)
1.96 (1.38)
0.06 (0.14)

0.00 (0.00)
0.01 (0.06)
0.00 (0.00)

1.94 (0.96)
2.66 (0.84)
1.06 (1.41)

p=10

7540 (7.71)
N/A

67.77 (9.35)
77.56 (7.65)
77.84 (9.87)
83.33(5.68)
83.50 (5.59)
77.56 (7.65)
77.84 (9.87)

0.00 (0.00)
0.14 (0.56))
0.01 (0.06)

1.59 (1.41)
2.81 (0.67)
0.88(1.32)

0.05 (0.10)
0.91 (1.35)
0.03 (0.08)

0.06 (0.11)
1.96 (1.40)
0.05 (0.10)

0.00 (0.00)
0.14 (0.56))
0.01 (0.06)

1.59 (1.41)
2.81 (0.67)
0.88 (1.32)

p=20

72.59 (6.99)
N/A

55.27 (11.72)
77.10 (10.61)
73.61 (10.12)
85.74 (5.64)
85.92 (5.30)
77.10 (10.61)
73.61(10.12)

0.00 (0.00)
0.01 (0.06)
0.01 (0.00)

2.63 (0.88)
2.83(0.61)
1.36 (1.50)

0.03 (0.08)
121 (1.45)
0.04 (0.09)

0.03 (0.08)
1.95(1.42)
0.04 (0.09)

0.00 (0.00)
0.01 (0.06)
0.01 (0.00)

2.63 (0.88)
2.83(0.61)
1.36 (1.50)

Classification Results for Unequal Spherical Covariance Matrices
(Equal Training Set Size)

p=40

67.64 (6.62)
N/A

N/A

74.25 (9.48)
69.04 (12.40)
89.17 (4.03)
89.19 (4.11)
74.25 (9.48)
69.04 (12.40)

0.00 (0.00)
0.00 (0.00)
0.00 (0.00)

2.62 (0.91)
3.00 (0.00)
0.75(1.51)

0.01 (0.06)
1.35(1.53)
0.00 (0.00)

0.01 (0.06)
1.93 (1.47)
0.00 (0.00)

0.00 (0.00)
0.00 (0.00)
0.00 (0.00)

2.62(0.91)
3.00(0.00)
0.75 (1.51)



Table 3.5
Classification Results for Unequal Spherical Covariance Matrices
(Unequal Training Set Size)

Accuracy (%)
p=6 p=10 p=20 p=40
Euclid 78.86 (3.71) 79.26 (3.95) 79.11 (3.09) 75.02 (3.97)
Sample Cov 70.87 (6.77) N/A N/A N/A
Common Cov  78.53 (3.64) 79.00 (3.85) 77.04 (3.32) 70.89 (4.50)
LOOC 80.69 (5.57) 81.25 (4.75) 81.88 (5.47) 81.24 (3.81)
LOOC-Exact  81.71 (5.61) 83.36 (4.38) 84.31 (5.84) 83.97 (5.56)
bLOOCI1 82.98 (4.52) 85.01 (4.05) 88.63 (3.16) 9241 (2.24)
bLOOC1-Exact 82.64 (4.66) 84.96 (4.26) 88.59 (3.13) 9241 (2.25)
bLOOC2 80.69 (5.57) 81.25 (4.75) 81.88 (5.47) 81.24 (3.81)
bLOOC2-Exact 81.81 (5.37) 83.29 (4.99) 84.56 (5.60) 84.38 (5.83)
Mixing Values
LOOC classl 0.05 (0.13) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
class2 0.00 (0.00) 0.01 (0.06) 0.00 (0.00) 0.00 (0.00)
class3 0.01 (0.06) 0.01 (0.06) 0.00 (0.00) 0.00 (0.00)
LODOC-Exact  classl 1.24 (0.86) 1.83 (0.51) 1.96 (0.79) 2.58 (0.98)
class2 2.94 (0.16) 2.88 (0.17) 3.00 (0.00) 2.69 (0.09)
class3 0.05(0.13) 0.06 (0.11) 0.04 (0.09) 0.00 (0.00)
bLOOCI1 classl 0.20 (0.29) 0.03 (0.08) 0.01 (0.08) 0.00 (0.00)
class2 0.74 (1.26) 1.01 (1.34) 0.74 (1.31) 1.35 (1.53)
class3 0.04 (0.09) 0.4 (0.09) 0.04 (0.09) 0.00 (0.00)
bLOOCI1-Exact classl 0.78 (0.95) 0.05 (0.10) 0.03 (0.08) 0.00 (0.00)
class2 2.38 (1.16) 2.61 (0.83) 2.39 (1.23) 2.10 (1.41)
class3 0.05 (0.10) 0.04 (0.09) 0.04 (0.09) 0.00 (0.00)
bLOOC2 classl 0.05 (0.13) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
class2 0.00 (0.00) 0.01 (0.06) 0.00 (0.00) 0.00 (0.00)
class3 0.01 (0.06) 0.01 (0.06) 0.00 (0.00) 0.00 (0.00)
bLOOC2-Exact classl 1.34 (0.66) 1.83 (0.51) 1.90 (0.60) 2.64 (0.69)
class2 2.84 (0.26) 2.90 (0.42) 3.00 (0.00) 2.96 (0.09)
class3 0.05 (0.13) 0.06 (0.11) 0.04 (0.09) 0.00 (0.00)

In this experiment, bBLOOC1 and bLOOCI1-Exact have the best performance,
followed by LOOC, LOOC-Exact and bLOOC2, bLOOC2-Exact. This is again not
surprising because the ridge estimator produces a bias towards a constant value times the
identity matrix. This is verified by the mixing values chosen by both bLOOC1 and
bLOOCI1-Exact, which are closer to either the average eigenvalue times the identity or
the sample covariance matrix. Since the true covariance matrices are some multiple of
the identity matrix, the Euclidean distance which assumes equal identity matrix is no

longer in favor.



3.5.3 Equal highly elliptical covariance matrices

In this experiment, all three classes have the same highly elliptical covariance
matrix given by the diagonal matrix whose diagonal elements are:
o, =90 - 1)/(p—1)+1]2 1<i<p. The mean vector of the first class is the origin.

The elements of the mean vector of class two are defined by
Uy =2.51/0',./p[(p—i)/((p/2)—1)] , and the mean vector of class three is given by
Us; = (—l)iluz,,. . The results are shown in Tables 3.6, 3.7 and Figures 3.5, 3.6.
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Figure 3.5 Mean Classification Accuracy for Equal Highly Elliptical Covariance
Matrices (Equal Training Set Size)
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Accuracy (%)

Mixing Values

bLOOC1-Exact

bLOOC2

bLOOC2-Exact

Euclid
Sample Cov
Common Cov
LOOC
LOOC-Exact
bLOOC1

bLOOCI1-Exact

bLOOC2

bLOOC2-Exact

classl
class2
class3

classl
class2
class3

classl
class2
class3

Table 3.6
Classification Results for Equal Highly Elliptical Covariance Matrices

(Equal Training Set Size)

p=0

76.16 (7.14)
79.88 (17.93)
94.20 (2.68)
93.25 (6.35)
94.60 (3.88)
91.91 (4.98)
91.91 (4.98)
93.25 (6.35)
94.60 (3.88)

1.96 (0.33)
2.02 (0.19)
1.92 (0.36)

0.04 (0.09)
0.06 (0.14)
0.16 (0.51)

2.39 (1.06)
2.43 (1.03)
2.54 (0.77)

p=10

70.63 (8.28)
N/A

87.12 (6.30)
87.61 (6.77)
91.67 (3.70)
79.68 (9.57)
79.76 (9.58)
87.61 (6.77)
91.67 (3.70)

2.25 (0.08)
2.21 (0.15)
2.12(0.35)

0.03 (0.08)
0.00 (0.00)
0.03 (0.08)

2.88 (0.15)
2.89 (0.17)
2.63 (0.87)

p=20

61.07 (7.44)
N/A

70.54 (10.74)
78.61 (9.40)
84.65 (5.50)
67.40 (8.54)
67.40 (8.54)
78.61 (9.40)
84.65 (5.50)

2.41(0.15)
2.44 (0.14)
2.48 (0.14)

0.01 (0.06)
0.00 (0.00)
0.00 (0.00)

2.96 (0.09)
2.99 (0.06)
2.94 (0.11)

p=40

53.40 (8.22)
N/A

N/A

70.68 (7.82)
79.74 (5.85)
56.88 (8.76)
56.88 (8.76)
70.68 (7.82)
79.74 (5.85)

2.61 (0.13)
2.66 (0.12)
2.68 (0.12)

0.00 (0.00)
0.00 (0.00)
0.00 (0.00)

3.00 (0.00)
2.99 (0.06)
2.99 (0.06)



Table 3.7
Classification Results for Equal Highly Elliptical Covariance Matrices
(Unequal Training Set Size)
Accuracy (%)

p=6 p=10 p=20 p=40
Euclid 79.22 (4.55) 72.96 (5.92) 67.46 (4.32) 63.74 (4.67)
Sample Cov 85.52 (6.37) N/A N/A N/A
Common Cov  95.30(1.34) 89.82 (2.87) 88.05 (2.91) 79.64 (3.82)
LOOC 94.40 (2.64) 87.38 (3.87) 83.52 (5.05) 75.39 (4.50)
LOOC-Exact  95.64 (1.12) 90.68 (2.96) 89.20 (3.58) 82.67 (4.29)
bLOOC1 95.63 (1.29) 87.88 (3.27) 83.79 (2.87) 74.50 (5.06)
bLOOC1-Exact 95.63 (1.29) 87.88 (3.27) 83.86 (2.87) 74.50 (5.06)
bLOOC2 94.40 (2.64) 87.38 (3.87) 83.52 (5.05) 75.39 (4.50)
bLOOC2-Exact 95.30 (1.54) 90.32 (2.16) 89.19 (3.58) 82.67 (4.29)
Mixing Values
LOOC classl 0.03 (0.11) 0.00 (0.00) 0.01 (0.06) 0.00 (0.00)
class2 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
class3 0.01 (0.06) 0.05 (0.10) 0.00 (0.00) 0.00 (0.00)
LOOC-Exact  classl 2.81(0.33) 2.79(0.32) 2.88 (0.17) 2.96 (0.09)
class2 2.16 (1.29) 2.78 (0.67) 2.40 (1.20) 3.00 (0.00)
class3 0.38 (0.91) 0.13 (0.15) 0.03 (0.08) 0.00 (0.00)
bLOOC1 class1 1.90 (0.11) 1.96 (0.15) 1.95(0.22) 2.25 (0.00)
class2 1.75 (0.00) 1.75 (0.00) 1.75 (0.00) 1.75 (0.00)
class3 1.70 (0.11) 1.74 (0.01) 1.75 (0.00) 1.75 (0.00)
bLOOC1-Exact classl 1.90 (0.11) 1.96 (0.05) 1.95 (0.30) 2.25 (0.00)
class2 1.93 (0.06) 1.75 (0.01) 1.75 (0.00) 1.75 (0.00)
class3 1.83 (0.11) 1.74 (0.01) 1.75 (0.09) 1.75 (0.00)
bLOOC2 classl 0.03 (0.11) 0.00 (0.00) 0.01 (0.06) 0.00 (0.00)
class2 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
class3 0.01 (0.06) 0.05 (0.10) 0.00 (0.00) 0.00 (0.00)
bLOOC2-Exact classl 2.58 (0.31) 2.67 (0.22) 2.82(0.27) 2.96 (0.09)
class2 2.25(1.11) 2.58 (0.47) 2.32(0.61) 3.00 (0.00)
class3 0.38 (0.91) 0.13 (0.15) 0.03 (0.08) 0.00 (0.00)

Since the true covariance matrices are highly elliptical, the estimators LOOC,
LOOC-Exact, bLOOC2 and bLOOC2-Exact out-perform the others. However, for the
unequal number of training samples per class, the performance of bLOOC1 and
bLOOC1-Exact has increased substantially. The mixing values indicate that the weighted
pooled covariance estimate is favored. This shows the benefit of using the Bayesian
formulation when the training set size reflects the true priors. Again, bLOOCI and
bLOOCI1-Exact produce similar results showing the validity of the approximation.




3.5.4 Unequal highly elliptical covariance matrices

In this experiment, the mean vectors of all classes are at the origin but the class
covariance matrices are highly elliptical and vary for all classes. The diagonal elements
of the covariance matrices for each class are as follows:
o, =[pi-D/(p-10)+1] 1<i<p; o, =[9(p-)/(p-1)+1] 1<i<p and

. 2 < .< . . . )
o, = {9[1 ~(p- 1)/2]/(17 - 1)} 1<i< p. The results are summarized in Tables 3.8,

3.9 and Figures 3.7, 3.8.
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Figure 3.7 Mean Classification Accuracy for Unequal Highly Elliptical Covariance
Matrices (Equal Training Set Size)
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Accuracy (%)

Mixing Values

LOOC

LOOC-Exact

bLOOC1

bLOOC1-Exact

bLOOC2

bLOOC2-Exact

Euclid
Sample Cov
Common Cov
LOOC
LOOC-Exact
bLOOCI1

bLOOC1-Exact

bLOOC2

bLOOC2-Exact

classl
class2
class3

classi
class2
class3

classl
class2
class3

classl
class2
class3

classl
class2
class3

classl
class2
class3

Table 3.8
Classification Results for Unequal Highly Elliptical Covariance Matrices

(Equal Training Set Size)

p=0

43.03 (7.68)
80.89 (9.25)
42.00 (7.96)
90.77 (4.03)
90.41 (4.22)
76.89 (9.01)
77.11 (8.95)
90.77 (4.03)
90.41 (4.22)

0.00 (0.00)
0.06 (0.14)
0.01 (0.06)

0.05 (0.10)
0.15 (0.22)
0.13(0.30)

0.58 (0.18)
0.59 (0.20)
0.76 (0.35)

0.60 (0.17)
0.89 (0.73)
0.86 (0.38)

0.00 (0.00)
0.06 (0.14)
0.01 (0.06)

0.05 (0.10)
0.15(0.22)
0.13(0.30)

p=10

42.08 (6.85)
N/A

43.03 (8.39)
95.69 (2.69)
95.57 (2.64)
81.50 (8.48)
81.39 (8.53)
95.69 (2.69)
95.57 (2.64)

0.01 (0.06)
0.04 (0.12)
0.01 (0.06)

0.04 (0.09)
0.09 (0.15)
0.06 (0.11)

046 (0.19)
044 (0.18)
0.64 (0.25)

0.48 (0.20)
0.43 (0.18)
0.64 (0.25)

0.01 (0.06)
0.04 (0.12)
0.01 (0.06)

0.04 (0.09)
0.09 (0.15)
0.06 (0.11)

p=20

44.24 (9.12)
N/A

39.89 (10.55)
99.42 (0.77)
99.39 (0.79)
80.05 (11.24)
7997 (11.14)
99.42 (0.77)
99.39 (0.79)

0.00 (0.00)
0.00 (0.00)
0.00 (0.00)

0.00 (0.00)
0.01 (0.06)
0.03 (0.08)

0.23(0.14)
0.20 (0.15)
0.26 (0.13)

0.23 (0.14)
0.19 (0.14)
0.26 (0.13)

0.00 (0.00)
0.00 (0.00)
0.00 (0.00)

0.00 (0.00)
0.01 (0.06)
0.03 (0.08)

p=40

46.11 (5.37)
N/A

N/A

99.97 (0.09)
99.97 (0.09)
78.68 (11.57)
79.11 (11.44)
99.97 (0.09)
99.97 (0.09)

0.00 (0.00)
0.00 (0.00)
0.00 (0.00)

0.00 (0.00)
0.00 (0.00)
0.00 (0.00)

0.15 (0.13)
0.14 (0.13)
0.10 (0.13)

0.16 (0.12)
0.14 (0.13)
0.10 (0.13)

0.00 (0.00)
0.00 (0.00)
0.00 (0.00)

0.00 (0.00)
0.00 (0.00)
0.00 (0.00)




Table 3.9
Classification Results for Unequal Highly Elliptical Covariance Matrices
(Unequal Training Set Size)
Accuracy (%)

p=06 p=10 p=20 p=40
Euclid 39.97 (6.57) 43.53 (6.04) 43.38 (4.98) 4591 (3.78)
Sample Cov 85.38 (5.25) N/A N/A N/A
Common Cov  39.26 (6.61) 42.46 (6.99) 43.26 (4.94) 45.07 (4.68)
LOOC 91.53 (1.76) 97.42(1.11) 99.88 (0.16) 100 (0.00)
LOOC-Exact  91.44 (2.05) 97.38 (1.18) 99.88 (0.16) 100 (0.00)
bLOOCI1 89.08 (2.60) 93.59 (3.25) 96.99 (2.13) 96.78 (2.51)
bLOOC1-Exact 89.26 (2.52) 93.53(3.21) 96.99 (2.13) 96.78 (2.51)
bLOOC2 91.53 (1.76) 97.42 (1.11) 99.88 (0.16) 100 (0.00)
bLOOC2-Exact 91.44 (2.05) 97.38 (1.18) 99.88 (0.16) 100 (0.00)
Mixing Values
LOOC classl 0.01 (0.06) 0.01 (0.06) 0.01 (0.06) 0.00 (0.00)
class2 0.01 (0.06) 0.03 (0.08) 0.00(0.00) 0.00 (0.00)
class3 0.01 (0.06) 0.01 (0.06) 0.00 (0.00) 0.00 (0.00)
LOOC-Exact  classl 0.24 (0.67) 0.08 (0.12) 0.04 (0.09) 0.00 (0.00)
class2 0.10 (0.15) 0.08 (0.12) 0.00 (0.00) 0.00 (0.00)
class3 0.05 (0.10) 0.05 (0.10) 0.04 (0.09) 0.00(0.00)
bLOOCI1 classl 0.68 (0.59) 0.36 (0.22) 0.18 (0.14) 0.11 (0.13)
class2 1.00 (0.00) 0.98 (0.14) 0.75 (0.00) 0.05 (0.00)
class3 1.00 (0.00) 130 (0.00) 1.00 (0.00) 1.00(0.00)
bLOOCI1-Exact classl 0.84 (0.77) 0.95 (1.06) 0.18 (0.14) 0.11 (0.13)
class2 1.00 (0.00) 0.98 (0.14) 0.75 (0.00) 0.05 (0.00)
class3 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 100 (0.00)
bLOOC2 classl 0.01 (0.06) 0.01 (0.06) 0.01 (0.06) 0.00 (0.00)
class2 0.01 (0.06) 0.03 (0.08) 0.00 (0.00) 0.00 (0.00)
class3 0.01 (0.06) 0.01 (0.06) 0.00 (0.00) 0.00 (0.00)
bLOOC2-Exact classl 0.24 (0.67) 0.08 (0.12) 0.04 (0.09) 0.00 (0.00)
class2 0.10(0.15) 0.08 (0.12) 0.00 (0.00) 0.00 (0.00)
class3 0.05 (0.10) 0.05 (0.10) 0.04 (0.09) 0.00 (0.00)

As expected, LOOC, LOOC-Exact, bLOOC and bLOOC-Exact have the best
results because the class covariance matrices are diagonal and vary differently from class
to class. The mixing values selected are close to zero which is appropriate since the
mixture is essentially the diagonal sample covariance matrix. Again, bLOOCI and

bLOOC1-Exact have similar performance, which indicates that the approximation holds.




3.6 Experiment using a Small Segment of AVIRIS Data

In this section, the estimators are tested using hyperspectral data which consists of a
small segment of the AVIRIS data of NW Indiana's Indian Pine test site obtained in June
1992. Out of the original 220 spectral channels, 20 channels (104-108, 150-163, 220)
frorn the water absorption bands are discarded. Therefore, the test data consists of 200
spectral features and four classes, namely, corn-notill, soybean-notill, soybean-min and
grass. The test image and the ground truth map are shown in Figure 3.9. The training
samples are chosen to be 1%, 4%, 10% and 20% of the labeled samples. The number of
labeled and training samples in each class is shown in Table 3.10 and Table 3.11,
respectively. Since these training samples are randomly selected, each experiment is
repeated 10 times and the mean and standard deviation of the classification accuracy is

obtained.

background

Corn-notill

Soybean-notill
B Soybean-min

Figure 3.9 Portion of AVIRIS data and Ground Truth Map (Original in Color)

Table 3.10
Class Description for AVIRIS Data in Figure 3.9
Class Names  No. of Labeled Samples

Corn-notill 910
Soybean-notill 638
Soybean-min 1421

Grass 618




Table 3.11
Number of Training Samples for Experiment 3.6
1% 5% 8% 10% 20% 40%
Corn-notill 9 45 72 91 182 364
Soybean-notill 6 31 51 63 127 255
Soybean-min 14 71 113 142 284 586
Grass 6 30 49 61 123 247

Total Samples 35 177 285 357 716 1452

The previous results from simulation data indicate that the estimators bLOOC1 and
bLCOC1-Exact would produce similar results. The simulation also shows that LOOC-
Exact outperforms LOOC in cases when the training set size is small. However, LOOC-
Exact and bLOOC2-Exact require considerably more computation :for 200 spectral
channels. In view of these results, the estimators LOOC-Exact, bLOOC1-Exact and
bLCOC2-Exact are not considered in the following experiments. In the analysis of
hyperspectral data, feature extraction is often employed to reduce dimensionality. Hence,
discriminant analysis feature extraction (DAFE) is incorporated in this experiment to
demonstrate the effect of covariance estimators on the classification process. Since there
are four classes, the number of features are reduced to three using DAFE. The results of

the experiments are shown in Tables 3.12, 3.13 and Figures 3.10, 3.11.



Table 3.12

Classification Results for Small AVIRIS Image (Part 1)

No. of Training Samples

Accuracy (%)

Mixing Values
LOOC

bLOOC1

bLOOC?2

Euclid
Sample Cov

Sample Cov+DAFE

Common Cov

Common-Cov+DAFE

LOOC
LOOC+DAFE
bLOOCI1
bLOOCI1+DAFE
bLOOC2
bLOOC2+DAFE

Corn-notill
Soybean-notill
Soybean-min
Grass

Corn-notill
Soybean-notill
Soy bean-min
Grass

Corn-notill
Soybean-notill
Soybean-min
Grass

1%

66.00 (8.70)
N/A

N/A

N/A

N/A

72.55 (13.60)
82.28 (8.98)
61.68 (18.16)
84.45 (7.82)
72.55 (13.60)
82.28 (8.98)

2.10(0.47)
1.80 (0.72)
0.90 (0.47)
1.58 (0.87)

2.10(047)
1.20 (0.72)
0.75 (0.00)
1.05 (0.63)

2.10(0.47)
1.80(0.72)
0.90 (0.47)
1.58 (0.87)

%
67.75 (3.29)
N/A
N/A
N/A
N/A
54.54 (6.43)
91.62(2.45)
51.38 (8.64)
92.39 (1.68)
54.54 (6.43)
91.62 (2.45)

2.25(0.00)
0.75(0.00)
0.75 (0.00)
0.75 (0.00)

2.25 (0.00)
0.75 (0.00)
0.75 (0.00)
0.75 (0.00)

2.25 (0.00)
0.75 (0.00)
0.75(0.00)
0.75 (0.00)

8%

67.23 (2.04)
N/A

71.59 (4.33)
7840 (3.33)
78.40 (3.33)
51.50 (2.08)
92.02 (2.12)
73.61 (3.97)
78.56 (3.34)
51.50 (2.08)
92.02(2.12)

2.25(0.00)
0.75(0.00)
0.75(0.00)
0.75(0.00)

2.00(0.00)
2.00(0.00)
1.75(0.00)
2.00(0.00)

2.25(0.00)
0.75(0.00)
0.75(0.00)
0.75(0.00)



Table 3.13

ClassificationResults for Small AVIRIS Image (Part 2)

No. of Training Samples

Accuracy (%)

Mixing Values
LOOC

bLOOC1

bLOOC2

Euclid
Sample Cov

Sample Cov+DAFE

Common Cov

Common-Cov+DAFE

LOOC
LOOC+DAFE
bLOOC1

bLOOC1+DAFE

bLOOC2

bLOOC2+DAFE

Corn-notill
Soybean-notill
Soybean-min
Grass

Corn-notill
Soybean-notill
Soybean-min
Grass

Corn-notill
Soybean-notill
Soybean-min
Grass

10%
66.72 (2.50)
NIA

8231 (2.51)
86.16 (2.25)
86.16 (2.25)
78.41 (3.06)
86.35 (2.18)
80.13 (3.38)
86.44 (2.15)
80.13 (3.38)
86.44 (2.15)

2.00 (0.00)
2.00 (0.00)
1.75 (0.00)
2.00 (0.00)

1.98 (0.08)
2.00 (0.00)
1.75 (0.00)
2.00 (0.00)

1.98 (0.08)
2.00 (0.00)
1.75 (0.00)
2.00 (0.00)

20%
67.43(2.16)
N/A

92.37 (0.95)
93.06 (0.85)
93.06 (0.85)
90.75 (1.30)
93.20 (0.92)
90.97 (1.41)
93.50 (0.88)
90.97 (1.41)
93.50 (0.88)

2.00 (0.00)
2.00 (0.00)
1.75 (0.00)
2.00 (0.00)

1.75 (0.00)
2.00 (0.00)
1.75 (0.00)
2.00 (0.00)

1.75 (0.00)
2.00 (0.00)
1.75 (0.00)
2.00 (0.00)

40%

67.16 (1.94)
53.85(1.79)
95.82 (0.80)
95.72 (0.70)
95.72 (0.70)
95.79 (0.78)
96.00 (0.67)
96.05 (0.98)
96.07 (0.69)
96.05 (0.98)
96.07 (0.69)

1.75 (0.00)
2.00 (0.00)
1.75 (0.00)
2.00 (0.00)

1.75 (0.00)
1.95 (0.11)
1.75 (0.00)
1.75 (0.00)

1.75 (0.00)
1.95 (0.11)
1.75 (0.00)
1.75 (0.00)
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Figure 3.10 Mean Classification Accuracy using Small AVIRIS Image Part 1)
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The results show that the covariance estimation combined with DAFE increases the
classification performance substantially even when the training samples are limited.
When the number of training samples are selected to be 1% and 5% of the labeled
samples, the total number of training samples is less than dimensionality. In this case, the
best performance is achieved by bLOOCI together with DAFE. This shows that the
ridge estimator gives rise to a better pooled covariance estimate by counteracting the
upward bias of large eigenvalues and downward bias of smallest eigenvalues when the
training set size is less than dimensionality. On the other hand, when the total number of
training samples is more than dimensionality, bLOOC?2 combined with DAFE gives the
best performance. The result suggests that the true covariance matrices are elliptical.
This can be verified by the poor performance of bLOOCI at 8% of the labeled samples.
In this case, the total number of training samples is 285 which suggests that the pooled
coviiriance estimate is highly variable. When bLOOCI is used, the chosen mixing values
indicate that the mixture of partially pooled covariance matrix is favored over the ridge
estimator, which has been shown to perform poorly for elliptical covariance matrices. On

the other hand, LOOC and bLOOC2 which use the diagonal covariance matrices perform
significantly better. In conclusion, it is suggested that when N <(p+1), bLOOCI and

DAFE can lead to better performance and when N 2 ( p+1), bBLOOC2 and DAFE should

be used instead.
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3.7 Experiment using a Large Segment of AVIRIS data

In this experiment, a large segment of AVIRIS data is used. Again, the water
absorption bands have been discarded, leaving a total of 200 channels. This data contains
many classes of varying sizes. The purpose of this experiment is to demonstrate the
effect of covariance estimation on classes with varying covariance structures and
different training sample size. The training samples are selected in proportion to the
number of labeled samples for each class. The labeled samples, excluding the training
samples are then used as test samples. The classes, the numbers of labeled samples and
training samples are listed in Table 3.14. The image and ground truth cnap are shown in
Figures 3.12.

Table 3.14

Class Description for AVIRIS Data in Figure 3.12
Class Names No. of Labeled Samples  No. of Training Samples
1. Corn-notill 1423 286
2. Corn-min 834 166
3. Corn 234 46
4. Soybeans-notill 797 159
5. Soybeans-notill2 171 34
6. Soybeans-min 2468 493
7. Soybeans-clean 614 122
8. Alfalfa 54 10
9. Grass/Pasture 497 99
10. Grass/Trees 747 149
11. Grass/pasture-mowed 26 5
12. Hay-windrowed 489 97
13. Oats 20 4
14. Wheat 212 42
15. Woods 1294 258
16. Bldg-Grass-Tree-Drives 380 76
17. Stone-steel towers 95 19

Total samples 10355 2065



Corn-notill
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Figure 3.12 Large AVIRIS Data and Ground Truth Map (Originalin Color)

The classification procedures for testing the data are shown in Table 3.15. Since
the Euclidean distance classifier does not utilize the covariance information, its
performance would indicate whether the second order statistics is useful for the
classification of high dimensional data with limited training samples. The use of

common covariance estimate for all classes is equivalent to a linear classifier. The




sample covariance estimate is not tested in this experiment since the numbers of training
samples for some classes are extremely small. Even with feature extraction, only a
handful of extracted features can be used to obtain non-singular covariance estimates.
After performing covariance estimation, two types of classifiers, namely, the quadratic
classifier (QC) and the contextual classifier ECHO (Extraction and Classification of
Homogeneous Objects) [33] are then applied and compared. While the quadratic
classifier assign individual pixels to one of the classes, the ECHO classifier first divides
the image into groups of contiguous pixels and classifies each group to one of the classes.
In other words, ECHO uses both the spatial and spectral information. The results of
classification are shown in Table 3.16 and Figure 3.13, and the mixing values for each
covariance estimator are listed in Table 3.17. This data was obtained in June 1992 so
most of the row crops in the agricultural portion of the test site had not reached their
maximum ground cover. Therefore, the classification of these crops becomes
challenging since the spectral information comes from a mixture of the crops, the
variations in the soil type, soil moisture, and previous crop residues. These crops are
listed as the first seven classes and their mean classification accuracy is computed
separately and shown in the bottom row of Table 3.16.

Table 3.15
Classification Procedures for Experiment 3.7
Notation Procedures

Cl1 Euclidean Distance Classifier
Cc2 Common Cov+DAFE+QC
C3 Common Cov+DAFE+ECHO
C4 LOOC+DAFE+QC

C5 LOOC+DAFE+ECHO

C6 bLOOC1+DAFE+QC

C7 bLOOC1+DAFE+ECHO

C8 bLOOC2+DAFE+QC

C9 bLOOC2+DAFE+ECHO



Class Names

1. Corn-notill

2. Corn-min

3. Comn

4. Soybeans-notill
5. Soybeans-notill2
6. Soybeans-min
7.Soybeans-clean
8. Alfalfa

9. Grass/Pasture
1D. Grass/Trees

C1
55.40
16.02
13.30
59.40
56.20
20.15
2.03
81.82
2.51
24.25

11. Grass/pasture-mowed 95.24

12. Hay-windrowed
13. Oats

14. Wheat

15. Woods

51.79
43.75
92.35
85.04

16. Bldg-Grass-Tree-Drives 27.30

17. Stone-steel towers

Average Accuracy 1-1
Average Accuracy 1-7

93.42

7 48.23
31.79

Table 3.16
Classification Results for Experiment 3.7

C2
70.64
61.68
66.49
76.02
78.83
54.28
83.33
61.36
81.16
95.99
47.62
98.72
31.25

100
87.16
82.57
94.74

74.81
70.18

C3
75.26
61.98
69.68
89.18
83.94
58.73
85.77
61.36
81.16
96.15
47.62
98.72
31.25

100
87.16
82.57
94.74

76.78
74.94

C4
7143
65.27
65.43
77.12
67.88
67.54
80.28
61.36
90.70
96.99
47.62
99.23
31.25

100
92.66
70.39
94.74

75.29
70.71

Cs
77.00
79.94
76.06
93.89
78.83
86.73
86.59
61.36
91.96
97.16
47.62
99.23
31.25

100
93.24
70.39
94.74

80.35
82.72

Co
7422
67.96
67.55
80.09
70.07
62.84
85.57
54.55
91.21
96.66
33.33
99.49
31.25

100
89.86
84.54
94.74

75.53
72.61

C7
82.93
90.12
86.70
94.83
87.59
86.73
94.51
54.55
92.96
96.82
33.33
99.49
31.25

100
92.08
90.79
94.74

8291
89.06

C8
74.22
67.96
67.55
80.09
70.07
62.84
85.57
54.55
91.21
96.66
33.33
99.49
31.25

100
89.86
84.54
94.74

75.53
72.61
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Figure 3.13 Mean Classification Accuracy for Experiment 3.7
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Table 3.17
Mixing Values for Experiment 3.7

Class Names LOOC bLOOC1 bLOOC2
Corn-notill 1.75 1.75 1.75
Corn-min 1.75 1.75 1.75
Corn 2.00 1.75 1.75
Soybeans-notill 1.75 1.75 1.75
Soybeans-notill2 2.00 1.75 1.75
Soybeans-min 1.50 1.75 1.75
Soybeans-clean 2.00 1.75 1.75
Alfalfa 2.00 2.00 2.00
Grass/Pasture 1.75 1.75 1.75
Grass/Trees 1.75 1.75 1.75
Grass/pasture-mowed 2.00 2.00 2.00
Hay-windrowed 2.00 1.75 1.75
Oats 200 2.00 2.00
Wheat 20 1.75 1.75
Woods 1.75 1.75 1.75
Bldg-Grass-Tree-Drives 2.00 1.75 1.75
Stone-steel towers 2.00 1.75 1.75

The performance of the Euclidean distance classifier is significantly lower than the
other classifiers. This shows that the second order statistics are useful for classifying
high dimensional data even though the training samples are limited. Although the class
covariance matrices differ substantially, the use of common covariance matrix and hence
the linear classifier improves the performance substantially compared to the Euclidean
distance classifier. Since the mixing values for bBLOOCI1 and bLOOC?2 fall within the
range of 1< @, <2, these two estimators use the same covariance mixture and hence the
classification results are the same as expected. The figure shows that the best
performance is achieved by C7 and C9 where bLOOC1 and bLOOC2, followed by
DAFE and the ECHO classifier are used. Many classes have mixing values of 1.75
which implies that the weighted pooled covariance mixture is favored. The classification
accuracy increases substantially for the row crops 1-7. Compared with the second best
result obtained from the classifier LOOC+DAFE+ECHO (CS5), the accuracy increases
frorn 82.72% to 89.06%. The mean accuracy for all classes improves from 80.35% to
82.90% as well. Therefore, the use of Bayesian estimators is beneficial when the sample
sizes are unequal and the training set size reflects the true priors. The classification maps
for C5 and C7 are shown in Figures 3.15 and 3.15, respectively.




Corn-not ill Arcuracy

Corn-rni
© n Classes 1-17:80.35%

Corn ) Classes 1-7: 82.72%
B Soybeans-not ill —

B Soybeans-not ill
@ Soybeans-min

B Soybeans-clean

B Alfalfa

B8 Grass/Pasture

B Grass/Trees

BB Grass/pasture-mowed
@ Hay-windrowed

il Oats

B Wheat

8 Woods

.. Bldg-Grass-Tree-Driue
« Stone-steel Towers

Figure 3.14 Classification Map for LOOC+DAFE+ECHO (Original in Color)

Corn-notill Accurecy

Corn-rnin Classes 1-17: 82.91%
Corn Classes 1-7: 89.0646

@ Soybeans-not ill
@ Soybeans-notill2
@ Soybeans-rnin

@@ Soybeans-clean
@ hifalfa

@ Grass/Pasture
B Grass/Trees

@ Grass/pasture-mowed
@@ Hay-windrowed
@ Oats

B Wheat

- Stone-steel Towers

Figure 3.15 Classification Map for bLOOC1+DAFE+ECHO (Original in Color)




-82-

3.8 Summary

Two covariance estimators for limited training samples have been proposed in this
work. These estimators can be viewed as an intermediate approach between the linear
and quadratic classifiers. The estimators were derived under a Bayesian setting, which is
advantageous when the classes have different sizes and the training set size is
proportional to the sample size of each class. It was shown that the first estimator
bLOOC1 combined with discriminant analysis feature extraction (DAFE) can achieve
better performance when the total number of training samples is less than the
dimensionality. On the other hand, when the pooled covariance matrix is non-singular,
the other estimator bLOOC2 should be used. Under these conditions, the proposed
estimators perform better than the leave-one-outcovariance (LOOC) estimator, the linear

and quadratic classifiers.

Since the leave-one-outlikelihood is used as the criterion for these estimators, it has
the drawback of not being directly related to class separability, and :subsequently the
classification accuracy. Therefore, some smooth loss function derived from the class
separability is recommended for future work. Also, since decision boundary feature
extraction (DBFE) is not suitable for small training sample size and DAFE does not work
well when the classes have similar mean values, an alternative feature extraction or
classification methods need to be explored. The issue of feature extraction will be further

studied in the next chapter.
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CHAPTER 4: A BINARY TREE DESIGN FOR CLASSIFICATION
AND FEATURE EXTRACTION

4.1 Introduction

Decision tree classifiers belong to a type of hierarchical classifiers in which subsets
of classes are processed at multiple stages. Hierarchical classifiers have been known to
overcome some of the limitations of single-stage classifiers. For example, in a single-
stage classification system, the decision rule and feature reduction method are obtained
by optimizing a criterion based on all classes available. Therefore, the decision boundary
and the features extracted may not be optimal to discriminate among all classes. This
limitation becomes more severe when classes are numerous and training set size is small
due to the Hughes phenomenon [34]. A large number of classes generates more complex
decision boundaries and hence requires more features to distinguish arnong them. The
Hughes phenomenon indicates that in the case of limited training set size, the
classification performance deteriorates when more features are added. Consequently, the
advent of new hyperspectral sensors such as AVIRIS which generates 224 dimensional
data presents new challenges. While the increased dimensionality enables more classes to
be identified, training samples still remain relatively scarce and hard to find. As a result,
the Hughes phenomenon becomes an immediate concern for a single-stage classifier.
Decision tree classifiers offer a solution to circumvent these problems by focusing on

fewer classes and obtaining different features and decision rules at each stage.

The decision tree classifiers have been extensively studied and applied in recent
years [35]. In a binary decision tree, each node considers two subgroups of classes at a
time. However, decision tree classifiers are not without their own limitations. Notably,
the design of a tree classifier is complex. An optimal decision tree has to consider many
factors such as the tree structure, feature reduction method and computational complexity



at the same time. Many tree design approaches have been proposed, targeting different
design aspects or applications.

In this chapter, a hybrid design of a binary decision tree is proposed which
considers two classes at each node, instead of two subgroups of classes. In this manner,
the problem of merging classes into two nodes can be avoided. However, by processing
two classes at a time, there is a tendency to generate a large tree. The bottom-up
approach in the proposed hybrid design helps reduce the size by discriminating classes
with the largest statistical distance near the root. The tree design also incorporates two
types of feature extraction methods one of which is based on the decision boundary and
the other based on optimizing the Bhattacharyya distance between two classes. The
proposed method is implemented for the supervised classification of multispectral data.
In addition to functioning as a classifier, the binary tree design can be used to extract the
best features between pairs of classes. The features obtained from pair-wise
discrimination can then be combined and used as the feature subset for a single-stage
classifier. Experiments are conducted using multispectral and hyperspectral data and the
results show the advantages and limitations of the proposed binary tree method as

compared to single-stage classification.

4.2 Hughes Phenomenon

A landmark paper was written by Hughes [2] who first observed that there is an
optimal dimensionality associated with the set of classes and their training set size. In
other words, when the number of training samples is limited, the performance of the
classifier first improves up to a point and then deteriorates as the number of dimensions
increases. This has subsequently been referred to as the Hughes phenomenon. The
deterioration in performance is essentially due to the fact that the estimation of class
conditional densities which determine the decision boundary for classification is based on
a limited set of samples. As more features are added, more samples are required to obtain
an adequate density estimation. It has been shown that the required number of training
samples to achieve a certain classification performance is proportional to the
dimensionality for a linear classifier and to the square of dimensionality for a quadratic
classifier [3].




An obvious solution to circumvent the Hughes phenomenon is to reduce the number
of features by applying feature selection or extraction methods [36]. Alternatively,
classification rules which require fewer training samples for good performance such as
the linear classifier can be adopted. It was shown that when the set of design samples is
extremely limited, the linear classifier can often perform better than tine quadratic one
[21] even though the true covariance matrices differ substantially. In Chapter 3, a
compromise between the linear and quadratic classifiers was proposed. In this chapter,

the problem of limited training set size is addressed using a divide-and-conquer approach.

As a consequence of the progress in high resolution sensors for remote sensing, a
multispectral image becomes more complex in the sense that more classes of varying
sample size are separable with increased dimensionality. Some classes of interest can
have very few design samples due to the difficulty in labeling training samples. In view
of this increased complexity, it may be desirable to process different classes from the
same image using different classification rules and feature reduction methods. This can
only be accomplished using a multistage approach such as the decision tree classifier. In
the next section, the binary tree classifier is briefly reviewed and a hybrid design is
described, which may employ different classification rules and feature extraction

methods based on the training samples.

4.3 Binary Tree Design for Classification
4.3.1 Introduction

The decision tree classifier (DTC) has been widely used for classification and other
purposes for the past few decades. A general review can be found in [35]. In principle, it
divides a complex decision into several simpler ones in a hierarchical fashion. Figure 4.1
shows a single-stage classifier in contrast to a binary tree classifier. The circular nodes
represent decision nodes and the square nodes are terminal nodes. Each decision node
has a decision rule R(x) with x as its input value. The terminal nodes then assign x to

one of the class labels.
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Figure 4.1 Comparison of Single-stage and Binary Decision Tree Classifiers

The hierarchical structure of decision tree classifiers has several desirable

properties:

1) A tree classifier is more computationally efficient than a conventional single-
stage classifier. In a single-stage classifier, a data sample is tested against all classes in

contrast to a subset of classes as in a tree classifier.

2) A tree classifier is more flexible than a single-stage one in that the nodes can
have different decision rules and subsets of features. In single-stage classifiers, a subset
of features is selected by optimizing a global criterion and is used to discriminate among
all classes. In contrast, a tree classifier offers the flexibility to select a dlifferent subset of
features for each node such that the feature subset is focused on optimizing the
classification at that particular node. Similarly, single-stage classifiers use a decision rule
for all classes, while tree classifiers may use a unique decision rule for each node.



3) A tree classifier may circumvent the Hughes effect due to small training sample
size by focusing on fewer classes and hence using fewer features at each node. In a
single-stage classifier, the discrimination among all classes is based on a complex
decision boundary which requires more training samples to obtain a good approximation.
By focusing on few classes on each node, the tree classifiers essentially divide a complex
decision boundary into several simpler ones. Therefore, fewer features are needed at
each node and the Hughes effect can be avoided.

Although tree classifiers offer many benefits, they come with several limitations as
well. First of all, the design of an optimal tree classifier still remains intangible. There
are many factors to be considered, such as the tree structure, the node decision rule and
the feature selection method. Since one cannot simultaneously optimize the accuracy and
efficiency [37], the tree design is subject to the trade-off between design complexity and
perlormance. Furthermore, without considering the optimization of all levels in the tree,
errcas may accumulate at each level. In spite of these limitations, the benefits of a good
tree design still outweigh the drawbacks. In the next section, several existing tree

classifiers are briefly reviewed and serve to demonstrate some design issues.

4.3.2 Previous Work

Various types of the DTC have emerged during the past three decades, most
notably, Quinlan’s ID3[38] and Breiman et al.’s work on classification and regression
trees (CART) [39] in 1980’s. In ID3, each node of the tree performs a single test on one
feature to form the so-called "axis-parallel" test. One drawback of this approach is that
for data with numerous features, ID3 might result in a large, unruly tree with many
repetitive tests. The CART approach involves testing a linear combination of features to
form an oblique decision surface in the feature space. For linearly separable data, the
latter will clearly produce a more accurate and compact tree whereas the ID3 will result
in a staircase-like decision boundary (See Fig. 4.2). Both approaches are non-parametric,
i.e. no assumption is made on the underlying data distribution. Therefore, they have

become popular and widely studied among the machine learning researchers [35].
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Even though a non-parametric classifier offers the flexibility to classify data of
unknown distribution, it requires a generous amount of training samples to achieve the
desirable accuracy. A study [3] has estimated that the required number of training
samples grows exponentially with respect to the number of features for a non-parametric
classifier. As previously mentioned, the number of training samples remains relatively
few for hyperspectral data. Although feature selection may alleviate the problem of few
training samples, the solution obtained may not be optimal. Therefore, these design

approaches are not suitable for classifying hyperspectral data.

An alternative tree design approach that has been introduced in the pattern
recognition research area assumes that the data distribution is known. Most commonly,
the data is assumed to be normally distributed. When the classes are indeed normal as in
the case of remote sensing data, the tree design problem is then reduced to parameter
estimation. In addition, the parametric approach requires much fewer training samples

than the non-parametric one.

You and Fu [40] suggested a linear binary tree design which combined classes into
two non-overlapping subgroups at each node using class statistics. The two subgroups
were found by comparing a measure of pairwise separability over all classes. A varying
subset of features was selected from the feature space for each node bat the number of
features remained fixed. Then using an iterative process with an initial guess, a classifier
is found that provides minimum error probability. If this error exceeds the pre-defined
error bound, the class that commits the maximum error is included in both of the
subgroups and is removed from consideration in computing the error,. By including a
class in both nodes, this method allows overlapping of classes which means that two
nodes can contain at least one common class.




Another parametric tree classifier design was proposed by Kim and Landgrebe [41]
using both bottom-up and top-down methods (hybrid approach) sequentially for
classifying hyperspectral data. The bottom-up method computes the Bhattacharyya
distance between each pair of classes and the two classes with the smallest distance are
merged to form a new group. The mean vector and covariance matrix in the newly
formed group are computed, and the process is repeated until two groups are left to form
two cluster centers. These two subgroups are then assumed to be normally distributed
and form a maximum likelihood decision rule. Several feature extraction methods are
inccrporated and compared for their effectiveness. This method does not allow

overlapping of classes.

The above mentioned parametric decision tree classifiers require the merging of
classes using the statistics obtained from training data. While merging of classes can
simplify the decision boundary and hence the decision process, misclassification could
easily occur if the combination of these simple decision boundaries does not yield a good
approximation of the global decision boundary. This problem can be solved to some
extent by allowing overlapping of classes. When a common class is included in several
nodes, the overall decision boundaries generated by the tree is more complex and offers a
way to improve the classification rate. Figure 4.3 illustrates an example of the decision
boundaries generated by overlapping classes. It is shown that when class overlapping is
allowed, the decision boundary generated is more complex and precise, thus reducing
misclassification risk.
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Figure 4.3 Illustration of A Tree Classifier with Overlapping Classes

In spite of the obvious advantage, excessive overlapping of classes will result in a
large tree, and thus reducing the efficiency of the tree classifier. The following section
describes a binary tree design which compares two classes at each node, instead of two




subgroups of classes. Consequently, the problem of merging can be avoided. In
addition, overlapping of classes is allowed. To reduce the size of the tree due to common
classes, the classes with the largest separation are processed near the top of the tree. In

other words, the classes are "ordered". This forms the so-called hybrid design.

4.3.3 Proposed binary tree structure design

The proposed binary tree constructed uses the hybrid approach, which is a
combination of the top-down and bottom-up methods. The bottom-up approach [42]
typically uses the training samples to construct the tree and bears resemblance to
agglomerative hierarchical clustering. Using some distance measure, such as Euclidean
distance or Bhattacharyya distance, pairwise distances between a priori defined classes
are computed. Classes with smaller distances are merged first until the root contains only
one group. In the proposed method, the pairwise distance between pre-defined classes is
first computed. At each node, two classes with largest separation are selected and form
the two cluster centers of two nodes and the rest of classes are then classified into the
nodes. If a defined amount of training samples of any class are assigned.into both nodes,
the class is included in both nodes for further comparison. This approach has the benefit
of computing the pairwise distances only once and hence reducing cornputational time.
Also, no merging of classes is required.

In the top-down approach, the design consists of the following tasks [35]:

1) selection of a node decision rule
2) termination rule
3) decision tree structure

4) feature reduction

These different aspects of a tree classifier should be considered simultaneously for
an optimal design. Unfortunately, this problem of optimization is non-trivial. To
simplify the design problem, a binary structure is adopted. The termination rule is simply
the :majority rule, that is, the class label in the terminal node is assigned to the class with
the most training samples at that node. Furthermore, the classes at: assumed to be

nonnally distributed. Therefore, the decision rule for node splitting is a maximum-




likelihood classification of Gaussian classes. Feature reduction is discussed in the next

section. Therefore, the proposed binary tree design algorithmis summarized as follows:
The Binary Tree Design Algorithm:

Step 1. Compute the separability (Bhattacharyyadistance or Euclidean distance)

between each class pair.

Step 2. Select two classes with the largest separation as two cluster centers.
Compute the mean vectors and covariance matrices of the two classes

and use them as the node statistics.

Step 3. Classify the remaining classes into one of the two nodes using the

following decision rule:

T A

J, = (x—]\:lf) E?(X— 1\711)+ln

A

7

where i=n, orn,
and xen, if J, <J,

where x is the data sample of p features
M, is the sample mean estimate of node i
ii is the sample covariance matrix estimate of node i

n, and n, represent left and right node, respectively.

Step 4. 1f all the training samples from one class are classified into a node, the
class is no longer considered at the other node. If not, the class is retained

in both nodes for further pair-wise comparison.




The proposed binary tree design has the following desirable characteristics:

1) By using the bottom-up approach in which the terminal nodes of the tree consist of the
set sf pre-defined classes, the tree classifier ensures that the classes have informational
values.

2) By separating classes with the largest distance first, the occurrence of overlapped
classes can be reduced, thus decreasing the size of the tree.

3) Using two classes instead of two subgroups of classes avoids the problem of merging.
In addition, since the classes are assumed to be normally distributed, the Gaussian

maximum likelihood classification rule can be readily applied as the node splitting rule.

4) Since the statistics used at each node are defined by the training set of two pre-defined
classes, this information can be stored and used subsequently for other repetitious nodes
by generating a simple look-up table.

5) In a two-class hierarchical structure, only two classes are considered at each node.
This greatly simplifies the analysis process in the sense that the optimization criterion for
two classes often exists in closed form, such as the Bhattacharrya distance. Furthermore,
the feature extraction methods for two classes are well understood, whereas the
optimization for multiple classes is more complex and may not even exist. The next

section will discuss this issue in detail.
4.3.4 Feature extraction

The benefits of performing feature reduction for remote sensing applications are
twofold: 1) to circumvent the Hughes phenomenon and 2) to reduce the amount of
computation required for classification. Feature reduction methods can be roughly
divided into two categories: feature selection and feature extraction. In feature selection,
features that do not contribute to the discrimination of classes can be eliminated by
assessing some criteria before and after the removal. A criterion comrnonly used is the
separability of classes or the n-fold cross-validation method. If the removal does not
lower the criteria substantially, the features are redundant. Unfortunately, optimal feature
selection involves exhaustive search among all features, which is computationally
infeasible for hyperspectral data. Suboptimal search involving subsets of features such as




forward or backward selection may have undesirable effects for multispectral data [30].
Therefore, feature selection is not considered in this work.

Feature extraction is the other form of feature reduction and involves the
transformation of data into a smaller subset of features while retaining the class
sepiirability as much as possible. The transformation is usually linear and based on the
optimization of some criteria. This section reviews several feature extraction algorithms
and discusses their relative strengths and weaknesses when applied to a binary tree
classifier.

A. Principal Component Analysis

This method involves representing x € R” by the summation of p orthonormal

vectors using Karhunen-Loeve transformation. The columns of transformation matrix
consist of the eigenvectors corresponding to p eigenvalues of Z_, the covariance matrix

of » ,as follows:
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where y=®7x is the linear transformation of x and O = [¢1 o, ... ¢p] is the non-

singular transformation matrix satisfying the condition

1 fori=j
¢i¢j= . s
0 fori=j

To extract q < p features, q out of p eigenvectorsare selected corresponding to the
q largest eigenvalues. Although this transformation is optimal with respect to fitting the

data, it is not necessarily optimal with respect to discriminating the data [30].
B. Discriminant Analysis Feature Extraction (DAFE)

Discrimimant analysis or canonical analysis [30] uses the ratio of a between-class
scafter matrix X, to within-class scatter matrix X as a criterion function, and computes a

vector d to maximize
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Here M,, ¥, and o, are the mean vector, the covariance matrix, and the prior probability

of class i respectively. And L is the total number of classes.

Although the discriminant analysis performs well for most cases, there are several
drawbacks for this method. First of all, the approach delivers features only up to the
number of classes L. minus one. For a binary tree classifier, this means that there is only
one feature extracted at each node. One feature may not be optimal to discriminate
between classes with complex decision boundary. Second, if the mean values are similar
or the same, the extracted feature vectors are not reliable. Furthermore, for multiple
classes, if a class has a mean vector very different from the other classes, the between-
class scatter matrix is more biased towards that class, resulting in ineffective features.

C. :Decision Boundary Feature Extraction (DBFE)

The decision boundary feature extraction technique involves extracting features
based on the effective decision boundaries between classes [32]. It was shown that all the
features needed for classification are normal to the effective decision boundary, which is
part of the decision boundary separating 90% of the training sample!;. In addition to
finding the feature vectors, this method also predicts the minimum number of features
necessary to achieve the same classification accuracy as conducted in the original space.

In order to determine the effective decision boundary, the majority of training
samples are first selected. Using a Gaussian maximum likelihood classifier, the

procedure begins with classifying the training samples at full dimensionality and




thresholding the outliers. Therefore, for a p dimensional multispectral space the number
of training samples must be greater than (p+1) to avoid singularity. Since the method
depends on how well the training samples approximate the decision boundaries, the
number of training samples required could be much more for high dimensional data. For
hyperspectral images, the number of training samples is usually not enough to prevent
singularity or to yield a good covariance estimate. The DBFE method is also
comiputationally more intensive than the previous methods. In addition, DBFE for more
than two classes is suboptimal. However, it generates more than (L-1) features.
Typically, as more features are added, the class separations improve as well. It functions
well even when the means or the covariances are equal, and also simultaneously provides
information on the number of features required for good accuracy.

D. Bhattacharyya Distance Feature Extraction (BDFE)

The Bhattacharyya distance is a convenient measure of class separability for two
classes. Furthermore, it gives an upper bound of Bayes error for norrnal distributions.

The Bhattacharyyadistance is given as [30]
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The optimization of the Bhattacharyya distance is non-trivial. One must either
consider special cases or suboptimal solutions for the general case. To consider special

cases, Eq. (4.1) can be decomposed into two terms:
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When X2, =2%,, u( % ) 1s reduced to i, and hence the optimization involves only ;.

We can rewrite y, as follows:
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where X = % and a,=a, = % is assumed for £, and X,. Therefore, ignoring the

multiplicative constant, the optimization of g, alone is the same as the discriminant

analysis. From previous discussion, only one linear feature is needed to maximize this

criterion and the transformationis given as:

T_
y= (Mz - Ml) x
When M, =M,, ,u(%] = [,. Based on the optimization of 4, , g eigenvectors of

%', are selected corresponding to the q largest (2.,. + % +2]terms where A, is the

eigenvalue. Each eigenvalue of Z;'%, gives the ratio of the @,- and @,-variances along

the respective eigenvectors. By selecting the largest (li +%_ + 2) terms, this method

extracts the features where the variances of the two classes are different.

Typically for one-stage classifiers, when the Bhattacharrya distance is used for
feature reduction for more than two classes, the minimum or average pairwise distance
between all class combinations is used as the sub-optimal criterion for optimization. For
a binary tree classifier, this suboptimal choice of criterion can be avoided. When the
node splitting rule involves two normal classes, the Bhattacharrya distance is an optimal

criterion for feature extraction.

Since the optimization of the Bhattacharyya distance is infeasible, a suboptimal
procedure is adopted to find the effective features. The method proceeds as follows:




Bhattacharyya Distance Feature Extraction (BDFE) Algorithm:

Step 1. Compute the eigenvalues A, and orthonormal eigenvectors ¢, of

= = +Z
Z"(MZ—MI)(MZ—M,)T where E=h. Since the rank of the

matrix is one, only the first eigenvalue A, is non-zero. The class

separability due to the mean difference is then preserved by the
transformation ¢, x.

Step 2. Perform the transformation y = [ ¢2---¢p]rx by which x is mapped to the

( p—1)-dimensional subspace where there is no information due to mean
difference. Let @,_, =[¢2-"¢p].

Step 3. Extract (g - 1) features, ¥ =[w1--- wq_l] , by optimizing y, on y. These

features then preserve the information due to covariance: difference. The

overall transformation is then given by
. T
Z=[¢1 : (DP_,‘I’] x.

The above procedure has the advantage of adding more features based on
covariance information to the one feature extracted by discriminant analysis for two
classes. The benefit of having additional features is demonstrated in the following
experiment. Using simulated data of 8 features and 2 classes, the experiment compares
the effectiveness of discriminant analysis feature extraction (DAFE) and the above
numerical approach based on Bhattacharyya distance (BDFE). Three sets of computer
generated data are generated, in which the mean difference (M), the covariance difference
(C). and both the mean and covariance differences (M-C) are dominant, respectively.
Since there are only two classes, only one feature is used using DAFE. For BDFE, a total
of four features are obtained. The classification results are summarized in Figure 4.4.
These results show that when the class covariance matrices are: different, it is
advantageous to use additional features obtained with BDFE based on covariance
information.
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4.4 Binary Tree Design for Feature Extraction

The above binary tree design can also be used as a feature extraction method. Since
two classes are processed at each node, the features generated from the feature extraction
algorithm are optimal with respect to the two classes. Therefore, features from each tree
node can be combined to form collectively a set of features for the single-stage classifier.
The advantage of this approach is that the feature extraction algorithms such as DBFE are
not necessarily optimal for more than two classes whereas the BDFE algorithm is only

applicable for two classes.

For multiclass problems, DBFE generates features by averaging pairwise decision
boundary feature matrices for all classes. The average matrix may not be optimal for all
classes since some class pairwise decision boundaries are not necessarily effective for the
multiclass situation. Therefore, the features obtained from the average rnatrix may not be
optimal. The binary tree design can circumvent this problem by extracting optimal
features for each pair of classes based on their decision boundary feature matrix and use



these features for the single-stage classifier. Likewise, BDFE can be extended to the
multiclass problem using the binary tree to extract features for pairwise classes. These
features can then be combined for the single-stage classifier. The effectiveness of these

methods will be demonstrated by experiments.

45 Experimental Results

Experiment 4.1

In the following experiments, the proposed binary tree design is used both as a
classifier and a feature extraction method. The data set consists of some agricultural
classes from an AVIRIS image with 220 spectral bands taken over of NW Indiana's
Indian Pine test site in June 1992. The water absorption bands and noisy bands (104-108,
150-163, 220) are removed, resulting in a total of 200 bands. Since the data were
collected in the early part of the growing season, soybean and corn canopies gave only
about 5% ground cover. Four classes which present a challenging classification task are
selected. The mean vectors of these classes are plotted in Figure 4.6. The figure shows
that these classes have very similar mean values, thus presenting a challenging
classification task. The covariance information should play an irnportant part in
classification. The number of labeled samples of these classes are given.in Table 4.1 and
their ground truth map is shown in Figure 4.5. Since the labeled samples are few, to
retain enough samples as training and testing samples, the spectral channels are sampled
at a fixed interval of 4, which leaves 50 channels for the experiment.

Table 4.1

Class Description for AVIRIS Data in Figure 4.5
Class Names  No. of Labeled Samples

Corn-notill 1066
Corn-min 834
Soybean-notill 501

Soybean-min 662
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Figure 4.5 AVIRIS Data and Ground Truth Used in Experiment 4.1 (Original in Color)
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Figure 4.6 Mean Graph of AVIRIS Data in Figure 4.5

There are six methods being tested and compared. The methods and their
abbreviations are listed in Table 4.2. The method "Resubstitution" essentially uses all the
labeled samples for training and testing as well. Therefore, its classification accuracy
provides an upper bound. In other words, it is the best performance attainable by the
limited design set. The method "ML-DAFE" is the single-stage maximum likelihood
classifier with discriminant analysis as the feature extraction method. "ML-DBFE"
denotes the single-stage maximum likelihood classifier using decision boundary feature
extraction (DBFE) method. The two-class binary tree classifier with DBFE method at
each node is denoted as "DTC-DBFE" whereas the single-stage maximum likelihood
classifier using features generated by the binary tree with DBFE is indicated as
"ML/DTC-DBFE". Likewise, "DTC-BDFE" and "ML/DTC-BDFE" represent the binary
tree classifier with Bhattacharyya distance feature extraction (BDFE) at each node and

the single-stage classifier with tree generated features using BDFE.



Table 4.2
Description of Methods Tested in Experiment4.1

Abbreviation Methods

Resubstitution * Single-stage Gaussian Maximum Likelihood using all labeled
samples for training and testing

ML-DAFE * Single-stage Gaussian Maximum Likelihood with DAFE

ML-DBFE * Single-stage Gaussian Maximum Likelihood with DBFE

DTC-DBFE * Decision Tree with DBFE

ML/DTC-DBFE * Single-stage Gaussian Maximum Likelihood with tree generated
features using DBFE

DTC-BDFE ¢ Decision Tree with BDFE

ML/DTC-BDFE * Single-stage Gaussian Maximum Likelihood with tree generated
features using BDFE

The experiment is repeated with different number of spectral features up to 50
features and the training set size of 55, 100 and 500 per class. The training samples are
randomly selected and thus the experiment is repeated 10 times. Except for the first
experiment using 5000 labeled samples, the data samples are obtained directly from the
image. The simulation data with 5000 samples is generated using the statistics from the
labeled samples of the four classes. The purpose of this simulation is to compare the
methods for large training and test sets. The results are shown in Figures 4.8-4.10. It
should be noted that for the binary tree generated features using ML/DTC-DBFE and
ML/DTC-BDFE methods, the total number of features from the collection of one feature
generated at each node is equivalent to the number of internal nodes with non-repeating
decisions. The binary tree generated for this data is shown in Figure 4.7. Since the
number of non-repeating decisions is six, in the results below, the number of features are
in the multiple of six for the single-stage classifier with tree generated features using
ML/DTC-DBFE and ML/DTC-BDFE methods.
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Figure 4.7 The Binary Tree Generated for AVIRIS Data
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Figure 4.8 Classification Result for 500 Training Samples (AVIRIS Data)

The above figure shows the result obtained for various methods when there are
ample training and test samples. Since this is the case of large sample size, no Hughes
phenomenon takes place and the highest accuracy occurs at full dimensionality for all
methods. The best result is achieved by the resubstitution method which provides the
upper bound for the data set. The next best result is obtained by DTC-DBFE. It
demonstrates that for large training set size, the optimal features are generated based on
the decision boundary which is well-defined for large sample size. The two-class binary
tree also generates the optimal features for DBFE as compared to the algorithm for
multiclass DBFE as proposed in [32]. Since there are four classes, only three features are
generated using DAFE. These features also do not utilize the covariance information.



Therefore, its performance is worse than other methods. The result also shows that
BDFE is an suboptimal approach.

100 Training Sample:

~
ol

70 T

65 T

[}
[=]

(%)

Accuracy
[$)]
[$)]

(&)}
(=]

¢ —X— ML-DAFE

ML-DBFE

.5 —e— DTGDBFE
| ¢ MUDTC-CIBFE

—A— DTC-BDFE
A MUDTC-BDFE

40 -

B/ h—— S

1 2 3 4 5 6 7 8 9 10 12 18 24 30 36 42 48 50
Number of Features

Figure 4.9 Classification Result for 100 Training Samples (AVIRIS Data)

Using 100 training samples for 50 channels represent the case of moderate training
set size. Figure 4.9 shows that the best result is obtained by DTC-EIDFE. Although
BDFE is suboptimal, it requires fewer training samples than DBFE for better
performance. When the training set size decreases, the parameters are not well estimated
which affect the decision boundary estimate as well. Therefore, the: performance of

DBFE suffers. Since BDFE also uses covariance matrix estimate, the performance




declines as well, but not as much as DBFE. The DAFE method uses only the mean
information, so its classification accuracy remains comparatively stable for moderate
training set size.
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Figure 4.10 Classification Results for 55 Training Samples (AVIRIS Data)

Figure 4.10 shows the classification result for small training set size since there are
only 55 training samples per class for 50 channels. In this setting, the covariance matrix
estimate becomes highly variable. Since both DBFE and BDFE methods make use of
covariance information, their performance deteriorates. However, by processing two

classes at a time and using fewer features, the proposed tree classifier using BDFE (DTC-




BDIFE) maintains a relatively good performance up to a point. As expected, the best
result is obtained by using DAFE whose optimization is based on the mean vectors only.

Experiment 4.2

The previous experiment is repeated for another set of data taken by a different
sensor. The test data was taken from the multispectral data collected using Field
Spectrometer System (FSS) and the major parameters are shown in Table 4.3. Four
multi-temporal classes of the type "Spring Wheat" are chosen from the FSS data collected
in June, July and August, 1978. The number of labeled and training samples are given in
Table 4.4. A total of 20 spectral bands are selected from the original 60 spectral bands.
As shown in Figure 4.11, these multi-temporal classes have some difference in mean
values. The generated binary tree is illustrated in Figure 4.12. Again, there are six non-
repeating internal node decisions in the tree, so the tree generated features are in the
multiples of six. Figure 4.13-4.15 show the classification results using different training
set size. Since the training samples are randomly selected, the experiment is repeated 10
times and the figures show the mean values of classification accuracy.

Table 4.3
Parameters of Field Spectrometer System
Number of Bands 60
Spectral Coverage 04-24 um
Altitute 60 m
IFOV (ground) 25m

Table 4.4
Class Description of FSS Data in Figure 4.11
Multi-temporal Classes Abbreviations  No. of Labeled Samples

Spring Wheat 8/16 SP8_16 464
Spring Wheat 7/26 SP7_26 515
Spring Wheat 7/09 SP7_09 454

Spring Wheat 6/02 SP6_02 515
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Figure 4.11 Mean Graph of Multi-temporal F'SS Data

Figure 4.12 The Binary Tree Generated for FSS Data
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Figure 4.13 Classification Results for 70 Training Samples (FSS Data)

Using 70 training samples, all methods achieve the best result at higher
dimensionality. This demonstrates that when there are many training samples, the
Hughes effect does not exist. Among all methods, the tree classifier with Bhattacharyya
distance feature extraction (DTC-BDFE) method achieves the best result using smaller
number of features.
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Figure 4.14 Classification Results for 30 Training Samples (FSS Data)

Using only 30 training samples for 20 dimensional data, the results start to display
the Hughes effect. The best results are obtained using the binary tree classifier with
Bhattacharyya distance feature extraction (DTC-BDFE) method and the single-stage
classifier using features generated from the binary tree using BDFE.
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Figure 4.15 Classification Results for 25 Training Samples (FSS Data)

With only 25 training samples, the Hughes effect becomes more severe. As in the
cast: of 30 training samples, the best results are still obtained by DTC-BDFE. It again
shows the relative robustness of Bhattacharyya distance feature extraction (BDFE) as
compared to decision boundary feature extraction (DBFE) method in the case of small
training set size.




Experiment 4.3

In previous experiments, the methods are tested for the case in which the number of
training samples is greater than the dimensionality. In this experiment, the proposed
binary tree classifier is tested for numerous class some of which have fewer training
samples than the number of spectral channels. Six classes are chosen from the FSS data
collected on August 16, 1978. The number of labeled and training samples are given in
Table 4.5. A total of 20 spectral bands are selected from the original 60 spectral bands.
As shown in the table, the training samples of class "Alfalfa" and "Barley" are as few as
11 and 20 respectively, while some other classes have many more training samples. In
this case, DBFE is no longer applicable. Therefore, DAFE is used instead for the single-
stage quadratic classifier and only BDFE is used for the binary tree classifier. Since the
number of training samples for each class varies quite significantly, the number of
features at each node should also differ depending on the available training samples. The
optimal number of features for each node is difficult to determine. Therefore, as a rule of
thumb, when one or both of the classes contain training set size which is less than the
dimensionality, only a single feature is generated. And when the average covariance
estimates at each node is singular, BDFE cannot be applied and thus the Euclidean
distance classifier is adopted instead. On the other hand, when there are many training
samples, more features can be generated at each node as defined by the user. In this
experiment, the number of features selected for BDFE is 10. Table 4.6 shows the

performance comparison for the classifiers.
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Figure 4.16 Mean Graph of FSS Data with Six Classes of Varying Size

Table 4.5
Class Description for FSS Data in Figure 4.16
Class Names No. of Labeled Samples  No. of Training Samples
Native Grass 212 42
Alfalfa 59 11
Oats 165 33
Summer Fallow 216 43
Spring Wheat 464 92
Barley 103 20

Total samples 1278 252




Table 4.6
Classification Results for FSS Data with Varying Size
Classification  Accuracy (%)

Class Names Resubstitution = ML-DAFE DTC-BDFE
Native Grass 95.88 92.94 91.76
Alfalfa 91.67 43.75 79.17
Oats 78.79 77.27 65.91
Summer Fallow 90.17 89.02 89.02
Spring Wheat 77.42 72.58 82.53
Barley 87.95 67.47 68.67
Ave Accuracy (%) 86.98 73.84 79.51

The resubstitution accuracy presents the most optimistic performance by using all
labeled samples for training and testing as well. It was shown that by using the tree
classifier, the performance improves by 6% from the single-stage classifier. The
performance of the class Alfalfa which has only 11 training samples has increased from
43.75% to 79.17% using the binary tree classifier.

4.6 Summary

A binary tree design for classification and feature extraction has been proposed in
this work. As a classifier, the divide-and-conquer approach of the proposed binary
classifier has been shown to mitigate the Hughes phenomenon when used with a proper
feature extraction method. The experimental results show that when the design set size is
large, the two-class binary tree classifier using decision boundary feature extraction
(DBFE) gives better performance at small number of features. Also, DBFE for more than
two classes 1s not optimal. However, since in this case the Hughes phenomenon does not
exist, all methods give the same performance at full dimensionality. On the other hand,
when the training set size is moderate or small compared to the number of features, the
binary tree classifier with Bhattacharyya distance feature extraction (BDFE) has better
results by using fewer features at each node. Also, BDFE does not suffer as much as
DBFE due to limited training set size even though both methods utilize covariance
infcrmation. However, when the covariance matrices are poorly estimated, the single-
stage classifier using discriminant analysis feature extraction (DAFE) is more reliable
since DAFE utilizes only the mean information.



A heuristic rule for employing different classification rules and :Feature extraction
methods at each node has also been proposed to process data with varying sample size for
each class. When the total number of training samples is close to or less than
dimensionality, the Euclidean distance classifier is used instead. Experimental result
shows that the multi-stage classifier has higher classification accuracy than the single-
stage approach. However, the types of classification rules and feature reduction methods
are by no means limited to the ones mentioned in this work. The feature extraction
methods mentioned in this chapter depend on the quality of the covariance estimate.
Methods which can deal with fewer training samples than dimensionality are needed.
Projection pursuit [44] may be used to reduce dimensionality prior to performing feature
extraction. Future research can also be directed towards finding the best approach to deal
with different types of data, thus making the tree classifier more automated. In addition,
a method to determine the optimal number of features at each node should be a
challenging research problem. A major disadvantage of using binary tree generated
features is that the number of features is generated at a multiple of the number of non-
repeating binary decisions. Therefore, a method which can select the most significant

features from the collection of tree extracted features should be investigated.



CHAPTER 5: CONCLUSIONS

This thesis has presented several solutions to circumvent the problems of
classification associated with high dimensionality. These problems have become more
prevalent in remote sensing due to the increase in spectral and spatial resolution of the
new sensors with higher dynamic range. Although more classes become spectrally
separable, unfortunately, when the number of spectral features increases, the
classification performance deteriorates if the number of training samples remains fixed.
This has been widely known as the Hughes phenomenon. The problem of the Hughes
phenomenon is attributed to the fact that more training samples are required to specify the
decision boundary for classification at higher dimensionality. In the case of Gaussian
maximum likelihood classification, the decision boundary is defined by the mean vector
and covariance matrix. The variances of these estimates increase as tht: ratio of training
sample size to the dimensionality decreases. Therefore, the estimation of these
parameters becomes crucial for classification performance. In this thesis, methods have

been proposed to deal with these problems and shown to improve classification accuracy.

In Chapter 2, the problem of limited training set size is addressed by including
unlabeled samples for parameter estimation. The use of unlabeled samples in addition to
training samples can also be viewed as estimating parameters under the mixture model.
The: maximum likelihood estimates for the mixture model are obtained via the
expectation maximization (EM) algorithm. Unfortunately, the EM algorithm is sensitive
to the presence of statistical outliers. As a result of increased spectral and spatial
resolution, more classes are spectrally separable with varying sample sizes. Some classes
with few samples may be difficult to identify and may form statistical outliers. Thus, a
robust version of the EM algorithm was proposed. This robust EM (REM) algorithm
reduces the influence of statistical outliers by assigning less weight to samples further
away from the main body of distributions. Experimental results have shown that without




statistical outliers, both the EM and REM algorithms perform better than the maximum
likelihood (ML) parameter estimation using training samples alone. They can even
mitigate the Hughes phenomenon if there are enough unlabeled samples available. In the
presence of outliers, the REM algorithm achieves better classification accuracy than the
EM and ML methods. Despite the promising results, the mixture model has to be used
with caution. In addition to the presence of statistical outliers, the performance of the
mixture model is also affected by the number of unlabeled samples available and the
initial conditions. It has been shown experimentally that without a sufficient number of
unlabeled samples, the performance of the EM and REM algorithms is as poor as using
training samples alone at high dimensionality. It was assumed in this work that the
training samples provide reasonable initial parameter estimates for the iterations.
Without a good initial estimate, the convergence to the optimal solution is not
guaranteed. Also, if the number of training samples is less than the dimensionality, the
covariance matrix becomes singular and hence the iterative equations cannot be applied.
In this case, either a feature reduction method must be used or a non-singular covariance
estimate must be obtained from the training samples by imposing some constraint on its

forrn. The latter approach is addressed in Chapter 3.

The inverse of a covariance matrix becomes ill- or poorly-posed :if the training set
size is small compared to dimensionality. Conventionally, the stabilization of the
covariance estimate has been accomplished by regularization which tends to reduce the
variance of the estimate at the expense of increased bias. This method can also be
viewed as a compromise between the linear and quadratic classifiers. In Chapter 3, a
regularization method under the Bayesian setting has been proposed.. The proposed
Bayesian leave-one-out covariance (bLOOC) estimation method was shown to have
better performance than other methods when the training set size reflects the true priors
of the classes. This is particularly true for remote sensing applications since more
training samples are usually selected for larger classes. When used in conjunction with
discriminant analysis feature extraction (DAFE), the proposed covariance estimation was

demonstrated to circumvent the limited training set size problem.

Since the leave-one-out likelihood is used as the criterion for these estimators, it has
the drawback of not being directly related to class separability, and subsequently the
classification accuracy. Therefore, some smooth loss function derived from the class
separability is recommended for future work. Also, since decision boundary feature

extraction (DBFE) is not suitable for small training sample size and DAFE method does



not work well when the classes have similar mean values, an alternative feature
extraction or classification methods need to be explored. A solution is proposed in
Chapter 4 using a two-class binary tree with a feature extraction method based on
maximizing Bhattacharyyadistance.

In Chapter 4, a two-class binary tree design has been proposed to function as a
classifier and a feature extraction method. One advantage of using a divide-and-conquer
method is that fewer features can be used at each node. Also, different decision rules can
be applied depending on the training samples available at the local node. By using two
classes instead of two subgroups of classes for node decision, the problem of merging can
be avoided. Since the classes defined for remote sensing applications are assumed to be
normally distributed, the two-class binary decision is basically a Gaussian maximum
likelihood classification. The binary structure is also desirable for obtaining optimal
features based on two normal classes using either decision boundary feature extraction
(DBFE) or Bhattacharyya distance feature extraction (BDFE) methods. These features
can then be collectively used in a single-stage classifier. Experimental results have
shown that BDFE is more robust than DBFE for limited training set size. This is due to
the fact that BDFE is a suboptimal approach with the main emphasis on the mean
difference between two classes and with additional features based on covariance
infcrmation. In contrast, DBFE relies on the decision boundary which is sensitive to the
accuracy of mean and covariance estimates. DBFE for multi-class problems has also
been shown to be suboptimal. The discriminant analysis feature extraction (DAFE)
method is mainly based on the class mean information. Therefore, BDFE can be
considered as a compromise between DAFE and DBFE. Unfortunately, BDFE also uses
covariance estimate and thus cannot be applied when the training set size is smaller than
the dimensionality.

To deal with the case in which some classes have fewer training samples than the
dimensionality, a heuristic rule for employing different classification rules and feature
extraction methods at each node was proposed. When one (or both) of the classes in each
node has training samples less than dimensionality, but the combined number of training
samrples is greater than dimensionality, the linear classifier with their average covariance
estimate may be applied. When the total number of training samples are close to or less
than the dimensionality, the Euclidean distance classifier is used instead. Experimental
results have confirmed the benefit of the binary tree classifier using different
classification rules for each node based on the locally available training samples. Despite




the promising results, more work remains to be done. For future work, a thorough study
on the types of classifiers and feature extraction methods suitable for various types of
data is recommended. In particular, feature extraction methods for two classes with
fewer training samples than dimensionality are needed. In this case, projection pursuit
may be used to reduce dimensionality prior to performing feature extraction. In addition,
methods to decide the optimal number of features for each node and for selecting most

significant features from a collection of tree generated features should be explored.
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