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ABSTRACT 

An important problem in pattern recognition is the effect of limited training samples on 

classification performance. When the ratio of the number of training samples to the 

dimensionality is small, parameter estimates become highly variable, causing the 

deterioration of classification performance. This problem has become more prevalent in 

remlote sensing with the emergence of a new generation of sensors. While the new 

sensor technology provides higher spectral and spatial resolution, enabling a greater 

number of spectrally separable classes to be identified, the needed labeled samples for 

designing the classifier remain difficult and expensive to acquire. In this thesis, several 

issules concerning the classification of high dimensional data with limited training 

samples are addressed. First of all, better parameter estimates can be obtained using a 

large number of unlabeled samples in addition to training samples under the mixture 

model. However, the estimation method is sensitive to the presence of statistical 

out1:iers. In remote sensing data, classes with few samples are difficult to identify and 

may constitute statistical outliers. Therefore, a robust parameter estima.tion method for 

the mixture model is introduced. Motivated by the fact that covariance estimates 

become highly variable with limited training samples, a covariance estimator is 

developed using a Bayesian formulation. The proposed covariance estimator is 

adviintageous when the training set size varies and reflects the prior of each class. 

Finally, a binary tree design is proposed to deal with the problem of varying training 

sample size. The proposed binary tree can function as both a classifiler and a feature 

extraction method. The benefits and limitations of the proposed methods are discussed 

and demonstrated with experiments. 

Work leading to the report was supported in part by NASA Grant NAG5-3975. 

This. support is gratefully acknowledged. 



CHAPTER 1: INTRODUCTION 

1.1 Background 

Remote sensing technology involves the measurement and analysis of the 

electromagnetic radiation reflected from the earth's surface by a passive or an active 

souIce. The radiation responses in various wavelengths indicate the types or properties of 

the ~naterials on the surface being measured and collectively form a multispectral image. 

Early on, multispectral scanners were developed which measured radiation in 3 to 12 

spectral bands. Current sensors can gather data in hundreds of spectral bands and 

generate hyperspectral data. For example, the Airborne Visiblelhlfrared Imaging 

Spectrometer (AVIRIS) collects data in 224 spectral bands covering 0.4-2.5 pm 

wavelength region with 20 m spatial resolution. By representing the spcxtrum of a pixel 

in a multispectral image as a random process [I] statistical pattern recognition methods 

have been successfully applied to process multispectral data. Figure 1.1 illustrates the 

representation of a pixel as multivariate data. 

Number of Spectral Features 
(DMnsionaliQ) 

Figure 1.1 A Multispectral Image 



The process of designing a classifier using training samples from the classes of 

interest is referred to as supervised classification. A typical supervised classification 

system for multispectral data consists of several stages as shown in Figure 1.2. 

1 c o o n  processing Classification 
Results 

Evaluation 

I Labeled Samples / 

Figure 1.2 Multispectral Data Processing System 

Before classifying the data, some form of processing is usually performed on the 

data. The purpose of the processing stage is to obtain a better representation of the data 

baseid on the available labeled samples in preparation for classification. If the probability 

density functions (pdfs) of the classes are assumed known, a better representation usually 

means a good set of parameter estimates for the pdf s. The common ap:proach in remote 

sensing is to assume normally distributed classes and estimate the mean vectors and 

covauiances matrices using the training samples. The processing stage rnay then involve 

covariance estimation, statistics enhancement using an expectation maximization (EM) 

algorithm and feature extraction. 

The types of classifier can be broadly divided into two categories: pixel-based and 

spec:tral-spatial classifiers. A pixel-based classifier assigns each pixel to one of the 

classes by applying a decision rule. In other words, each pixel is classified individually 

baseid on its spectral measurements alone. Usually, the decision rule c:an be written in 

terms of the pdfs of the classes or their parameters. In spectral-spatial classifiers, it is 

assumed that the classes of neighboring pixels are not independent. Therefore, the 

decision can either be formed on a group of adjacent pixels or can take into account the 

classes of neighboring pixels. 

After the classifier is designed, it is usually tested by measuring the error 

probability, which can be obtained from classifying the labeled samples. In practical 

situiitions, the number of these labeled samples is limited so one must decide how to 



divide them to both design and test the classifier. An unbiased estimator is provided by 

using a set of samples for design and the other set of samples for testing the classifier. 

This approach, called the holdout method, is adopted for this thesis. 

1.2 Objective of Research 

The increase in spectral resolution brought about by the new sensor technology has 

offered new possibilities and challenges. It is the goal of this thesis to investigate the 

protdems presented by the new sensors. 

The availability of a large number of spectral bands should allow more detailed 

classes to be identified with higher accuracy than previously possible. However, for 

rem~ote sensing applications, the needed number of labeled samples for designing and 

testing the classifier remains expensive and difficult to acquire. For example, the ground 

truth information may be gathered by visual inspection of the actual site or by matching 

the spectral responses of the samples against the responses of known samples. As a 

result, the class statistics have to be estimated by the limited training sample set. When 

the ratio of the number of training samples to the number of features is small, the 

parameter estimates become highly variable causing the classification performance to 

deteriorate. Typically, the performance of the classifier improves up to ;a certain point as 

add.jtiona1 features are added, and then deteriorates. This is referred to as the Hughes 

phe~lomenon [2] (See Figure 1.3). The number of training samples required for different 

c1as:sifiers to obtain reasonable parameter estimates has been studied in [3]. Thus, the 

goal of this research is essentially to circumvent the Hughes phenomenon caused by 

limited training set size. 
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Figure 1.3 The Hughes Phenomenon [2] 

1.3 Organization of this Report 

In Chapter 2, the problem of limited training set size is addressed by including 

unla.beled samples for parameter estimation under the mixture model. It is common to 

view remote sensing data in terms of a mixture model fitted with normally distributed 

components (spectral classes). Then the parameters of the mixture moclel are estimated, 

for c:xample, using the expectation maximization (EM) algorithm. For the EM algorithm 

to ~lerform well, the classes must be exhaustive. In other words, the existence of 

statistical outliers may degrade the performance. As a direct consequence of increased 

spec:tral and spatial resolution, hyperspecral data consists of more spectral classes with 

varjring sizes. Some of these classes can be small and tedious to identify and may 

constitute outlying pixels which are not consistent with the statistics of the other classes. 

The:refore, a robust estimation method for estimating the mean vectors and covariance 

matrices under the mixture model is presented in Chapter 2. The proposed method gives 

redu.ced weights to pixels which are considered as statistical outliers and thereby limiting 

their influence in estimating parameters. 

In Chapter 3, the issue of small training sample size is addressed as a parameter 

esti~nation problem, in particular, covariance estimation. When the training sample size 



is srnall compared to the dimensionality, the sample estimates of the parameters becomes 

highly variable. The problem of limited training samples is espec:ially severe for 

covariance matrices since sample covariance estimates become singular as the number of 

training samples is less than dimensionality. In such circumstances, several studies have 

fourid that a linear classifier often performs better than a quadratic classifier. However, 

the choice between either a linear or quadratic classifier is quite restrictive. A covariance 

estiimator is therefore proposed which can be viewed as an intermediate approach 

between linear and quadratic classifiers. The proposed estimator is derived using a 

Bayesian formulation, which is desirable when the classes have varying sizes and the 

training sample size is proportional to the class sample size. 

In Chapter 4, the problem posed by limited training samples and riumerous classes 

is addressed by introducing a binary tree algorithm for classificaltion and feature 

extraction. In a single stage classifier, the same number of features have to be applied for 

all classes. In a complex image with classes of varying sizes, those classes with very 

limited training samples may impose a serious constraint on the total number of features 

to be used for classification. Motivated by the need for a more flexible classification 

procedure in which different number of features can be applied to discriminate different 

classes, a binary tree design is proposed. In addition to performing a:s a classifier, the 

proposed binary tree design can also function as a feature extraction mczthod to generate 

features for a single-stage classifier. The detail of implementation and experimental 

results are presented in Chapter 4. 

Finally, a general conclusion and directions for future research are presented in 

Chapter 5. 





CHAPTER 2: ROBUST PARAMETER ESTIMATION FOR 

MIXTURE MODEL 

2.1 Introduction 

In a mixture model, data are assumed to consist of two or rnore component 

dist1:ibutions mixed in varying proportions. For remote sensing ap~~lications, it is a 

common practice to consider several "spectral subclasses" within each "information 

class" or ground cover type. Each of such spectral subclasses is assumed to be normally 

distributed and classification is performed with respect to the spectral subclasses. Under 

this model, remote sensing data can be considered as a mixture model fitted with 

norrnally distributed components. 

To estimate the model parameters in a mixture, a common approach is to apply the 

expc:ctation maximization (EM) algorithm to obtain the maximum likelihood (ML) 

estimates. For the EM algorithm to converge to the global solution, several conditions 

have to be met. First of all, the initial estimates must be reasonably good. Usually the 

training samples provide a good starting point for the iteration. Moreover, the defined 

classes must be exhaustive. This means that all samples are accounted for by the 

component distributions in the mixture. Unfortunately, for the analysis of remote sensing 

data, to arrive at a set of exhaustive classes is an iterative process by trial and error, and 

usually depends on the expertise of the user. In addition, there might be some scattered 

background pixels which are difficult or tedious to identify. These pixels form the so- 

callcd "information noise" whose spectral responses may not be consistent with the 

majority of samples. Such statistical outliers are usually eliminated using a chi-square 

threshold before applying the EM algorithm. This method can be viewed as a hard 

decision. However, a suitable threshold value is difficult to select and is usually 

arbilrary. Consequently, "useful" pixels might be rejected as outliers. 



In this chapter, a robust method is proposed to estimate the mean vector and 

cov,ariance matrix for classifying multispectral data under the mixture model. This 

app:roach assigns full weight to the training samples, but automatically gives reduced 

weight to unlabeled samples. Therefore, it avoids the risk of rejecting useful pixels while 

still limiting the influence of outliers in obtaining the ML estimates of the parameters. 

The experimental results show that the proposed robust method prevents performance 

deterioration due to outliers in the image as compared with the EM approach. 

2.2 Expectation Maximization Algorithm for Mixture Density Estimation 

2.2.:1 Previous work 

There has been extensive research on the problem of parameter estimation for a 

nonnal mixture density over the past few decades. An excellent review can be found in 

[4]. Karl Pearson [5] first employed the method of moments to decompose a finite 

mixture of distributions in the case of a mixture of two univariate distributions with 

different variances. The likelihood estimation of parameters in a mixture model was first 

proposed by Rao [6] who used Fisher's method of scoring for a mixture of two univariate 

distributions with equal variances. Later, it was shown that the methold of moments is 

infe:rior to likelihood estimation of a mixture model [7]. The solution for the likelihood 

appl-oach was then presented and formalized in an iterative form as the expectation 

maximization (EM) algorithm by Dempster, Laird and Rubin [8]. They :proposed the EM 

algorithm as a solution to the maximum likelihood (ML) problem involving missing data, 

of which the mixture identification problem is an example. In the review article [9], the 

EM equations for obtaining the ML estimates of the parameters and their properties were 

studied in detail. The convergence properties were investigated in [ 101. 

In [I I.], the EM algorithm has been studied and applied to remote sensing data. It 

was shown that by assuming a mixture model and using both trainj-ng samples and 

unla.beled samples in obtaining the estimates, the classification performance can be 

imp:roved. Also, the Hughes phenomenon can be delayed to a higher di:mensionality and 

hence more features can be used to obtain better performance. In addition, the parameter 

estiinates represent the true class distributions more accurately. However, the 

unrepresented pixel classes have been dealt with by rejection using a chi-square 

threshold. In the next section, the EM algorithm is reviewed and discussed. 



2.2.2 Expectation Maximization Algorithm 

The Expectation Maximization (EM) algorithm is an iterative method for 

numerically approximating the maximum likelihood (ML) estimates of the parameters in 

a mixture model. Alternatively, it can be viewed as an estimation problem involving 

incomplete data in which each unlabeled observation on the mixturle is regarded as 

missing a label of its origin [ 12 ] .  

Under the mixture model, the distribution of the data x E 9IP is given as: 

where a , ,  . . . ,a ,  are the prior probabilities or the mixing proportions, f is the component 

density parametrized by t,bi and L is the total number of componen1:s. The mixture 

density f is then parametrized by O = (a, ,. . . , a L,  t,bl ,. . ., @,). 

Under the incomplete data formulation, each unlabeled sample x is considered as 

the :labeled sample y with its class origin missing. Therefore, we can denote y = ( x ,  i )  

where i = 1 . s -L  indicates the sample origin. Let g(x lO)  be the probability density 

function (pdf) of the incomplete data x = ( x , ,  ..., x , )  and f ( y l O )  be the pdf of the 

completely labeled data y = ( y , , . .  ., y , ) .  The maximum likelihood estimation then 

involves the maximization of the log likelihood of the incomplete data 

L ( @ )  = l o g g ( x l O ) .  The estimation is complicated by the fact that the sample origin is 

missing. Hence, the EM algorithm uses the relationship between f ( y l O )  and g ( x ( O )  to 

maximize the incomplete data log-likelihood L ( O )  = l o g g ( x l O ) .  Using an iterative 

approach, the EM algorithm obtains the maximum likelihood estimates by starting with 

an initial estimate O0 and repeating the following two steps at each iteration: 

E-Step) Determine Q(OIOC)  =  log f (y lO)(x ,  Oc }. 

M-Step) Choose O+ = argrnaxQ O OC . ( I  
The next and current values of the parameters are denoted by the superscripts "+" 

and "c" respectively. The algorithm begins with an initial estimate and it: has been shown 

that under some relatively general conditions the iteration converges to ML estimates, at 

least locally. Since the convergence is only guaranteed to a local. maximum, the 



algc~rithm usually has to be repeated from various initial points. However, the training 

samples, if available, can provide good initial estimates. 

Assume that y = (y,, . . ., ymi ) are the mi training samples from class i. Also, there 

are L Gaussian classes and a total of n unlabeled samples denoted by x = ( x , ,  . . ., x, ) .  

The parameter set Q, then contains all the prior probabilities, mean vectors and 

cov;uiance matrices. The EM algorithm can then be expressed as the following iterative 

equations [9]: 

E-S tep: 

where 7; is the posterior probability that x, belongs to class i 

There are several factors affecting the convergence of the EM algorithm to the 

maximum likelihood estimates. First of all, the selection of training samples as initial 

estimates can affect the convergence to a great extent. In this work, tlhe training set is 

assumed to provide a good initial estimate. Another factor that decides the performance 

of the EM algorithm is the presence of statistical outliers. Assume that the number of 

components have been decided and given by the training set. Statis1:ical outliers are 

defined as those observations which have great discrepancy from the distributions of the 

mixture components. As indicated by Eq. (2.1) through Eq. (2.4), the EM algorithm 



assigns each observation to one of the components with the sample's p~s~terior probability 

as its weight. Even though an outlying sample is inconsistent with distributions of all the 

defined components, it may still have a large posterior probability for oine or more of the 

components. As a result, the iteration converges to erroneous solutions. 

The problem of outliers is not uncommon for practical applications. In remote 

sensing, a scene usually contains pixels of unknown origin which folrm "information 

noise". For example, in an agricultural area, there could be pixels belonging to houses, 

trees or rural roads. The statistical distributions of these pixels may be significantly 

different from those of training classes and constitute statistical outliers. Unfortunately, 

these outlying pixels are usually scattered throughout the image and are small in number. 

Consequently, identifying these pixels could be a tedious task. A common approach to 

eliminate those pixels in the EM algorithm is to apply a chi-square threslnold test [ l  11. In 

0the.r words, pixels whose distances are greater than the threshold value (are considered as 

outliers and are subsequently excluded from updating the estimates. The chi-square 

threshold T,  for a given probability a is defined as the squared distalnce between the 

sample x  E 5RP and the mean vector for class i based on the chi-square distribution as 

shown in the following: 

Pr { I (  x X - m i  I T  xi  X - m i  1 I T ,  } =a. 

The problem of outliers can be illustrated by the following simulatj~on. The data set 

contains three classes and only Class 1 and Class 2 are represented. by the training 

samples in the mixture density. These two classes are generated .with the normal 

densities N(0,2) and N(8,2) respectively. A total of 500 samples are generated for the 

two classes and 50 samples are selected as the training samples. A tllird class with a 

norrnal density N(20,l) is generated to represent outliers. The number of samples for 

Class 3 are chosen to be 50. Figure 2.1 shows the densities for the:se classes. The 

expc:riments are repeated with the sample estimates, the estimates with EM algorithm 

after 10 iterations without thresholding and with thresholding. The chi-square threshold 

is chosen to be T, = 3.84 and a = 95% for one degree of freedom. The experiment is 

repeated 50 times and the mean accuracy and standard deviations are recorded. The 

estimated densities are illustrated in Figure 2.2, which demonstrates that the presence of 

outliers can have an undesirable effect on the EM algorithm. The classification results 

are shown in Table 2.1 and Figure 2.3. The standard deviations are indicated in 



parcmthesis next to the mean accuracy. The results show that the classification 

performance deteriorates when the EM algorithm is applied in the presence of outliers. 

I I I I I 

- Class 3 - 

- Class 1 class 2 "Outliers" 

- - 

- 
- - 

- 

- 
I 

Figure 2.1 Probability Densities for Simulation Data 

Figure 2.2 Estimated Probability Densities after Performing EM Algorithm 
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ML EM w/o EM w/ 

Threshold Threshold 

Figure 2.3 Mean Accuracy for the Simulation with Class 3 as Outliers 

Table 2.1 
Experiment Results for the Simulation with Class 3 as Outliters 

Class 1 Class 2 
True Mean 0 8 
True Variance 2 2 

Sample Mean -0.08 (. 17) 8.09 (.19) 
Sample Variance 1.82 (.34) 1.86 (.34) 
Accuracy (%) lo0 (.W) 99.93 (. 15) 

EM: w/o Threshold 
Estimated Mean -0.21 (.01) 8.46 (.03) 
Estimated Variance 1.48 (.03) 17.50 (.17) 
Accuracy (%) 96.41 (.69) lo0 (.W) 

EM: with Threshold 
Estimated Mean 0.00 (.01) 8.08 (.W) 
Estimated Variance 1.62 (.03) 1.89 (.W) 
Accuracy (%) lo0 (.W) lo0 (.W) 

In the above simulation, the samples from Class 3 are not represented in the mixture 

moclel. Since those samples are closer in statistical distance to Class 2., they have high 

posterior probability with respect to Class 2. Therefore, the estimated de:nsity for Class 2 

is degraded as shown in Figure 2.2. The figure also shows that the estimated densities of 

Class 1 and Class 2 overlap such that some samples from Class 1 are rnisclassified as 

Class 2, causing the decrease in the accuracy for Class 1. By applying the threshold, 



marly of the Class 3 samples are excluded from the EM algorithm. Consequently, better 

density estimates are obtained. 

The thresholding approach can be regarded as performing a hard decision to 

eliminate outlying samples before initiating the EM algorithm. Unfortu~iately, the choice 

of tllreshold is arbitrary and useful pixels could be rejected at the outset. An alternative 

wou~ld be to assign a different weight to each pixel and use all available unlabeled pixels 

for updating the statistics. This method can be regarded as applying a ;soft decision. In 

the next section, the robust EM equations will be discussed and modified to process 

remote sensing data. 

2.3 Robust Estimation 

2.3.l Previous work 

The robust estimation of model parameters was first developed as Huber [13] 

proposed a theory of robust estimation of a location parameter using IM-estimates in a 

non-mixture context. It was later extended to the multivariate case by taking an 

elliptically symmetric density and then associating it with a contaminated normal density 

[14]. Campbell [15] derived the M-estimates for the mixture density and obtained an 

EM-like algorithm but with a weight function assigned to each pixel as a measure of 

typicality. The outlier problem in remote sensing has been addressed in [16]. The author 

proposed a modified M-estimation of the parameters to deal with the situation when the 

training samples of a certain information class contain samples of other classes. This is 

typical for a mixture model. The modified M-estimates were shown to be robust with 

respect to the contamination in the training samples as compared to the least-square 

estimates. However, the use of unlabeled samples in updating statistics was not 

addressed. The next section will describe the method of robust EM algorithm following 

the discussion in [15], and adapting the approach for remote sensing data. 

2.3.2 Robust EM Algorithm 

The expectation maximization (EM) algorithm first estimates the posterior 

probabilities of each sample belonging to each of the component distributions, and then 

computes the parameter estimates using these posterior probabilities as weights. With 



this approach, each sample is assumed to come from one of the component distributions, 

even though it may greatly differ from all components. The robust estimation attempts to 

circumvent this problem by including the typicality of a sample wii:h respect to the 

comlponent densities in updating the estimates in the EM algorithm. 

To incorporate a measure of typicality in the parameter estimation of the mixture 

density, the component densities fj(xl@,.) are assumed to be a member of the family of 

p-dimensional elliptically symmetric densities with parameters pi and Xi: 

T -I where 6f = (x - pi) Zi (x - pi). Typically, fS(6,) is assumed to be the exponential of 

some symmetric function ~(6,): 

The:n, the likelihood parameter estimation for these component densities can be obtained 

by applying the expectation and maximization steps. 

Expectation Step 

Assume that unlabeled samples {x,, x2,-. ., xn } are available, Q(@/@') can then be 

writ ten as the summation of two terms: 

L 

where 7; = a l~ lL~(v2  fs(6i)/~ ar~L:112 fs(61) is the poste"or probability and 6; is the 
t=l 
T 

squared distance 6,; = (x, - pi) xi1 (x, - pi). 



Maximization Step 

The maximization of Eq. 2.5 is carried out by taking the  derivative:^ with respect to 

the parameters a , ,  pi and Xi and setting these derivatives to zero. The optimization of 

a, involves only the first term in Eq. 2.5, and is given by [9] 

The iterative equations for pi and Ci are obtained by so1vin.g the following 

equations: 

and 

The following equations can then be derived from Eq. 2.5: 

Substituting pl for p i ,  taking the derivative and simplifying, one obtains 

where *(6;) =pt(5,f) is the first derivative of p($) Rearranging and letting 

w,: := yr($)/~$,  the maximum likelihood estimator for pi is expressed ;is follows: 



The term w, = ty(S,)/S, reflects the contribution of sample x, to the ith mean. 

Therefore, it is a weight function and provides a measure of typicality for the samples. 

Not12 that the value of the weight function is obtained using the parameter values from the 

previous iteration. 

To obtain the iterative equation for the covariance matrix, the following equation is 

set up: 

Using the matrix derivative formulas in [17], the following equations are derived: 

where diag(A) is a diagonal matrix, keeping only the diagonal terms of the matrix A. 

Simplifying and multiplying the equation by Zt from left and right, the following 

equation is obtained: 

The value of the weight function is obtained by using the parameters ( , )  Hence, 

the j terative equation for Zi can be written as: 



It was noted that the estimator for Zi in Eq. (2.6) has two disadvantages [15]. First 

of all, the weights are not incorporated into the denominator. Secondly, using the weight 

function w, to estimate the covariance matrix fails to bound the influence of large 

atypical observations. Therefore, the estimator for Z i  is modified and given as: 

Assuming that both training and unlabeled samples are availal~le, the iterative 

equations then become: 

The weight function has been chosen to be ~ ( s ) / s  where s =  6i, and 
T 

6,; := (xi - pi) x;'(xj - pi). A popular choice of y(s) is the Huber's y -function which 

is defined by y(s) = - y(-s) where for s > 0 

for an appropriate choice of the "tuning" constant kl(p), which is a function of the 

dimensionality p . This selection of y(s) gives: 



The value of the tuning constant & ( p )  is a function of dimensionality. It also 

depends on the amount of contamination in the data. Since the amount of contamination 

is usually not known, the value of k,(p)  is chosen so that the estimators have reasonable 

performances over a range of situations. A variety of choices have been suggested in 

1ite1,ature [I511 1181. 

Like other parametric estimation applications, the performance of the classifier for 

remote sensing relies heavily on the proper choice of the training samples. Since the 

training samples are representative of the classes, it is desirable that they are given more 

emphasis in the updates of the estimates. Therefore, in the proposed approach, the 

training samples are assigned unit weight. To do so, the value of k, ( p )  is defined to be 

T 
where it; = (y ,  -pi) Z;'(y, -pi) and y, is the training sample j from class i. In other 

words, the tuning constant is selected such that the training samples are given unit weight 

and the weights for the unlabeled samples are inversely proportional to t.he square root of 

their squared distance to the class mean. To eliminate further the extreme outliers, 

another tuning constant can be applied which allocates zero weights to those samples. 

The chi-square threshold is recommended for the second tuning cor~stant k2(p ) .  In 

surrunary, the proposed weight function is defined as the following: 

Alternatively, the weight assigned to each sample can be expressed as: 

1 d,  I max( i i j )  

max ( * ! I ) /  d.. d.. lJ max d, c d, I T, 

0 

( *  1 
d, > T,  



T 
where dt: = ( x j  ~ r ' ( x ,  -pi) and T, is a user-defined chi-square threshold with a 

given probability a. The iterative equations for the mean and covariance estimates can 

then be expressed as: 

In future reference, the proposed robust version of the EM algorithm is designated as 

REEL Also, the tuning constant k , ( p )  is not used in the following experiments. 

2.4 Experimental Results 

The following experiments are performed using a portion of an AVIRIS image 

taken over NW Indiana's Indian Pine test site in June 1992. The scene contains four 

infolrmation classes: corn-notill, soybean-notill, soybean-min and grass. By visual 

inspection of the image, the list of these ground cover types is assumed to be exhaustive. 

A total of 20 channels from the water absorption and noisy bands (104-108, 150-163, 

220) are removed from the original 220 spectral channels, leaving 200 spectral features 

for the experiments. The test image and the ground truth map are shown in Figure 2.4. 

The number of labeled samples in each class is shown in Table 2.2. 
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Figure 2.4 Portion of AVIRIS Data and Ground Truth (Original in Color) 

Table 2.2 
Class Description for AVIRIS Data in Figure 2.4 

Class Names No. of Labeled Samples 
Corn-notill 910 

Soybean-notill 638 
Soybean-min 142 1 

Grass 618 

The first experiment is intended to compare the expectation maximization (EM) and 

the proposed robust algorithm (REM) when no outliers are present in the data. The 

experiment is first conducted using simulation data. The data is obtained using the 

statj;stics computed from all the labeled samples of the four classes. A total of 2000 test 

samples per class is generated, 500 of which are used as the training samples. Since the 

training samples are selected at random, the experiment is repeated 5 tinnes and the mean 

and standard deviation of the classification accuracy are recorded. The numbers of 

spectral channels are set at 10, 20, 50, 67, 100 and 200. These channels are chosen by 

sarrlpling the spectral range at fixed intervals. The algorithms are repeated for 10 

iterations and the classification is performed using the Gaussian maximum likelihood 

classifier. The maximum likelihood (ML) method using only the training samples to 

esti:mate the parameters is denoted as ML in the following experiments. The results are 

shown in Table 2.3 and Figure 2.5. The standard deviation is shown in. parenthesis next 

to the mean accuracy. 



Table 2.3 
Classification Results for Experiment 2.1 

with 500 Training Samples and 1000 Test Samples 
Dimension ML (%) EM(%) REM(%) 

10 91.75 (.3 1) 91.25 (.08) 91.50 (.08) 
20 96.29 (.31) 96.37 (.02) 96.37 (.02) 
50 97.80 (.30) 98.54 (.002) 98.54 (.002) 
67 98.61 (.20) 99.12 (.002) 99.12 (.002) 
100 99.04 (.12) 99.66 (.001) 99.65 (.001) 
200 99.93 (. 12) 99.98 (.001) 99.98 (.001) 

Number of Dimensions 

Figure 2.5 Mean Accuracy for Experiment 2.2 
with 500 Training Samples and 1500 Test Samples 

The results show that when no outliers are present in the data, the EM and REM 

algorithms have similar performance and both result in a better performance than the 

maximum likelihood classifier using the training samples alone. Since there are many 

design samples available, the best performance is obtained at 200 features. 



In this experiment, the simulation data from the Experiment 2.1 is used with the 

exception that only 250 training samples are selected for each class. Tlle number of test 

samples is kept at 1500. Again, no outliers are present in the data. The 1:esults are shown 

in Table 2.4 and Figure 2.6. 

Table 2.4 
Classification Results for Experiment 2.2 

with 250 Training Samples and 1500 Test Samples 
Dimension ML (%) EM(%) REM(%) 

10 91.34(.30) 91.74(0.12) 91.74(0.11) 
20 95.97 (.21) 96.92 (0.1 1) 96.92 (0.10) 
50 96.19 (.31) 98.60 (0.09) 98.60 (0.09) 
67 96.74 (.31) 99.08 (0.08) 99.08 (0.08) 
100 96.48 (.28) 99.68 (0.04) 99.68 (0.03) 
200 92.56 (.62) 99.86 (0.04) 99.90 (0.03) 

9 0 
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Figure 2.6 Mean Accuracy for Experiment 2.2 
with 250 Training Samples and 1500 Test Samples 



Since fewer training samples are used, the performance of the max.imum likelihood 

classifier (ML) using the training samples alone deteriorates. The decline is particularly 

obv:ious at higher dimensionality. Compared to the previous experiment, the accuracy 

has dropped 7% at 200 features. However, when unlabeled samples are used for the 

mixture model, the performance remains stable even when the nurnber of training 

samples declines. The results again show that when no outliers are present in the data, 

the EM and REM algorithms have comparable performance and both achieve better 

classification accuracy than the NIL classifier without using additional un~labeled samples. 

The previous experiment is repeated with only 400 test samples generated for each 

class. The number of training samples per class is 250. Again, no outliers are present in 

the data. The results are shown in Table 2.5 and Figure 2.7. 

Table 2.5 
Classification Results for Experiment 2.3 

with 250 Training Samples and 400 Test Samples 
Dimension ML (%) EM(%) REM(%) 

10 91.06 (.74) 91.41 (.18) 91.46 (.24) 
20 95.94 (.28) 96.40 (.28) 96.40 (.28) 
50 96.39 (.3 1) 97.61 (.26) 97.61 (.23) 
67 96.14 (.76) 97.88 (.3 1) 97.90 (.33) 
100 96.44 (.41) 97.56 (.52) 97.66 (.SO) 
200 92.16 (1.13) 92.31 (1.12) 94.10 (1.12) 



Number of Dimensions 

Figure 2.7 Mean Accuracy for Experiment 2.3 
with 250 Training Samples and 400 Test Samples 

Compared to the results from two previous experiments in wlnich many more 

unlabeled samples were used, the classification results for all three methods deteriorate in 

this experiment. This deterioration is manifested as the Hughes phenom'enon. Hence, the 

likelihood parameter estimation for the mixture model is shown to be affected by the 

number of unlabeled samples relative to dimensionality. Specifically, il: implies that 650 

sam.ples are still inadequate to characterize 200-dimensional Gaussian distribution. The 

resc~lts again indicate that without outliers, the EM and REM algorithms have comparable 

performance and both have better classification accuracy than the ML classifier without 

using additional unlabeled samples. 



This experiment is conducted using the real samples from the data. Again, since all 

four classes are represented by the training samples, the classes are assumed to be 

exhiiustive. As indicated in Table 2.2, the number of labeled samples is small. To retain 

enough test samples, only about 200 training samples are chosen for each class. The 

nu~rtber of training samples are shown in Table 2.6. Due to the limited labeled sample 

size, to obtain reasonably good initial estimates for comparing the EM and REM 

algsrithms, the number of spectral channels are selected at 10, 20,50,67' and 100. These 

spectral features are again chosen by sampling the spectral channels at fixed intervals. 

Table 2.6 and Figure 2.8 show the classification results at the selected dimensions. 

Table 2.6 
Training Set Size for Experiment 2.4 
Class Names No. of Training Samples 
Corn-notill 22 1 
Soybean-notill 22 1 
Soybean-min 225 
Grass 224 
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Figure 2.8 Accuracy for Experiment 2.4 using AVIRIS Data 

The results show that the REM algorithm performs better than Ithe ML and EM 

metlnods. This demonstrates that although it is assumed that the scene contains no 

outliers, there are some outlying pixels which were not identified. This further justifies 

the motivation of using a robust parameter estimation method for the mixture model. The 

results also show that all methods exhibit Hughes phenomenon. As discussed previously, 

the decline in performance at high dimensionality is caused by the limited number of 

unlabeled samples available in the image. 

In order to investigate the effect of outliers on the algorithms, the following 

expc:riment is conducted with the class Grass removed from the set of information 

classes. Therefore, the pixels other than the labeled samples from the three information 

classes are considered as outliers. The samples used for updating the statistics then 



include the labeled samples and some outliers. The amount of outlliers is varied to 

simulate different degrees of contamination. The numbers of outliers are chosen to be 

200, 600 and 2000. Since the outliers are chosen randomly from the pool of unlabeled 

samples, the experiment is repeated 5 times. The mean and standard deviation of the 

classification accuracy are recorded. The results are presented in Table 2.7. The 

standard deviation is written in parenthesis next to the mean accuracy. In Figure 2.9 and 

2.10, the mean accuracy is plotted against different number of outliers present in the data 

for 50 and 100 dimensions, respectively. 

Table 2.7 
Classification Results for Experiment 2.5 with Outliers 

No. of Outliers Dimension = 50 Dimension = 100 
ML EM REM ML EM REM 

0 84.71 (0) 89.20 (0) 88.42 (0) 82.61 (0) 85.34 (10) 84.71 (0) 
200 84.71 (0) 90.62 (.20) 90.29 (.11) 82.61 (0) 87.34 (.:29) 86.56 (.36) 
600 84.71 (0) 88.59 (.44) 88.69 (.58) 82.61 (0) 87.21 (~54) 87.08 (.45) 

2000 84.71 (0) 62.57 (2.27) 76.34 (1.64) 82.61 (0) 83.33 (.'73) 86.97 (.64) 

Dimension = 5C 

0 200 600 2000 

Number of Outliers 

Figure 2.9 Mean Accuracy for Experiment 2.5 for 50 Dimen~sions 



Dimension = 10C 

Number of Outliers 

Figure 2.10 Mean Accuracy for Experiment 2.5 for 100 Dime:nsions 

The results show that the REM algorithm reduces the effect of outliers 

contaminating the data as compared to the EM algorithm. The improvelnent is especially 

marked at higher dimensions. This may be attributed to the fact that at higher 

dimensionality, the weight assigned to each outlier is much more reduced since the 

weight is a function of dimensionality. Therefore, the effectiveness of the REM 

algorithm becomes more obvious. 



This experiment is conducted using a portion of the Flightline C1 (FLC1) data set, 

which is a 12 band multispectral image taken over Tippecanoe County, Indiana by the 

M7 scanner in June, 1966. The scene contains six information classes: Corn, Oats, Red 

Clover, Soybeans, Wheat and Rye. By visual inspection of the image, the list of these 

ground cover types is assumed to be exhaustive. The image and the ground truth map are 

shown in Figure 2.1 1. The training fields are marked in the ground truth map. The 

number of labeled samples and training samples in each class is shown in Table 2.8. 
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Figure 2.1 1 Portion of Flightline C1 Image and Ground Truth Map (Original in Color) 



Table 2.8 
Class Description for Flightline C1 Image in Figure 2.111 

Class Names No. of Labeled Samples No. of Training Sa~mples 
Corn 1764 128 
Oats 1516 78 

Red Clover 3548 280 
Soybeans 6758 338 

Wheat 6846 588 

Rye 2385 408 

To create outliers in the data on purpose, the class Rye is excluded from the training 

class set and its samples are treated as outliers. Therefore, the classifica,tion is performed 

based on the 5 remaining classes only. The parameters are estimated using the training 

samples alone, the EM algorithm with various threshold settings, and the: REM algorithm. 

For the EM algorithm, two chi-square threshold values (1% and 5%) are applied for 

conlparison. The classification results are shown in Figure 2.12. 

Figure 2.12 Classification Results for Portion of Flightline C1 Image with Outliers 

As shown in Figure 2.12, when there are statistical outliers in the data, the 

performance of the EM algorithm declines drastically. However, by rejecting outliers 

using chi-square thresholds, the EM algorithm shows significant improvement. The 

result also indicates that REM and EM with thresholding have compariible performance 

and are better than the ML method with training samples alone. 



The above experiment is repeated with the entire Flightline C1 image. The image 

and the ground truth map are shown in Figure 2.13. The training fields are marked in the 

groimd truth map. The number of labeled samples and training samples in each class is 

shown in Table 2.9. The classification results are plotted in Figure 2.14. 
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Figure 2.13 Flightline C 1 Image and Gound Truth Map (Original in Color) 



Table 2.9 
Class Description for Flightline C1 Image in Figure 2.13 

Class Names No. of Labeled Samples No. of Training Ss~mples 
Alfalfa 3375 156 

Bare Soil 1230 90 
Corn 10625 33 1 
Oats 578 1 306 

Red Clover 12147 614 

Rye 23 85 408 
Soybeans 25133 63 1 

Wheat 7827 340 
Wheat-2 209 1 120 

Unknown-1 4034 322 

Figure 2.14 Classification Results for Flightline C 1 Image 

The entire Flightline C1 image contains classes with few pixels such as rural roads, 

fannstead and water which are not included in the training set. There may be other 

unknown classes which are not identified in the ground truth information. Therefore, it is 

highly likely that statistical outliers are present in the image. This is confirmed by 

experimental results. The performance of the EM algorithm is significantly lower than 

those of ML, REM and EM with thresholding. Again, the experiment demonstrates that 

RElM has similar performance as EM with thresholding, but without the need of setting a 

thre shold. 



2.5 Summary 

In this chapter, a robust method for parameter estimation under the mixture model 

(REIM) is proposed and implemented for classifying multispectral daita. This work is 

motivated by the fact that a multispectral image usually contains pixels of unknown 

clas,ses which can be time-consuming to identify. These pixels of unknown origin may 

have density distributions quite different from the training classes and constitute 

statistical outliers. Without a list of exhaustive classes for the mixture model, the 

expectation maximization (EM) algorithm can converge to erroneous solutions due to the 

presence of statistical outliers. This problem necessitates a robust version of the EM 

algorithm which includes a measure of typicality for each sample. 

The experimental results have shown that the proposed robust method performs 

better than the parameter estimation methods using the training samples alone (ML) and 

the EM algorithm in the presence of outliers. When no outliers are present, the EM and 

REIa have similar performance and both are better than the ML approach. Specifically, 

when there are many unlabeled samples available, the EM and REhI algorithms can 

mitigate the Hughes phenomenon since they utilize unlabeled samples in addition to the 

training samples. When the number of unlabeled samples are limited, both EM and REM 

methods exhibit the Hughes phenomenon, but still achieve better classification accuracy 

than the ML approach at lower dimensionality. Despite the promising results, the 

prol~osed REM algorithm has several limitations. Since the weight function in the REM 

algorithm is based on class statistics, the initial parameter estimates are important in 

determining the convergence. In particular, a good covariance estimate requires 

sufficient number of training samples. When the number of training salmples is close to 

or less than dimensionality, the covariance estimate becomes singular and the EM or 

REIa algorithm cannot be applied. This issue is addressed in the next chapter where a 

covariance estimation method for limited training samples is proposed. 



CHAPTER 3: COVARIANCE ESTIMATION FOR LIMITED 

TRAINING SAMPLES 

3.1 Introduction 

In Gaussian maximum likelihood classification, the mean vector and covariance 

matrix are usually estimated from the training samples. When the training sample size is 

sma.11 compared to the dimensionality, the sample estimates, especially the covariance 

estimate become highly variable and consequently, the classifier performs poorly. In 

particular, if the number of training samples is less than the dimensionality, the 

covariance estimate becomes singular and hence quadratic classifiers cannot be applied. 

Unfortunately, the problem of limited training samples is prevalent in remote sensing 

app.lications. While the recent progress in sensor technology has increased the number of 

spectral features, making possible for more classes to be identified, the training data 

remain expensive and difficult to acquire. In this chapter, the problem of small training 

set size on the classification performance is addressed by introduc:ing a covariance 

estimation method for limited training samples. The proposed approach can be viewed as 

an intermediate method between linear and quadratic classifiers by selecting an 

app.ropriate mixture of covariance matrices of various forms using the training samples. 

The covariance estimator is derived under an empirical Bayesian setting which is 

adv,antageous when the training sample size reflects the prior of each class. The effect of 

covariance estimation on discriminant analysis feature extraction tiechnique is also 

investigated. Extensive experiments are performed using simulation data and 

hyperspectral images. The experimental results show that the proposed covariance 

estiinator improves classification performance when the training samples; are limited. 



3.2 Preliminaries 

3.2.1 Introduction 

The purpose of classification is to assign unlabeled samples to one of several groups 

or classes. In the conventional Gaussian maximum likelihood (MIL) classifier, the 

cla~~sification rule can expressed in the form of a discriminant function and a sample is 

assigned to the class with the largest value. A multivariate Gaussian distribution is given 

as 

where pi and Ei are the ith class mean vector and covariance matrix, respectively, and 

L is the number of classes and x E 9IP. Assuming a [O,:I.] loss function, the maximum 

likelihood classification rule then becomes 

d; ( x )  = min di ( x )  
1Si5L 

where di is the discriminant function given by 

This classification rule is also called a quadratic classifier. A special case occurs 

when all of the class covariance matrices are identical and it becomes a linear classifier: 

In practical situations, the true class distributions are rarely knowin. Therefore, the 

sample estimates are computed from training samples and are used as the maximum 

likelihood estimates of the parameters: 

1 Ni 
A~~ xi = si =- (xi, j - m i ) ( ~ i ,  j - mi 

Ni - 1 j=1 

where Ni is the total number of training samples from class i and xi,, is the training 

sample j from class i. 



The performance of Eq. (3.1) can be seriously degraded when the number of 

dimensions is large compared to the training set size due to the instabillity of the sample 

estimates. In particular, the sample covariance estimate Si becomes hig:hly variable. The 

invcxse of Si is especially problematic, as can be seen by the fact that Si is not invertible 

for p 2  Ni -1. 

One way to deal with the instability of Si is to employ the linear classifier which is 

obtiiined by replacing each Si with their average: 

- W 
N - L  

where N is the total number of training samples from all classes. Since Sw is a weighted 

average of Si, the number of parameters becomes smaller, and the variances of the 

elements of Sw are smaller than the variances of the corresponding elerrlents of Si. Even 

if each Xi differs substantially, the decrease in variance accomplisl~ed by using Sw 

usu8ally leads to better performance for limited training samples. This has been verified 

by several studies 1191, [20], [2.1.]. 

In view of these results, several methods have been proposed vvhere the sample 

covariance estimate is replaced by partially pooled covariance matrices of various forms. 

In this formulation, some degree of regularization is applied to reduce the number of 

pariuneters to be estimated and thereby to improve classification performance in small 

training set size. 

3.2.2 Regularization for covariance estimation 

Although a linear classifier often performs better than a quadratic classifier for 

small training set size, the choice between linear and quadratic classifiers is quite 

restrictive. There are less limiting alternatives by applying varying degrees of 

regillarization depending on the training samples. Thus, regularization techniques can 

also be viewed as choosing an intermediate classifier between the linear and quadratic 

classifiers. 

Regularization techniques have shown much success in solving ill- and poorly- 

posmed inverse problems [22]. Briefly stated, a problem is poorly posed if the number of 

parameters to be estimated is comparable to the training data size ant1 ill-posed if that 



number exceeds the training sample size. As a result of limited training set size, the 

parameter estimates become highly variable. Regularization methods attempt to reduce 

the variance of these estimates by biasing them toward values that a.re deemed more 

"physically plausible" [23]. Therefore, the variance is reduced at the expense of 

pott:ntially increased bias. The extent of this bias-variance trade-off is controlled by one 

or more regularization parameters . 

In general, regularization procedures can be divided into two task:s: 1) the choice 

of covariance mixture models, and 2) model selection. 

To perform regularization, one must first decide upon a set of appropriate 

covariance mixture models that represent a "plausible" set of covariance estimates. 

Normally, a covariance mixture of the following form is assumed: 

The regularization or mixing parameter wi then controls the biasing of individual class 

cov.ariance sample estimate Si to a pooled covariance matrix S,. However, this partially 

pooled covariance estimate may not provide enough regularization even for a linear 

classifier. In the case when the total number of training samples N is comparable to or is 

less than the dimension p, even the linear classifier becomes ill- or poorly-posed. 

Therefore, an alternative covariance mixture is provided by biasing the sample 

cov;uiance estimate towards some non-singular diagonal matrix A : 

For given value(s) of the mixing parameter(s), the amount of bias will depend on 

hour closely the estimates actually represent those true parameters X i .  Therefore, the 

goal of model selection is to select appropriate values for the mixing parameters which 

can be estimated from minimizing a loss function based on the training s,amples. 

A popular minimization criterion is based on cross-validated estimation of 

cla~~sification error. In the leave-one-out cross-validation error procedure, the 

classification rule is obtained from Ni - 1 training samples excluding xi,,, the sample k 

frorn class i, and then used to classify xi,, . This criterion has the benefit of being directly 

related to classification accuracy even though it is computationally intensive. However, 

the process of estimating each class covariance matrix involves the covariance estimates 



of all classes, which implies that the same mixing parameter has to be used for all classes. 

However, the same choice of mixing parameter might not be optimal for all classes. 

Furthermore, the same classification error rate might occur along a wide range of 

parameter values and hence the optimal value of mixing parameter is non-unique. 

Therefore, a tie-breaking technique is needed. 

Another maximization criterion which has been applied is the sum of the average 

leave-one-out likelihood value of each class. In this procedure, the 1ikel:ihood of each xi,, 

is obtained using the parameters estimated from Ni - 1 training samples exclusive of xi,, . 

This criterion requires less computation than the leave-one-out classification error 

procedure. It also has the advantage that each class covariance matrix can be estimated 

independently of the others. Therefore, the mixing parameter can be different for each 

class. Moreover, not all classes need to be subjected to regularization, especially those 

wit11 sufficient training samples. However, a major drawback of this criterion is the lack 

of direct relationship with classification accuracy. 

3.2.3 Previous work 

This section gives an overview of some regularization methods for covariance 

esti:mation based on limited training samples. 

REGULARIZED DISCRIMINANT ANALYSIS (RDA) 

Friedman[23] has proposed a procedure called "regularized discr~iminant analysis" 

(RLIA) which is a two-dimensional optimization over covariance mixtures as shown in 

the following: 

and S,,, is given by Eq.(3.2). 



The regularization parameters are given by the pair (A, y), which are obtained by 

minimizing the leave-one-out cross-validation errors. As mentioned before, the bias 

toward a diagonal matrix helps stabilize the covariance estimate even when the linear 

classifier is ill- or poorly-posed. Furthermore, choosing the diagonal form to be the 

ave.rage eigenvalue times the identity matrix has the effect of decreasing the larger 

eigc:nvalues and increasing the smaller ones, thereby counteracting thr: bias inherent in 

sample-based estimation of eigenvalues. This diagonal form is also ad.vantageous when 

the true covariance matrices are some multiples of the identity matrix. 

As mentioned before, although using cross-validation errors to select the mixing 

parameters has the benefit of being directly related to classification accuracy, it has some 

disadvantages as well. First of all, it is computationally intensive. In addition, the 

optimal values of (A,  y) are often not unique since the same error rates can take place 

over a wide range of parameter values [24]. Therefore, a tie-breaking method needs to be 

applied. As a demonstration, an experiment was conducted on two-class simulation data. 

The number of training samples per class is 30 for two-dimensional Gaussian data. The 

following table indicates the cross-validation errors obtained for the parameter grid: 

Table 3.1 
Cross-validation Errors for RDA 

a 

As shown in the table, the optimal value of the mixing parameters occurs when 

three training samples are misclassified, which occurs at A=0.5, 0.75 and 1. Therefore, 

the optimal value is non-unique. No studies have indicated the best method for tie- 

breiking. As another consequence of using cross-validation errors, the same parameter 

pair. has to be used for all classes since the classification procedure requi.res all covariance 

esti-mates simultaneously. The same value of (A, y) may not be optimal for all classes. 



LEAVE-ONE-OUT COVARIANCE (LOOC) ESTIMATOR 

In [25][43], the covariance matrix is determined from the following pair-wise 

mixtures: diagonal sample covariance-sample covariance, sample covariance-common 

covariance, and common covariance-diagonal common covariance matrices. Thus, the 

estimator has the following form: 

(1 - ai)diag(%) + aiSi O I a i I l  

(2  - a , ) ~ ,  + (a, - 1)s l ca i12  

(3  - a , ) ~  + (a, - 2)diag(S) 2 c a, 2 3 

The variable ai is the mixing parameter that determines which estimate or mixture 

of estimates is selected so that the best fit to the training samples is achieved by 

maximizing the average leave-one-out log likelihood of each class: 

where sample k from class i is removed. Once the appropriate value of ai has been 

estimated, the estimated covariance matrix is computed with all the training samples and 

is used in the Gaussian ML classifier. 

Since the leave-one-out class likelihood is used as the optimization criterion, each 

class covariance estimate can be computed independently and each has a different mixing 

parameter. One benefit of deriving the class covariance matrix separately is that the 

conlputation for classes with enough training samples can be skipped and consequently 

the computational load is reduced. In addition, if some classes have many more training 

sam.ples than others, the classes may be allowed to have different mixing parameters. 

Usiing an approximation on the diagonal matrices, LOOC also requires less computation 

than RDA. However, without the approximation, LOOC is more computationally 

expensive than RDA. Also, the average leave-one-out likelihood has no direct 

relationship to classification accuracy. 



OTHER COVARIANCE ESTIMATION METHODS 

Some earlier works on covariance estimation methods involve the estimation of a 

single covariance matrix based on some loss functions. It was shown that Stein-like 

biased estimators which shrink the eigenvalues of the sample covariance matrix are 

favored over the sample covariance matrix under a variety of natural loss functions [26]. 

Als'o, when the class covariance matrices are equal, the pooled covaria~lce matrix can be 

replaced by ridge-like estimates [27]. This reduces the ratio of the largest and smallest 

eigc:nvalues of the pooled estimate and thus has an effect similar to shrinking the 

eigenvalues of the pooled estimate towards equality. 

An empirical Bayesian method [24] was suggested in which the I:i are modeled as 

outc:omes of a common inverted Wishart prior distribution. The form of covariance 

mixtures is similar to Eq (3.3) and (3.4) as in RDA except for the pooled covariance 

estimate which is formulated under the Bayesian context. The optimal values for (A, y )  

are selected by maximizing the sum of average leave-one-out class likelihood. As 

mentioned before, this criterion has the merits of fewer computations than cross- 

validation errors and of avoiding the need for tie-breaking. However, the criterion is not 

dire:ctly linked to classification accuracy. Also, this method requires two-way 

optimization for the parameter pair (A, y).  Therefore, it requires more computation than 

LOCK. 

3.3 A New Method For Covariance Estimation 

3.3.1 Derivation of the proposed estimator 

A new covariance estimation method is developed in this section. The proposed 

estimator is essentially an extension of previous works in RDA, LOOC and the empirical 

Bajresian approach[24]. 



Case I: N 2 ( p + l )  

The: first form of covariance mixtures is derived by assuming that the total number of 

training samples is greater than dimensionality. In this case, the connrnon covariance 

matrix is non-singular. Following Anderson [28], the assumption of no~mally distributed 

samples implies that the sample covariance matrices Si are mutually independent with 

where f i  = Ni - 1 and W denotes the central Wishart distribution with f i  degrees of 

free:dom and parameter matrix Xi. Then the family of inverted Wis:hart distributions 

provides a convenient family of prior distributions for the Xi. 

Assume that each Xi has an inverted Wishart prior distribution so that the Xi are 

muiually independent with 

where W-' is an inverted Wishart distribution with parameters Y and t .  Then the prior 

mean Y represents the central location of the prior distribution of the Xi, and t controls 

the concentration of the Xi around Y. 

Under squared error loss, the Bayes estimator of Xi is given by [24] 

t - p - 1  
By letting wi = , and Y be a pooled covariance estimate S,, , the Xi can then 

f ; + t - p - 1  

be replaced by partially pooled estimates of the form : 



Thi ;~  is the form similar to the sample covariance-common covariance mixtures in RDA 

and LOOC. The value of t  can then be expressed in terms of wi: 

The sample covariance-common covariance mixture in LOOC is obtaine:d by defining the 

pooled covariance matrix to be the unweighted common covariance, that is, Sp = S  . In 

the proposed method, Sp is defined by the generalized least squared estimator of Y, 

designated as Si ( t )  , for a given t :  

Therefore, by letting Sp = Si which is the weighted common covariance matrix, another 

fonn of covariance mixture is obtained. Observe that when the nuimber of training 

samples in each class is equal, that is, f, = f, = - m e =  f,, S i ( t )  is equivalent to S .  

When the total number of training samples is close to or less than the number of 

features, even the pooled covariance matrix becomes unstable. In this case, biasing the 

sam.ple and common covariance estimates towards some form of diagonal matrix can 

avoid the problem of singularity. In LOOC, the sample and coInmon covariance 

estimates are biased towards their own diagonal elements. This mixture: is advantageous 

when the class covariance matrix is highly ellipsoidal. However, the set of covariance 

mixtures should represent a wide variety of covariance matrices includ.ing the spherical 

structure. This can be achieved using the ridge estimator. The ridge estimator has the 

fonn of the sample covariance plus a constant times the identity matrix. With a proper 

choice of the constant value, it has the benefit of compensating for the upward bias of 

large eigenvalues and downward bias of small eigenvalues. In addition, this covariance 

mixture is apparently advantageous when the class covariance is some multiple of the 

identity. 

Hence, when the ridge estimator is adopted, the proposed estimator of the following 

fonn: 



Observe from Eq. (3.5) that when a, = 2,  t + m. Therefore, the unweighted common 

covariance is adopted for ai = 2. In the following sections, this estimator is designated 

as blLOOCl (Bayesian Leave-One-Out Covariance estimation). 

When the mixture of covariance-diagonal covariance matrices is used, the proposed 

esti:mator is defined as the following instead: 

(1 - ai)diag(si) + aiS, O I a , c l  

(2 - a,)~;  + (a, - 1)~;(t) 1 1 a , c 2  

(3 - a , ) ~  + (a, - 2)diag(s) 2 1 a i 1 3  

This estimator is denoted as bLOOC2 in future reference. In the experiments, the 

relative merits of these two estimators are demonstrated and discussed. 

3.3.2 Model selection 

For the proposed estimators, the leave-one-out average likelihood is used as the 

critlxion to select the appropriate mixture model. This criterion is equivalent to 

minimizing the Kullback-Leibler distance measure [29] defined as the following: 

where f i  is the true density function of the ith class and j y  is the normal density with 

sample mean estimates mi and covariance matrix estimate 2, (a,). 

Let xi,, denote the k th training sample from class i. The average leave-one-out log 

likelihood for class i is then given as: 



Then following [24] and [29], 

= - E{KL~ (a,)} + C .  

Therefore, maximizing the cross-validated likelihood is equivalent to minimizing the 

Kullback-Leibler distance of the true and estimated densities. The mixing parameter is 

therr selected so that the average leave-one-out likelihood is maximized. 

3.3.3 Computational considerations 

The direct implementation of the leave-one-out likelihood function for each class 

wit11 Ni training samples would require the computation of Ni matrix inverses and 

determinants at each value of a,. Fortunately, a more efficient impleimentation can be 

ach:ieved by using the rank-one down-date of the covariance matrix. This section gives 

the efficient implementation of the proposed estimator bLOOC1.. The efficient 

implementation of bLOOC2 can be derived from bLOOC1 and LOOC [;!5]. 

Efficient Implementation of the estimator for 0 I a, < 1: 

When the sample k is removed from class i, the sample covariance estimate can be 

written as follows [30]: 



1 Ni 

Si\k = - ( ~ i .  j - mi\k)(xi, j - mi\k)T 
Ni - 2 j=, 

j*k 

Ni - 1 
where r = xi, - mi. 

N; - 2  Ni - 1 )  

The proposed estimator for 0 I ai c 1 then becomes 

.('i\k) ii\k (ai)  = ( I  - ail- I + aiSi,, 
P 

- - Ni 
P (Ni -1 ) (Ni -2 )  

Ni - 1 Ni 

Ni - 2 si - (Ni - 1)(Ni - 2 )  

N; - 1 Ni - 1 .PIi 
= ai - Si + ( 1  - a,) t r (s i ) l  - ( I  - ai) Ilrl12 I- . . 

Ni - 2  P ( N ~  - 2 )  P ( N ~  - ')(Ni - 2 )  

. • .-ai Ni rr 
(Ni  - 1)(Ni - 2)  

= St+ - a1 - k,rrT 

N. - 1 
whe:re S,:' = ai -Si 

Ni - 2 

Ni - 1 
a =  11.11' - - 

Ni - 2 
tr(si ) I 



Denote the eigenvalues of S1+ and their corresponding eigenvectors as el+ and v:, 

respectively. Then the following matrix inverse is obtained: 

Therefore, k i k ( a i )  can be computed efficiently using the Sherman-Morrison- 

Woodbury formula [3 11: 

kiU (a,)' = (s,? - aI - 4rrT)-'  

= ( A  - UT)- '  where A  = S1.+ - aI and = &r 

Using the matrix inverse obtained above, the squared generalized distance can then 

be expressed as: 

Ni where xiSk - mi\k = -. 
N; - 1 

- - -  ( Ni ) 2 [ d ( l - 4 d ) + k l d 2  I where d  = rTA-'r 
N; -1 1 - k,d 



The: determinant also has a convenient form: 

lki\,(ai)l = I A  - rrTI 

Therefore, the log likelihood of class i without sample k can be computed as [30]: 

1 1 
ln[f (x,,,lrni,,, ti\, (a,))] = -fln(21r) - - ln(1AI) - - ln(1- k ,d) - - .  

2 2 2 

The above computation can be further simplified by assuming the trace of the 

sample covariance changes little when a single sample is removed, that is, 

( t r ( ~ , ) / ~ ) I =  ( t r ( ~ , ) / ~ ) I .  Experiments will confirm the validity of this approximation. 

In tlnis case, the mixture can be re-expressed as: 



Finiilly, the log likelihood function is obtained as: 

1 1 
h [ f  (~ ; , , lm , \~ ,  iiU (a,))] = - z l n ( 2 s )  - - l n ( l ~ , l )  - -ln(l - k2d2)- . .  

2  2  2  

Efficient Implementation of the estimator for 1 I a, c 2  : 

Consider the sample k  is removed from class i .  The sample covariance-common 

cov,ariance mixture is then given by the following: 

f ;  - 1  t - p - 1  - - ( f i  - l )+ t -p - lS i \k+( f i - l )+ t -p - l  s i \ k  (4  

The weighted common covariance estimate without sample k  from class i can then be 

derived as: 

f i  + f ;  - 1  J ... 
f , + t - p - 1  ( f , - l ) + t - p - l  

j t i  



e,.(ai) can then be expressed in terms of S i ,  Si and r as follows: 

iiik (ai) = k,Si ( t )  + k2Si - k3rrT . 

where the constants are defined in the following: 

k, = (ai - I)(c, - C, + ( 2  - a,))-' C, 

N. - 1 N. - 1 
k = ( 2  - a )  + ( C  - C, + ( 2  - a i ) )  (ai - 1) ( 2  - ai)L - (;] and 

Ni - 2  Ni - 2 

and 

( 2  - a,) = f i  -1 
( f , - l ) + t - p - 1  

The mixture can then be re-written as the following using previous deriviations: 

ei\, (a,) = 4s; ( t )  + k2Si - k3rrT 

T 
= A3 - 2323 

where A, = 4s; ( t )  + k2Si 

z=&r 

d3 = r T ~ q l r .  



Then, the log likelihood function is given as: 

Effiicient Implementation of the estimator for 2 I a, I 3 : 

For 2 I a, I 3, the unweighted common covariance S is used: The common 

covariance estimate without sample k from class i can be written as follows: 

The proposed estimator for 2 I ai I 3 can then be written as: 



(a, - 2 )  N, 
b =  11r1r - (" - 2 ,  t r ( s )  - (ai - 2 )  

PL(N, - I ) ( N ,  - 2 )  P P L ( N ~  - 2 )  tr('i ) 

# 
Denote the eigenvalues of S,# and their corresponding eigenvectors as e, and v#, 

respectively. Then the following matrix inverse is obtained: 

Therefore, e,, (ai)-' can be computed efficiently following previous derivation: 

f ,(ai)-' = (st!' - bl - k4rrT 

= (A, - z4z: )-I 

where A4 = St# - bl 

z = G r  

T - 1  d4 = r A4 r .  

The log likelihood function is then given as: 

1 1 
ln[ (x,,, )mi,,, ei,, (a,))] = -Pln(2 n) - - l n ( l ~ ,  1 )  - - ln(1- k4d4). . 

2 2 2 



The above computation can be further simplified by assuming the trace of the 

conlrnon covariance estimate changes little when a single sample is removed, that is, 

(tr(s\,)lp)l = ( t r (s ) lp)1 .  In this case, the mixture can be derived as: 

where A, = (3 - a , ) ~  + (3 -a i )  si + ( a i  - 2 )-  tr(s)  I 
L(N, - 2) P 

Finally, the log likelihood function is obtained as: 

For notational purposes, in the following sections and experiments, the estimator 

with approximation on the diagonal term is designated as bLOOCl (Bayesian Leave- 

Om:-Out Covariance estimation), whereas the implementation without approximation is 

denoted as bLOOC1 -Exact. 



3.4 Use of Covariance Estimation with Feature Extraction 

When the number of training samples is few, the use of covariance estimation can 

help increase the stability of the covariance estimate and hence improve classification 

performance. Another usual way to deal with small training set size is to reduce the 

number of features using feature extraction algorithms. The goal of feature extraction is 

to project the original data to its subspace of lower dimensionality where the class 

sepiirability is preserved as much as possible. There are two feature extraction algorithms 

conlrnonly used for remote sensing data, namely, Decision Boundary Feature Extraction 

(DEIFE) [32] and Discriminant Analysis Feature Extraction (DAFE) [30]. The effects of 

covariance estimation on these two feature extraction algorithms are discussed in this 

section. 

The procedure of DBFE involves finding the effective decision boundary between 

classes. For normally distributed classes, the description of decision boundary requires 

both the first and second order statistics. Therefore, a good covariance estimate is vital to 

the performance of DBFE. For a two-class case, the first step in DBFE uses the 

estimated mean vector and covariance matrix to find training samples which lie within 

the main body of the distribution using the chi-square threshold test. Then the nearest 

training samples from each of two classes are connected and a vector normal to the 

decision boundary is found at the point where the straight line connects the two training 

samples. It is desirable that the number of these unit normal vectors is proportional to the 

coniplexity of the decision boundary. For example, a linear boundary requires only one 

nonnal vector. Few training samples generates few normal vectors ancl usually result in 

inadequate description of the decision boundary. Hence, the effectiveness of DBFE 

depends not only on the covariance estimate, but also on the number of training samples. 

In other words, depending on the distribution, even though a reasoilable covariance 

estimate can be found with no less than three training samples using the leave-one-out 

likelihood procedure, much more than three training samples may be re:quired for DBFE 

to perform well. When these covariance estimates are extremely biased, a chi-square test 

ihay fail to find enough training samples for obtaining the effective de:cision boundary. 

Therefore, DBFE may not perform well when the number of training samples is limited, 

even with the covariance estimate stabilized. 

On the other hand, the criterion used in DAFE procedure is the maximization of the 

ratio of between-class scatter matrix to within-class scatter matrix. For IIDAFE to perform 



well, the mean difference cannot be zero and the common covariance has to be non- 

singular. These requirements can be met with considerably fewer trairdng samples than 

DB:FE. When the mean estimates are fixed, it is helpful to reduce the between class 

scatter matrix, which is given by the pooled covariance matrix. Therefore, the use of 

covariance estimation should help improve the estimation of the within-class scatter 

matrix based on available training samples. In addition, when the inverse of the common 

covariance estimate approaches singularity, the covariance estimation techniques can be 

used for stabilization. 

In summary, DBFE requires more training samples and computations than DAFE to 

periorm well for small training set size even though it works better when classes have 

similar mean values. Due to these reasons, only the DAFE is used along with covariance 

estiination for mitigating small sample size problem. 

3.5 Simulation Studies 

In this section, the experimental results from computer generated data are presented. 

Seven covariance estimates, namely, the identity matrix, sample covariance, common 

cov,ariance, and those obtained from RDA, LOOC, LOOC-Exact, bLC)OC 1, bLOOC 1 - 

Exact, bLOOC2, bLOOC2-Exact are compared. The mixing values are chosen to be 0, 

0.25, 0.5, 0.75, 2, 2.25, 2.5, 2.75, and 3. Using the identity matrix as the covariance 

estimates for all classes is equivalent to the Euclidean distance classifier. The sample 

c~v~xiance  and common covariance estimates lead to the quadratic and linear classifiers, 

respectively. The data distributions are generated from four different covariance 

structures as adapted from [23]. These simulated data represent the two extremes where 

one covariance matrix is spherical and the other is highly elliptical. The purpose of using 

thes,e different types of covariance matrices is to demonstrate that thc: performance of 

covariance estimation techniques are affected by the underlying (class covariance 

structure. 

Two sets of experiments are conducted by having different proportions of training 

sam.ples. In the first set, 10 training samples are randomly generated from each normally 

distributed class. The classification accuracy was estimated using 200 test samples. 

Each experiment is repeated 20 times from which the mean and variance of the 

classification accuracy are computed. The values of the mixing parameter are also 



recorded. Since only 10 training samples are used for dimensions ranging from p = 6 to 

p = 40, the training set size is small compared to dimensionality. 

In the second set of experiments, the number of samples differs for each class. The 

three classes are designed to have 100,400 and 2000 samples. Then, ten percent of the 

these samples are selected to be the training samples so that the number of training 

samples are 10, 40 and 200 for class one, class two and class three respectively. For 

p = 6 to p = 40, the training set size for the first and second classes is considered small. 

These experiments serve to represent the setting in which the number of training samples 

is unequal and is proportional to the size of test data. 

In the tables below, the standard deviation of each result is listed in parentheses 

next to the corresponding mean value. 

3.5.1 Equal spherical covariance matrices 

In this experiment, all three classes have the identity covariance matrix. The mean 

of the first class is the origin. The mean of the second class is taken to be 3.0 in the first 

variable and zeros in the others, and the mean of the third class is 3.0 in the second 

variable and zeros in the rest. The results are shown in Tables 3.2, 3.3 and Figures 3.1, 

3.2. 

1 Euclid 2 Sample Cov 3 Cotnrnon Cov 

4 LOOC 5 LOOC-Exact 6 bLOOC1 

7 bLOOC 1 -Exact 8 bLWC2 9 bLOOC2-Exact 

Figure 3.1 Mean Classification Accuracy for Equal Spherical Covariance Matrices 
(Equal Training Set Size) 



Table 3.2 
Classification Results for Equal Spherical Covariance Matrices 

(Equal Training Set Size) 
Accuracy (%) 

p=6 p=10 p=20 p=40 
Euclid 88.95 (4.29) 85.18 (4.79) 85.01 (4.94) 81.65 (6.24) 
Sample Cov 70.68 (17.1) NIA NIA NIA 
Common Cov 86.10 (5.78) 79.87 (6.54) 66.89 (1 1.25) NIA 
LOOC 85.08 (8.39) 80.59 (9.98) 76.34 (9.79) 70.89 (14.46) 
LOOC-Exact 86.90 (7.65) 84.27 (7.11) 83.70 (6.05) 80.34 (7.89) 
bLOOC 1 87.69 (6.83) 84.28 (5.40) 84.24 (5.83) 81.22 (6.80) 
bLOOC1-Exact 87.68 (6.91) 84.54 (4.82) 84.43 (5.47) 81.27 (6.78) 
bLOOC2 85.08 (8.39) 80.59 (9.98) 76.34 (9.79) 70.89 (14.46) 
bLOOC2-Exact 86.90 (7.65) 84.27 (7.1 1) 83.70 (6.05) 80.34 (7.89) 

Mixing Values 
LOOC class 1 0.01 (0.06) 0.03 (0.08) 0.00 (0.00) 0.00 (0.00) 

class2 0.00 (0.00) 0.00 (0.14) 0.00 (0.00) 0.01 (0.06) 
class3 0.08 (0.33) 0.03 (0.08) 0.01 (0.06) 0.00 (0.00) 

LO'OC-Exact class 1 2.53 (0.96) 2.64 (0.80) 2.98 (0.08) 2.99 (0.06) 
class2 2.66 (0.67) 2.93 (0.14) 2.96 (0.10) 3.00 (0.00) 
class3 2.89 (0.29) 2.80 (0.62) 2.93 (0.11) 3.00 (0.00) 

bLOOC 1 class 1 1.23 (1.40) 1.35 (1.44) 1.78 (1.49) 1.35 (1.53) 
class2 0.09 (1.41) 1.92 (1.40) 1.49 (1.53) 1.35 (1.51) 
class3 0.66 (1.28) 1.24 (1.45) 1.49 (1.48) 1.50 (1.54) 

bLOOC 1 -Exact class 1 1.96 (1.34) 1.93 (1.38) 2.08 (1.40) 2.53 (1.47) 
class2 2.40 (1.05) 1.75 (1.45) 2.36 (1.22) 1.50 (1.44) 
class3 2.46 (1.02) 2.24 (1.27) 1.64 (1.47) 1.66 (1.33) 

bLOOC2 class 1 0.01 (0.06) 0.03 (0.08) 0.00 (0.00) 0.00 (0.00) 
class2 0.00 (0.00) 0.00 (0.14) 0.00 (0.00) 0.01 (0.06) 
class3 0.08 (0.33) 0.03 (0.08) 0.01 (0.06) 0.00 (0.00) 

bLOOC2-Exact class 1 2.53 (0.96) 2.64 (0.80) 2.98 (0.08) 2.99 (0.06) 
class2 2.66 (0.67) 2.93 (0.14) 2.96 (0.10) 3.00 (0.00) 
class3 2.89 (0.29) 2.80 (0.62) 2.93 (0.1 1) 3.00 (0.00) 



Table 3.3 
Classification Results for Equal Spherical Covariance Matrices 

(Unequal Training Set Size) 
Accuracy (96) 

p=6 p=10 p=20 p=40 
Euclid 89.19 (2.95) 89.01 (3.07) 87.05 (4.05) 86.35 (3.48) 
Sample Cov 78.02 (5.71) NIA NIA NIA 
Common Cov 88.79 (3.32) 87.55 (3.65) 84.52 (4.26) 81.56 (3.41) 
LOOC 87.52 (4.27) 86.60 (4.48) 80.90 (4.63) 75.67 (3.59) 
LOOC-Exact 89.12 (3.17) 88.87 (3.04) 86.03 (4.21) 85.14 (3.31) 
bLOOC 1 89.19 (3.21) 88.96 (3.00) 86.58 (4.08) 86.27 (3.40) 
bLOOC1-Exact 89.20 (3.14) 88.95 (3.08) 86.45 (4.30) 86.20 (3.33) 
bLOOC2 87.50 (4.27) 86.58 (4.00) 80.90 (4.63) 75.67 (3.59) 
bLOOC2-Exact 89.30 (3.12) 88.98 (3.10) 86.03 (4.21) 85.14 (3.31) 

Mhring Values 
LOOC class 1 0.02 (0.08) 0.01 (0.06) 0.03 (0.08) 0.00 (0.00) 

class2 0.00 (0.00) 0.03 (0.08) 0.00 (0.00) 0.00 (0.00) 
class3 0.02 (0.08) 0.00 (0.00) 0.00 (0.00) . 0.00 (0.00) 

LOOC-Exact class1 2.74 (0.36) 2.73 (0.27) 2.87 (0.22) 2.96 (0.09) 
class2 2.54 (1.06) 2.24 (1.27) 2.98 (0.08) 3.00 (0.00) 
class3 0.28 (0.67) 0.33 (0.92) 0.04 (0.09) 0.00 (0.00) 

bLOOC1 class 1 1.71 (1.40) 1.41 (1.36) 1.30 (1.42) 1.64 (1.52) 
class2 0.63 (1.19) 1.15 (1.40) 1.65 (1.51) 1.20 (1.50) 
class3 0.38 (0.91) 0.45 (1.07) 0.01 (0.06) 0.15 (0.67) 

bLOOC 1-Exact class 1 2.51 (0.88) 2.22 (1.10) 2.1 1 (1.26) 1.46 (1.32) 
class2 1.60 (1.45) 1.74 (1.40) 2.39 (1.23) 2.10 (1.47) 
class3 1.12 (1.42) 1.65 (1.51) 0.91 (1.40) 0.60 (1.53) 

bLOOC2 class 1 0.02 (0.08) 0.01 (0.06) 0.03 (0.08) 0.00 (0.00) 
class2 0.03 (0.02) 0.03 (0.08) 0.00 (0.00) 0.00 (0.00) 
class3 0.02 (0.08) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

bLOOC2-Exact class1 2.55 (0.20) 2.54 (0.50) 2.87 (0.22) 2.96 (0.09) 
class2 2.31 (0.72) 2.40 (0.67) 2.98 (0.08) 3.00 (0.00) 
class3 0.28 (0.67) 0.23 (0.72) 0.04 (0.09) 0.00 (0.00) 



p=6 p=10 p=20 p=40~ 

1 Euclid 2 Sample Cov 3 Common Cov 
4 LOOC 5 LOOC-Exact 6 bL00C1 
7 bLOOC1 -Exact 8 bL00C2 9 bLOOC2-Exact 

:Figure 3.2 Mean Classification Accuracy for Equal Spherical Covariance Matrices 
(Unequal Training Set Size) 

For both equal and unequal number of training samples, the Euclidean distance 

classifier led to higher classification accuracy than any of the other covariance estimates, 

folll~wed by bLOOCl and bLOOC1-Exact. This result is expected since the Euclidean 

distance is equivalent to assuming the covariance matrices are the identity. Similarly, it 

is not surprising that the common covariance estimate led to higher accuracy than the 

sample covariance since the classes all have the same true covariance matrix. Since there 

are only 10 training samples for each class, the sample covariance cou1.d not be inverted 

for the higher dimensional data (p=10, 20, and 40), and so the classification accuracy 

could not be computed. The estimators LOOC, LOOC-Exact have the same performance 

as bLOOC2 and bLOOC2-Exact because the mixing values fall within ithe range of [0,1] 

and [2,3], under which these estimators have the same form of mixture:. The estimators 

bLOOC 1 and bLOOC 1 -Exact perform better than LOOC, LOOC-Exact, bLOOC2 and 

bLOOC2-Exact in all four trials as the result of using the ridge estimator. Notice that 

bLOOC 1 has similar performance as bLOOC1 -Exact, which shows that the 

approximation of the trace of the sample and common covariance estirrlates is valid. On 

the other hand, LOOC and LOOC-Exact as well as bLOOC2 and bLOOC2-Exact 

produce rather different results when the training set size is moderate or small. 



3.5.2 Unequal spherical covariance matrices 

In this experiment, the three classes have unequal mean vectors and spherical 

covariance matrices. The mean vectors are the same as those in Experiment 3.5.1. The 

covariance matrices of class one, two and three are I, 21, and 31 respectively. The results 

are presented in Tables 3.4,3.5 and the mean accuracy are plotted in Figlures 3.3, 3.4. 

1 Euclid 2 Sample Cov 3 Cotnmon Cov 

4 LOOC 5 LOOC-Exact 6 bLCIOC1 

7 bLOOC1 -Exact 8 bL00C2 9 bLOOC2- Exact 

F:igure 3.3 Mean Classification Accuracy for Unequal Spherical Covariance Matrices 
(Equal Training Set Size) 

1 Euclid 2 Sample Cov 3 Cornmon Cov 

4 LOOC 5 LOOC-Exact 6 bLCIOC1 
7 bLOOC1 -Exact 8 bL00C2 9 bLOOC2-Exact 

Figure 3.4 Mean Classification Accuracy for Unequal Spherical Covariance Matrices 
(Unequal Training Set Size) 



Table 3.4 
Classification Results for Unequal Spherical Covariance Matrices 

(Equal Training Set Size) 
Accuracy (%) 

p=6 p=10 p=20 p=40 
Euclid 78.82 (5.69) 75.40 (7.71) 72.59 (6.99) 67.64 (6.62) 
Sample Cov 62.54 (15.67) N/A N/A N/A 
Common Cov 73.95 (7.79) 67.77 (9.35) 55.27 (1 1.72) N/A 
LOOC 76.96 (8.31) 77.56 (7.65) 77.10 (10.61) 74.25 (9.48) 
LOOC-Exact 77.17 (7.54) 77.84 (9.87) 73.61 (10.12) 69.04 (12.40) 
bLOOC 1 81.40 (5.78) 83.33 (5.68) 85.74 (5.64) 89.17 (4.03) 
bLOOC1-Exact 81.21 (6.22) 83.50 (5.59) 85.92 (5.30) 89.19 (4.1 1) 
bLOOC2 76.96 (8.31) 77.56 (7.65) 77.10 (10.61) 74.25 (9.48) 
bLOOC2-Exact 77.17 (7.54) 77.84 (9.87) 73.6 1 (10.12) 69.04 (12.40) 

Mhcing Values 
LOOC class 1 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

class2 0.01 (0.06) 0.14 (0.56)) 0.01 (0.06) 0.00 (0.00) 
class3 0.00 (0.00) 0.01 (0.06) 0.01 (0.00) 0.00 (0.00) 

LO13C-Exact class1 1.94 (0.96) 1.59 (1.41) 2.63 (0.88) 2.62 (0.91) 
class2 2.66 (0.84) 2.81 (0.67) 2.83 (0.61) 3.00 (0.00) 
class3 1.06 (1.41) 0.88 (1.32) 1.36 (1 SO) 0.75 (1.51) 

bLOOC 1 class1 0.05 (0.10) 0.05 (0.10) 0.03 (0.08) 0.01 (0.06) 
class2 1.08 (1.40) 0.9 1 (1.35) 1.21 (1.45) 1.35 (1.53) 
class3 0.06 (0.14) 0.03 (0.08) 0.04 (0.09) 0.00 (0.00) 

bLOOC 1-Exact class1 0.34 (0.84) 0.06 (0.1 1) 0.03 (0.08) 0.01 (0.06) 
class2 1.96 (1.38) 1.96 (1.40) 1.95 (1.42) 1.93 (1.47) 
class3 0.06 (0.14) 0.05 (0.10) 0.04 (0.09) 0.00 (0.00) 

bLOOC2 class 1 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 
class2 0.01 (0.06) 0.14 (0.56)) 0.01 (0.06) 0.00 (0.00) 
class3 0.00 (0.00) 0.01 (0.06) 0.01 (0.00) 0.00 (0.00) 

bLOOC2-Exact class1 1.94 (0.96) 1.59 (1.41) 2.63 (0.88) 2.62 (0.91) 
class2 2.66 (0.84) 2.81 (0.67) 2.83 (0.61) 3.00 (0.00) 
class3 1.06 (1.41) 0.88 (1.32) 1.36 (1.50) 0.75 (1.51) 



Table 3.5 
Classification Results for Unequal Spherical Covariance Manices 

(Unequal Training Set Size) 
Accuracy (9%) 

p=6 p=10 p=20 p=40 
Euclid 78.86 (3.71) 79.26 (3.95) 79.1 1 (3.09) 75.02 (3.97) 
Sample Cov 70.87 (6.77) NIA NIA NIA 
Common Cov 78.53 (3.64) 79.00 (3.85) 77.04 (3.32) 70.89 (4.50) 
LOOC 80.69 (5.57) 81.25 (4.75) 81.88 (5.47) 81.24 (3.81) 
LOOC-Exact 81.71 (5.61) 83.36 (4.38) 84.31 (5.84) 83.97 (5.56) 
bLOOC 1 82.98 (4.52) 85.01 (4.05) 88.63 (3.16) 92.41 (2.24) 
bLOOC1-Exact 82.64 (4.66) 84.96 (4.26) 88.59 (3.13) 92.41 (2.25) 
bLOOC2 80.69 (5.57) 81.25 (4.75) 81.88 (5.47) 81.24 (3.81) 
bLOOC2-Exact 8 1.81 (5.37) 83.29 (4.99) 84.56 (5.60) 84.38 (5.83) 

Mhring Values 
LOOC class1 0.05 (0.13) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

class2 0.00 (0.00) 0.01 (0.06) 0.00 (0.00) 0.00 (0.00) 
class3 0.01 (0.06) 0.01 (0.06) 0.00 (0.00) 0.00 (0.00) 

LOi3C-Exact class1 1.24 (0.86) 1.83 (0.51) 1.96 (0.79) 2.58 (0.98) 
class2 2.94 (0.16) 2.88 (0.17) 3.00 (0.00) 2.69 (0.09) 
class3 0.05 (0.13) 0.06 (0.1 1) 0.04 (0.09) 0.00 (0.00) 

bLOOC 1 class 1 0.20 (0.29) 0.03 (0.08) 0.01 (0.08) 0.00 (0.00) 
class2 0.74 (1.26) 1.01 (1.34) 0.74 (1.31) 1.35 (1.53) 
class3 0.04 (0.09) 0.04 (0.09) 0.04 (0.09) 0.00 (0.00) 

bLOOC 1-Exact class1 0.78 (0.95) 0.05 (0.10) 0.03 (0.08) 0.00 (0.00) 
class2 2.38 (1.16) 2.61 (0.83) 2.39 (1.23) 2.10 (1.41) 
class3 0.05 (0.10) 0.04 (0.09) 0.04 (0.09) 0.00 (0.00) 

bLOOC2 class1 0.05 (0.13) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 
class2 0.00 (0.00) 0.01 (0.06) 0.00 (0.00) 0.00 (0.00) 
class3 0.01 (0.06) 0.01 (0.06) 0.00 (0.00) 0.00 (0.00) 

bLOOC2-Exact class1 1.34 (0.66) 1.83 (0.51) 1.90 (0.60) 2.64 (0.69) 
class2 2.84 (0.26) 2.90 (0.42) 3.00 (0.00) 2.96 (0.09) 
class3 0.05 (0.13) 0.06 (0.1 1) 0.04 (0.09) 0.00 (0.00) 

In this experiment, bLOOCl and bLOOC1-Exact have the best performance, 

followed by LOOC, LOOC-Exact and bLOOC2, bLOOC2-Exact. This is again not 

surprising because the ridge estimator produces a bias towards a constant value times the 

identity matrix. This is verified by the mixing values chosen by both bLOOCl and 

bLOOC1-Exact, which are closer to either the average eigenvalue times the identity or 

the sample covariance matrix. Since the true covariance matrices are some multiple of 

the identity matrix, the Euclidean distance which assumes equal identity matrix is no 

longer in favor. 



3.5.3 Equal highly elliptical covariance matrices 

In this experiment, all three classes have the same highly elliptical covariance 

matrix given by the diagonal matrix whose diagonal elements are: 

oi == [9(i  - l ) / ( p  - 1 )  + 1]2 1 2 i 5 p .  The mean vector of the first class is the origin. 

The elements of the mean vector of class two are defined by 

p2,i = 2.5.\l%[(p-i)/((p/2)- 1 ) ]  , and the mean vector of class three is given by 

p3,i = ( - l ) ' p , ,  . The results are shown in Tables 3.6,3.7 and Figures 3.5,3.6.  
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Table 3.6 
Classification Results for Equal Highly Elliptical Covariance Matrices 

(Equal Training Set Size) 
Acc:uracy (%) 

p=6 p=10 p=20 p=40 
Euclid 76.16 (7.14) 70.63 (8.28) 61.07 (7.44) 53.40 (8.22) 
Sample Cov 79.88 (17.93) NIA NIA NIA 
Common Cov 94.20 (2.68) 87.12 (6.30) 70.54 (10.74) NIA 
LOOC 93.25 (6.35) 87.61 (6.77) 78.61 (9.40) 70.68 (7.82) 
LOOC-Exact 94.60 (3.88) 91.67 (3.70) 84.65 (5.50) 79.74 (5.85) 
bLOOC 1 91.91 (4.98) 79.68 (9.57) 67.40 (8.54) 56.88 (8.76) 
bLOOC1-Exact 91.91 (4.98) 79.76 (9.58) 67.40 (8.54) 56.88 (8.76) 
bLOOC2 93.25 (6.35) 87.61 (6.77) 78.61 (9.40) 70.68 (7.82) 
bLOOC2-Exact 94.60 (3.88) 91.67 (3.70) 84.65 (5.50) 79.74 (5.85) 

Mbring Values 

bLOOC 1 -Exact class 1 
class2 
class3 

bLOOC2 class 1 
class2 
class3 

bLOOC2-Exact class 1 
class2 
class3 



Table 3.7 
Classification Results for Equal Highly Elliptical Covariance Matrices 

(Unequal Training Set Size) 
Accuracy (%) 

p=6 p=10 p=20 p=40 
Euclid 79.22 (4.55) 72.96 (5.92) 67.46 (4.32) 63.74 (4.67) 
Sample Cov 85.52 (6.37) NIA NIA NIA 
Common Cov 95.30 (1.34) 89.82 (2.87) 88.05 (2.91) 79.64 (3.82) 
LOOC 94.40 (2.64) 87.38 (3.87) 83.52 (5.05) 75.39 (4.50) 
LOOC-Exact 95.64 (1.12) 90.68 (2.96) 89.20 (3.58) 82.67 (4.29) 
bLOOC 1 95.63 (1.29) 87.88 (3.27) 83.79 (2.87) 74.50 (5.06) 
bLOOC1-Exact 95.63 (1.29) 87.88 (3.27) 83.86 (2.87) 74.50 (5.06) 
bLOOC2 94.40 (2.64) 87.38 (3.87) 83.52 (5.05) 75.39 (4.50) 
bLOOC2-Exact 95.30 (1.54) 90.32 (2.16) 89.19 (3.58) 82.67 (4.29) 

Mixing Values 
LOOC class1 0.03 (0.1 1) 0.00 (0.00) 0.01 (0.06) 0.00 (0.00) 

class2 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 
class3 0.01 (0.06) 0.05 (0.10) 0.00 (0.00) 0.00 (0.00) 

LOOC-Exact class1 2.81 (0.33) 2.79 (0.32) 2.88 (0.17) 2.96 (0.09) 
class2 2.16 (1.29) 2.78 (0.67) 2.40 (1.20) 3.00 (0.00) 
class3 0.38 (0.91) 0.13 (0.15) 0.03 (0.08) 0.00 (0.00) 

bLOOC 1 class 1 1.90 (0.1 1) 1.96 (0.15) 1.95 (0.22) 2.25 (0.00) 
class2 1.75 (0.00) 1.75 (0.00) 1.75 (0.00) 1.75 (0.00) 
class3 1.70 (0.1 1) 1.74 (0.01) 1.75 (0.00) 1.75 (0.00) 

bLOOC 1-Exact class1 1.90 (0.1 1) 1.96 (0.05) 1.95 (0.30) 2.25 (0.00) 
class2 1.93 (0.06) 1.75 (0.01) 1.75 (0.00) 1.75 (0.00) 
class3 1.83 (0.1 1) 1.74 (0.01) 1.75 (0.09) 1.75 (0.00) 

bLOOC2 class 1 0.03 (0.1 1) 0.00 (0.00) 0.01 (0.06) 0.00 (0.00) 
class2 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 
class3 0.01 (0.06) 0.05 (0.10) 0.00 (0.00) 0.00 (0.00) 

bLOOC2-Exact class 1 2.58 (0.31) 2.67 (0.22) 2.82 (0.27) 2.96 (0.09) 
class2 2.25 (1.1 1) 2.58 (0.47) 2.32 (0.61) 3.00 (0.00) 
class3 0.38 (0.91) 0.13 (0.15) 0.03 (0.08) 0.00 (0.00) 

Since the true covariance matrices are highly elliptical, the estimators LOOC, 

LOOC-Exact, bLOOC2 and bLOOC2-Exact out-perform the others. However, for the 

unequal number of training samples per class, the performance of bLOOCl and 

bLOOC1-Exact has increased substantially. The mixing values indicate that the weighted 

pooled covariance estimate is favored. This shows the benefit of using the Bayesian 

fonnulation when the training set size reflects the true priors. Again, bLOOCl and 

bLOOCl-Exact produce similar results showing the validity of the approximation. 



3.5.4 Unequal highly elliptical covariance matrices 

In this experiment, the mean vectors of all classes are at the origin but the class 

covariance matrices are highly elliptical and vary for all classes. The diagonal elements 

of the covariance matrices for each class are as follows: 

qji = [ p ( i - l ) / ( p - 1 ) + 1 ] 2  l 5 i 5 p ;  qri = [ 9 ( p - i ) / ( p - l ) + 1 ] 2  l 5 i 5 p  and 

C T ~ , ~  = {9 [ i  - ( p  - 1) /2 ] / (p  - I)}' 1 5  i  5  p .  The results are summarized in Tables 3.8, 

3.9 and Figures 3.7, 3.8. 
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Table 3.8 
Classification Results for Unequal Highly Elliptical Covariance Matrices 

(Equal Training Set Size) 
Accuracy (9%) 

p=6 p=10 p=20 p=40 
Euclid 43.03 (7.68) 42.08 (6.85) 44.24 (9.12) 46.1 1 (5.37) 
Sample Cov 80.89 (9.25) NIA NIA NIA 
Common Cov 42.00 (7.96) 43.03 (8.39) 39.89 (10.55) NIA 
LOOC 90.77 (4.03) 95.69 (2.69) 99.42 (0.77) 99.97 (0.09) 
LOOC-Exact 90.41 (4.22) 95.57 (2.64) 99.39 (0.79) 99.97 (0.09) 
bLOOC 1 76.89 (9.01) 81.50 (8.48) 80.05 (1 1.24) 78.68 (1 1.57) 
bLOOC1-Exact 77.1 1 (8.95) 81.39 (8.53) 79.97 (1 1.14) 79.1 1 (1 1.44) 
bLOOC2 90.77 (4.03) 95.69 (2.69) 99.42 (0.77) 99.97 (0.09) 
bLOOC2-Exact 90.41 (4.22) 95.57 (2.64) 99.39 (0.79) 99.97 (0.09) 

Mixing Values 
LOOC class 1 0.00 (0.00) 0.01 (0.06) 0.00 (0.00) 0.00 (0.00) 

class2 0.06 (0.14) 0.04 (0.12) 0.00 (0.00) 0.00 (0.00) 
class3 0.01 (0.06) 0.01 (0.06) 0.00 (0.00) 0.00 (0.00) 

LOOC-Exact class 1 0.05 (0.10) 0.04 (0.09) 0.00 (0.00) 0.00 (0.00) 
class2 0.15 (0.22) 0.09 (0.15) 0.01 (0.06) 0.00 (0.00) 
class3 0.13 (0.30) 0.06 (0.1 1) 0.03 (0.08) 0.00 (0.00) 

bLOOC 1 class 1 0.58 (0.18) 0.46 (0.19) 0.23 (0.14) 0.15 (0.13) 
class2 0.59 (0.20) 0.44 (0.18) 0.20 (0.15) 0.14 (0.13) 
class3 0.76 (0.35) 0.64 (0.25) 0.26 (0.13) 0.10 (0.13) 

bLOOC 1-Exact class 1 0.60 (0.17) 0.48 (0.20) 0.23 (0.14) 0.16 (0.12) 
class2 0.89 (0.73) 0.43 (0.18) 0.19 (0.14) 0.14 (0.13) 
class3 0.86 (0.38) 0.64 (0.25) 0.26 (0.13) 0.10 (0.13) 

bLOOC2 class 1 0.00 (0.00) 0.01 (0.06) 0.00 (0.00) 0.00 (0.00) 
class2 0.06 (0.14) 0.04 (0.12) 0.00 (0.00) 0.00 (0.00) 
class3 0.01 (0.06) 0.01 (0.06) 0.00 (0.00) 0.00 (0.00) 

bLOOC2-Exact class 1 0.05 (0.10) 0.04 (0.09) 0.00 (0.00) 0.00 (0.00) 
class2 0.15 (0.22) 0.09 (0.15) 0.01 (0.06) 0.00 (0.00) 
class3 0.13 (0.30) 0.06 (0.1 1) 0.03 (0.08) 0.00 (0.00) 



Table 3.9 
Classification Results for Unequal Highly Elliptical Covariance Matrices 

(Unequal Training Set Size) 
Accuracy (%) 

p=6 p=10 p=20 p=40 
Euclid 39.97 (6.57) 43.53 (6.04) 43.38 (4.98) 45.91 (3.78) 
Sample Cov 85.38 (5.25) NIA NIA NIA 
Common Cov 39.26 (6.61) 42.46 (6.99) 43.26 (4.94) 45.07 (4.68) 
LOOC 91.53 (1.76) 97.42 (1.1 1) 99.88 (0.16) 100 (0.00) 
LOOC-Exact 91.44 (2.05) 97.38 (1.18) 99.88 (0.16) 100 (0.00) 
bLOOC 1 89.08 (2.60) 93.59 (3.25) 96.99 (2.13) 96.78 (2.51) 
bLOOC1-Exact 89.26 (2.52) 93.53 (3.21) 96.99 (2.13) 96.78 (2.51) 
bLOOC2 91.53 (1.76) 97.42 (1.1 1) 99.88 (0.16) 100 (0.00) 
bLOOC2-Exact 91.44 (2.05) 97.38 (1.18) 99.88 (0.16) 100 (0.00) 

Mixing Values 
LOlOC class 1 0.01 (0.06) 0.01 (0.06) 0.01 (0.06) 0.00 (0.00) 

class2 0.01 (0.06) 0.03 (0.08) 0.00 (0.00) 0.00 (0.00) 
class3 0.01 (0.06) 0.01 (0.06) 0.00 (0.00) 0.00 (0.00) 

LOlOC-Exact class 1 0.24 (0.67) 0.08 (0.12) 0.04 (0.09) 0.00 (0.00) 
class2 0.10 (0.15) 0.08 (0.12) 0.00 (0.00) 0.00 (0.00) 
class3 0.05 (0.10) 0.05 (0.10) 0.04 (0.09) 0.00 (0.00) 

bLOOC 1 class 1 0.68 (0.59) 0.36 (0.22) 0.18 (0.14) 0.11 (0.13) 
class2 1 .OO (0.00) 0.98 (0.14) 0.75 (0.00) 0.05 (0.00) 
class3 1 .OO (0.00) 1 .OO (0.00) 1.00 (0.00) 1.00 (0.00) 

bLOOC 1-Exact class 1 0.84 (0.77) 0.95 (1.06) 0.18 (0.14) 0.11 (0.13) 
class2 1.00 (0.00) 0.98 (0.14) 0.75 (0.00) 0.05 (0.00) 
class3 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1 .OO (0.00) 

bLOOC2 class 1 0.01 (0.06) 0.01 (0.06) 0.01 (0.06) 0.00 (0.00) 
class2 0.01 (0.06) 0.03 (0.08) 0.00 (0.00) 0.00 (0.00) 
class3 0.01 (0.06) 0.01 (0.06) 0.00 (0.00) 0.00 (0.00) 

bLOOC2-Exact class 1 0.24 (0.67) 0.08 (0.12) 0.04 (0.09) 0.00 (0.00) 
class2 0.10 (0.15) 0.08 (0.12) 0.00 (0.00) 0.00 (0.00) 
class3 0.05 (0.10) 0.05 (0.10) 0.04 (0.09) 0.00 (0.00) 

As expected, LOOC, LOOC-Exact, bLOOC and bLOOC-Exact have the best 

results because the class covariance matrices are diagonal and vary differently from class 

to c:lass. The mixing values selected are close to zero which is appropriate since the 

mixture is essentially the diagonal sample covariance matrix. Again, bLOOCl and 

bLOOC 1-Exact have similar performance, which indicates that the approximation holds. 



3.6 Experiment using a Small Segment of AVIRIS Data 

In this section, the estimators are tested using hyperspectral data which consists of a 

small segment of the AVIRIS data of NW Indiana's Indian Pine test site obtained in June 

1992. Out of the original 220 spectral channels, 20 channels (104-108, 150-163, 220) 

frorn the water absorption bands are discarded. Therefore, the test data consists of 200 

spectral features and four classes, namely, corn-notill, soybean-notill, soybean-min and 

grass. The test image and the ground truth map are shown in Figure 3.9. The training 

samples are chosen to be 1%, 4%, 10% and 20% of the labeled samples. The number of 

labeled and training samples in each class is shown in Table 3.10 and Table 3.1 1, 

respectively. Since these training samples are randomly selected, each experiment is 

repeated 10 times and the mean and standard deviation of the classification accuracy is 

obtained. 

background 

Corn-not i l l 

Soybean-not i l l 

Soybean-m i n 

Grass 

Figure 3.9 Portion of AVIRIS data and Ground Truth Map (Original in Color) 

Table 3.10 
Class Description for AVIRIS Data in Figure 3.9 

Class Names No. of Labeled Samples 
Corn-notill 910 
Soybean-notill 638 
Soybean-min 1421 
Grass 618 



Table 3.1 1 
Number of Training Samples for Experiment 3.6 

1% 5% 8% 10% 20% 40% 
Corn-notill 9 45 72 9 1 182 364 
Soybean-notill 6 3 1 51 63 127 255 
Soy bean-min 14 7 1 113 142 284 586 
Grass 6 30 49 61 123 247 

Total Samples 35 177 285 357 716 1452 

The previous results from simulation data indicate that the estimators bLOOCl and 

bLCbOC1-Exact would produce similar results. The simulation also shows that LOOC- 

Exact outperforms LOOC in cases when the training set size is small. However, LOOC- 

Exact and bLOOC2-Exact require considerably more computation :for 200 spectral 

channels. In view of these results, the estimators LOOC-Exact, bLCIOC1-Exact and 

bLCbOC2-Exact are not considered in the following experiments. In the analysis of 

hypc:rspectral data, feature extraction is often employed to reduce dimensionality. Hence, 

discriminant analysis feature extraction (DAFE) is incorporated in this experiment to 

demonstrate the effect of covariance estimators on the classification process. Since there 

are four classes, the number of features are reduced to three using DAFE. The results of 

the t:xperiments are shown in Tables 3.12,3.13 and Figures 3.10,3.11. 



Table 3.12 
Classification Results for Small AVIRIS Image (Part 1) 

Accuracy (%) No. of Training Samples 
1% 5% 8% 

Euclid 66.00 (8.70) 67.75 (3.29) 67.23 (2.04) 
Sample Cov N/A N/A N/A 
Sample Cov+DAFE N/A N/A 71.59 (4.33) 
Common Cov N/A N/A 78.40 (3.33) 
Common-Cov+DAFE N/A N/A 78.40 (3.33) 
LOOC 72.55 (13.60) 54.54 (6.43) 51.50 (2.08) 
LOOC+D AFE 82.28 (8.98) 91.62 (2.45) 92.02 (2.12) 
bLOOCl 61.68 (18.16) 51.38 (8.64) 73.61 (3.97) 
bLOOC 1 +DAFE 84.45 (7.82) 92.39 (1.68) 78.56 (3.34) 
bLOOC2 72.55 (13.60) 54.54 (6.43) 5 1.50 (2.08) 
bLOOC2+DAFE 82.28 (8.98) 9 1.62 (2.45) 92.02 (2.12) 

Mixing Values 
LOOC Corn-notill 2.10 (0.47) 2.25 (0.00) 2.25 (0.00) 

Soybean-notill 1.80 (0.72) 0.75 (0.00) 0.75 (0.00) 
Soybean-min 0.90 (0.47) 0.75 (0.00) 0.75 (0.00) 
Grass 1.58 (0.87) 0.75 (0.00) 0.75 (0.00) 

bLOOC 1 Corn-notill 2.10 (0.47) 2.25 (0.00) 2.00 (0.00) 
Soybean-notill 1.20 (0.72) 0.75 (0.00) 2.00 (0.00) 
Soy bean-min 0.75 (0.00) 0.75 (0.00) 1.75 (0.00) 
Grass 1 .05 (0.63) 0.75 (0.00) 2.00 (0.00) 

bLOOC2 Corn-notill 2.10 (0.47) 2.25 (0.00) 2.25 (0.00) 
Soybean-notill 1.80 (0.72) 0.75 (0.00) 0.75 (0.00) 
Soybean-min 0.90 (0.47) 0.75 (0.00) 0.75 (0.00) 
Grass 1.58 (0.87) 0.75 (0.00) 0.75 (0.00) 



Table 3.13 
Classification Results for Small AVIRIS Image (Part 2) 

Accuracy (%) No. of Training Samples 
10% 20 % 40 % 

Euclid 66.72 (2.50) 67.43 (2.16) 67.16 (1.94) 
Sample Cov NIA NIA 53.85 (1.79) 
Sample Cov+DAFE 82.31 (2.51) 92.37 (0.95) 95.82 (0.80) 
Common Cov 86.16 (2.25) 93.06 (0.85) 95.72 (0.70) 
Common-Cov+DAFE 86.16 (2.25) 93.06 (0.85) 95.72 (0.70) 
LOOC 78.41 (3.06) 90.75 (1.30) 95.79 (0.78) 
LOOC+DAFE 86.35 (2.18) 93.20 (0.92) 96.00 (0.67) 
bLOOC 1 80.13 (3.38) 90.97 (1.41) 96.05 (0.98) 
bLOOC 1 + D m  86.44 (2.15) 93.50 (0.88) 96.07 (0.69) 
bLOOC2 80.13 (3.38) 90.97 (1.41) 96.05 (0.98) 
bLOOC2+DAFE 86.44 (2.15) 93.50 (0.88) 96.07 (0.69) 

Mixing Values 
LOOC Corn-notill 2.00 (0.00) 2.00 (0.00) 1.75 (0.00) 

Soybean-notill 2.00 (0.00) 2.00 (0.00) 2.00 (0.00) 
Soybean-min 1.75 (0.00) 1.75 (0.00) 1.75 (0.00) 
Grass 2.00 (0.00) 2.00 (0.00) 2.00 (0.00) 

bLOOC 1 Corn-notill 1.98 (0.08) 1.75 (0.00) 1.75 (0.00) 
Soybean-notill 2.00 (0.00) 2.00 (0.00) 1.95 (0.1 1) 
Soybean-min 1.75 (0.00) 1.75 (0.00) 1.75 (0.00) 
Grass 2.00 (0.00) 2.00 (0.00) 1.75 (0.00) 

bLOOC2 Corn-notill 1.98 (0.08) 1.75 (0.00) 1.75 (0.00) 
Soybean-notill 2.00 (0.00) 2.00 (0.00) 1.95 (0.1 1) 
Soybean-min 1.75 (0.00) 1.75 (0.00) 1.75 (0.00) 
Grass 2.00 (0.00) 2.00 (0.00) 1.75 (0.00) 
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Figure 3.10 Mean Classification Accuracy using Small AVIRIS Image (Part 1) 
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Figure 3.1 1 Mean Classification Accuracy using Small AVIRIS Image (Part 2) 



The results show that the covariance estimation combined with DAFE increases the 

classification performance substantially even when the training samples are limited. 

When the number of training samples are selected to be 1% and 5% of the labeled 

samples, the total number of training samples is less than dimensionality. In this case, the 

best performance is achieved by bLOOCl together with DAFE. This shows that the 

ridge estimator gives rise to a better pooled covariance estimate by counteracting the 

upward bias of large eigenvalues and downward bias of smallest eigen~values when the 

training set size is less than dimensionality. On the other hand, when the total number of 

training samples is more than dimensionality, bLOOC2 combined with DAFE gives the 

best performance. The result suggests that the true covariance matrices are elliptical. 

This can be verified by the poor performance of bLOOCl at 8% of the labeled samples. 

In this case, the total number of training samples is 285 which suggests that the pooled 

coviiriance estimate is highly variable. When bLOOCl is used, the chosen mixing values 

indicate that the mixture of partially pooled covariance matrix is favored over the ridge 

estimator, which has been shown to perform poorly for elliptical covariance matrices. On 

the other hand, LOOC and bLOOC2 which use the diagonal covariance matrices perform 

significantly better. In conclusion, it is suggested that when N < ( p  + I), bLOOCl and 

D A I 3  can lead to better performance and when N 2 ( p  + I), bLOOC2 and DAFE should 

be used instead. 



3.7 Experiment using a Large Segment of AVIRIS data 

In this experiment, a large segment of AVIRIS data is used. Again, the water 

absorption bands have been discarded, leaving a total of 200 channels. This data contains 

many classes of varying sizes. The purpose of this experiment is to demonstrate the 

effect of covariance estimation on classes with varying covarianc~e structures and 

different training sample size. The training samples are selected in proportion to the 

nurrtber of labeled samples for each class. The labeled samples, excluding the training 

samples are then used as test samples. The classes, the numbers of labeled samples and 

training samples are listed in Table 3.14. The image and ground truth cnap are shown in 

Figures 3.12. 

Table 3.14 
Class Description for AVIRIS Data in Figure 3.12 

Class Names No. of Labeled Samples No. of Training Samples 
1. Corn-notill 1423 286 
2. Corn-min 834 166 
3. Corn 234 46 
4. Soybeans-notill 797 159 
5. Soybeans-notill2 171 34 
6. Soybeans-min 2468 493 
7. Soybeans-clean 614 122 
8. Alfalfa 54 10 
9. GrassPasture 497 99 
10. GrasstTrees 747 149 
1 1. Grasslpasture-mowed 26 5 
12. Hay-windrowed 489 97 
13. Oats 20 4 
14. Wheat 212 42 
15. Woods 1294 258 
16. Bldg-Grass-Tree-Drives 380 76 
17. Stone-steel towers 95 19 

Total samples 10355 2065 
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Figure 3.12 Large AVIRIS Data and Ground Truth Map (Original in Color) 

The classification procedures for testing the data are shown in Tiable 3.15. Since 

the Euclidean distance classifier does not utilize the covariance information, its 

performance would indicate whether the second order statistics i:s useful for the 

classification of high dimensional data with limited training samples. The use of 

conunon covariance estimate for all classes is equivalent to a lineal: classifier. The 



sample covariance estimate is not tested in this experiment since the numbers of training 

samples for some classes are extremely small. Even with feature extraction, only a 

handful of extracted features can be used to obtain non-singular covariance estimates. 

After performing covariance estimation, two types of classifiers, namely, the quadratic 

classifier (QC) and the contextual classifier ECHO (Extraction and Classification of 

Homogeneous Objects) [33] are then applied and compared. While the quadratic 

classifier assign individual pixels to one of the classes, the ECHO classifier first divides 

the image into groups of contiguous pixels and classifies each group to one of the classes. 

In other words, ECHO uses both the spatial and spectral information. The results of 

classification are shown in Table 3.16 and Figure 3.13, and the mixing values for each 

covariance estimator are listed in Table 3.17. This data was obtained in June 1992 so 

most of the row crops in the agricultural portion of the test site had not reached their 

maximum ground cover. Therefore, the classification of these crops becomes 

challenging since the spectral information comes from a mixture of the crops, the 

variations in the soil type, soil moisture, and previous crop residues. These crops are 

listed as the first seven classes and their mean classification accur~acy is computed 

separately and shown in the bottom row of Table 3.16. 

Table 3.15 
Classification Procedures for Experiment 3.7 

Notation Procedures 
C1 Euclidean Distance Classifier 
C2 Common Cov+DAFE+QC 
C3 Common Cov+DAFE+ECHO 
C4 LOOC+DAFE+QC 
C5 LOOC+DAFE+ECHO 
C6 bLOOCl+DAFE+QC 
C7 bLOOCl+DAFE+ECHO 
C8 bLOOC2+DAFE+QC 
C9 bLOOC2+DAFE+ECHO 



Table 3.16 
Classification Results for Experiment 3.7 

Cllass Names C1 C2 C3 C4 C5 C6 
1. Corn-notill 55.40 70.64 75.26 71.43 77.00 74.22 
2. Corn-min 16.02 61.68 61.98 65.27 79.94 67.96 
3. Corn 13.30 66.49 69.68 65.43 76.06 67.55 
4. Soybeans-notill 59.40 76.02 89.18 77.12 93.89 80.09 
5. Soybeans-notill2 56.20 78.83 83.94 67.88 78.83 70.07 
6. Soybeans-rnin 20.15 54.28 58.73 67.54 86.73 62.84 
7. Soybeans-clean 2.03 83.33 85.77 80.28 86.59 85.57 
8. Alfalfa 81.82 61.36 61.36 61.36 61.36 54.55 
9. GrassIPasture 2.51 81.16 81.16 90.70 91.96 91.21 
1 D. GrasstTrees 24.25 95.99 96.15 96.99 97.16 96.66 
1 1. Grasslpasture-mowed 95.24 47.62 47.62 47.62 47.62 33.33 
12. Hay-windrowed 51.79 98.72 98.72 99.23 99.23 99.49 
13. Oats 43.75 31.25 31.25 31.25 31.25 31.25 
1 4. Wheat 92.35 100 100 100 100 100 
15. Woods 85.04 87.16 87.16 92.66 93.24 89.86 
16. Bldg-Grass-Tree-Drives 27.30 82.57 82.57 70.39 70.39 84.54 
17. Stone-steel towers 93.42 94.74 94.74 94.74 94.74 94.74 

A.verage Accuracy 1-17 48.23 74.81 76.78 75.29 80.35 75.53 
A.verage Accuracy 1-7 31.79 70.18 74.94 70.71 82.72 72.61 

Average 

Accuracy 

1-17 

Average 

Accuracy 

1-7 

Figure 3.13 Mean Classification Accuracy for Experiment 3.7 



Table 3.17 
Mixing Values for Experiment 3.7 

Class Names LOOC bLOOCl 
Corn-notill 1.75 1.75 
Corn-min 1.75 1.75 
Corn 2.00 1.75 
Soybeans-notill 1.75 1.75 
Soybeans-notill2 2.00 1.75 
Soybeans-min 1.50 1.75 
Soybeans-clean 2.00 1.75 
Alfalfa 2.00 2.00 
Grass/Pasture 1.75 1.75 
Grass~Trees 1.75 1.75 
Grasslpasture-mowed 2.00 2.00 
Hay-windrowed 2.00 1.75 
Oats 2 .OO 2.00 
Wheat 2 .OO 1.75 
Woods 1.75 1.75 
Bldg-Grass-Tree-Drives 2.00 1.75 
Stone-steel towers 2.00 1.75 

The performance of the Euclidean distance classifier is significantly lower than the 

other classifiers. This shows that the second order statistics are usefiul for classifying 

high dimensional data even though the training samples are limited. Although the class 

covariance matrices differ substantially, the use of common covariance matrix and hence 

the linear classifier improves the performance substantially compared to the Euclidean 

dist,ance classifier. Since the mixing values for bLOOCl and bLOOC!2 fall within the 

range of 1 I ai 1 2, these two estimators use the same covariance mixture and hence the 

classification results are the same as expected. The figure shows that the best 

perjormance is achieved by C7 and C9 where bLOOCl and bLOOC2, followed by 

DAFE and the ECHO classifier are used. Many classes have mixing values of 1.75 

whi'ch implies that the weighted pooled covariance mixture is favored. The classification 

accilracy increases substantially for the row crops 1-7. Compared with the second best 

result obtained from the classifier LOOC+DAFE+ECHO (C5), the accuracy increases 

frorn 82.72% to 89.06%. The mean accuracy for all classes improves from 80.35% to 

82.90% as well. Therefore, the use of Bayesian estimators is beneficial when the sample 

sizes are unequal and the training set size reflects the true priors. The classification maps 

for (=I5 and C7 are shown in Figures 3.15 and 3.15, respectively. 



Corn-not ill 

Corn-rn i n 

Corn 

Soybeans-not ill 

Soybeans-not ill 

Soybeans-min 

Soybeans- clean 

fl l f a  l f a  

E rass /Pas tu re  

Grass/Trees 

Grass/pasture-mowed 

Hay-windrowed 

Oats 

Wheat 

Woods 

Bldg- Grass- Tree- Dr iues 

S tone- s tee l  Towers 

A c c m y  

Classes 1 - 1 7: 80.35925 
Classes 1-7: 82.72% 

Figure 3.14 Classification Map for LOOC+DAFE+ECHO (Originial in Color) 
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3.8 Summary 

Two covariance estimators for limited training samples have been proposed in this 

work. These estimators can be viewed as an intermediate approach between the linear 

and quadratic classifiers. The estimators were derived under a Bayesian setting, which is 

advantageous when the classes have different sizes and the training set size is 

proportional to the sample size of each class. It was shown that the first estimator 

bLOOC1 combined with discriminant analysis feature extraction (DA.FE) can achieve 

better performance when the total number of training samples is less than the 

dimensionality. On the other hand, when the pooled covariance matrix is non-singular, 

the other estimator bLOOC2 should be used. Under these conditions, the proposed 

estimators perform better than the leave-one-out covariance (LOOC) estimator, the linear 

and quadratic classifiers. 

Since the leave-one-out likelihood is used as the criterion for these estimators, it has 

the drawback of not being directly related to class separability, and :subsequently the 

classification accuracy. Therefore, some smooth loss function derived from the class 

separability is recommended for future work. Also, since decision boundary feature 

extraction (DBFE) is not suitable for small training sample size and DM% does not work 

we.L:l when the classes have similar mean values, an alternative feature extraction or 

classification methods need to be explored. The issue of feature extraction will be further 

studied in the next chapter. 



CHAPTER 4: A BINARY TREE DESIGN FOR CLASS:[FICATION 

AND FEATURE EXTRACTION 

4.1 Introduction 

Decision tree classifiers belong to a type of hierarchical classifiers in which subsets 

of classes are processed at multiple stages. Hierarchical classifiers have been known to 

ove1:come some of the limitations of single-stage classifiers. For example, in a single- 

stage classification system, the decision rule and feature reduction method are obtained 

by optimizing a criterion based on all classes available. Therefore, the decision boundary 

and the features extracted may not be optimal to discriminate among ,all classes. This 

limitation becomes more severe when classes are numerous and training set size is small 

due to the Hughes phenomenon [34]. A large number of classes generates more complex 

decision boundaries and hence requires more features to distinguish arnong them. The 

Hughes phenomenon indicates that in the case of limited training set size, the 

classification performance deteriorates when more features are added. Consequently, the 

advent of new hyperspectral sensors such as AVIRIS which generates 224 dimensional 

data presents new challenges. While the increased dimensionality enables more classes to 

be identified, training samples still remain relatively scarce and hard to find. As a result, 

the Hughes phenomenon becomes an immediate concern for a single-stage classifier. 

Decision tree classifiers offer a solution to circumvent these problems by focusing on 

fewer classes and obtaining different features and decision rules at each stage. 

The decision tree classifiers have been extensively studied and (applied in recent 

years [35]. In a binary decision tree, each node considers two subgroups of classes at a 

time. However, decision tree classifiers are not without their own limitations. Notably, 

the (design of a tree classifier is complex. An optimal decision tree has to consider many 

factc~rs such as the tree structure, feature reduction method and computational complexity 



at the same time. Many tree design approaches have been proposed, targeting different 

design aspects or applications. 

In this chapter, a hybrid design of a binary decision tree is proposed which 

considers two classes at each node, instead of two subgroups of classes. In this manner, 

the :problem of merging classes into two nodes can be avoided. However, by processing 

two classes at a time, there is a tendency to generate a large tree. The bottom-up 

appl-oach in the proposed hybrid design helps reduce the size by discriminating classes 

with the largest statistical distance near the root. The tree design also incorporates two 

type:s of feature extraction methods one of which is based on the decisijon boundary and 

the other based on optimizing the Bhattacharyya distance between two classes. The 

proposed method is implemented for the supervised classification of multispectral data. 

In addition to functioning as a classifier, the binary tree design can be used to extract the 

best features between pairs of classes. The features obtained from pair-wise 

discrimination can then be combined and used as the feature subset fbr a single-stage 

classifier. Experiments are conducted using multispectral and hyperspectral data and the 

results show the advantages and limitations of the proposed binary tree method as 

corr~pared to single-stage classification. 

4.2 Hughes Phenomenon 

A landmark paper was written by Hughes [2] who first observeti that there is an 

optimal dimensionality associated with the set of classes and their training set size. In 

other words, when the number of training samples is limited, the performance of the 

classifier first improves up to a point and then deteriorates as the number of dimensions 

increases. This has subsequently been referred to as the Hughes phenomenon. The 

deterioration in performance is essentially due to the fact that the estimation of class 

conditional densities which determine the decision boundary for classification is based on 

a limited set of samples. As more features are added, more samples are required to obtain 

an adequate density estimation. It has been shown that the required number of training 

sanlples to achieve a certain classification performance is proportional to the 

dimensionality for a linear classifier and to the square of dimensionality for a quadratic 

classifier [3]. 



An obvious solution to circumvent the Hughes phenomenon is to reduce the number 

of features by applying feature selection or extraction methods [36]. Alternatively, 

clas.sification rules which require fewer training samples for good performance such as 

the linear classifier can be adopted. It was shown that when the set of design samples is 

extrlemely limited, the linear classifier can often perform better than tlne quadratic one 

[21] even though the true covariance matrices differ substantially. In Chapter 3, a 

corn.promise between the linear and quadratic classifiers was proposed. In this chapter, 

the problem of limited training set size is addressed using a divide-and-conquer approach. 

As a consequence of the progress in high resolution sensors for remote sensing, a 

multispectral image becomes more complex in the sense that more classes of varying 

sample size are separable with increased dimensionality. Some classes of interest can 

have very few design samples due to the difficulty in labeling training samples. In view 

of tlhis increased complexity, it may be desirable to process different classes from the 

same image using different classification rules and feature reduction mlethods. This can 

only be accomplished using a multistage approach such as the decision tree classifier. In 

the next section, the binary tree classifier is briefly reviewed and a hybrid design is 

described, which may employ different classification rules and feature extraction 

methods based on the training samples. 

4.3 Binary Tree Design for Classification 

4.3.1 Introduction 

The decision tree classifier (DTC) has been widely used for c1assi:fication and other 

purposes for the past few decades. A general review can be found in [351]. In principle, it 

divides a complex decision into several simpler ones in a hierarchical fashion. Figure 4.1 

shows a single-stage classifier in contrast to a binary tree classifier. The circular nodes 

represent decision nodes and the square nodes are terminal nodes. Each decision node 

has a decision rule R ( x )  with x as its input value. The terminal nodes then assign x to 

one of the class labels. 
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Figure 4.1 Comparison of Single-stage and Binary Decision Tree Classifiers 

The hierarchical structure of decision tree classifiers has several desirable 

properties: 

1) A tree classifier is more computationally efficient than a conventional single- 

stage classifier. In a single-stage classifier, a data sample is tested against all classes in 

contrast to a subset of classes as in a tree classifier. 

2) A tree classifier is more flexible than a single-stage one in that the nodes can 

have different decision rules and subsets of features. In single-stage classifiers, a subset 

of features is selected by optimizing a global criterion and is used to discriminate among 

all classes. In contrast, a tree classifier offers the flexibility to select a dlifferent subset of 

features for each node such that the feature subset is focused on optimizing the 

classification at that particular node. Similarly, single-stage classifiers use a decision rule 

for .dl classes, while tree classifiers may use a unique decision rule for each node. 



3) A tree classifier may circumvent the Hughes effect due to small training sample 

size by focusing on fewer classes and hence using fewer features at each node. In a 

single-stage classifier, the discrimination among all classes is based on a complex 

dec~~sion boundary which requires more training samples to obtain a goo'd approximation. 

By focusing on few classes on each node, the tree classifiers essentially divide a complex 

decision boundary into several simpler ones. Therefore, fewer features are needed at 

each node and the Hughes effect can be avoided. 

Although tree classifiers offer many benefits, they come with several limitations as 

well. First of all, the design of an optimal tree classifier still remains intangible. There 

are many factors to be considered, such as the tree structure, the node decision rule and 

the feature selection method. Since one cannot simultaneously optimize the accuracy and 

efficiency [37], the tree design is subject to the trade-off between design complexity and 

perlormance. Furthermore, without considering the optimization of all levels in the tree, 

errcas may accumulate at each level. In spite of these limitations, the bsenefits of a good 

tree design still outweigh the drawbacks. In the next section, several existing tree 

classifiers are briefly reviewed and serve to demonstrate some design issues. 

4.3.2 Previous Work 

Various types of the DTC have emerged during the past three decades, most 

notably, Quinlan's ID3[38] and Breiman et al.'s work on classificatioln and regression 

trees (CART) [39] in 1980's. In ID3, each node of the tree performs a single test on one 

feature to form the so-called "axis-parallel" test. One drawback of this approach is that 

for data with numerous features, ID3 might result in a large, unruly tree with many 

repetitive tests. The CART approach involves testing a linear combination of features to 

forrn an oblique decision surface in the feature space. For linearly separable data, the 

latter will clearly produce a more accurate and compact tree whereas the ID3 will result 

in a staircase-like decision boundary (See Fig. 4.2). Both approaches arle non-parametric, 

i.e. no assumption is made on the underlying data distribution. Therefore, they have 

become popular and widely studied among the machine learning researcliers [35]. 



Figure 4.2 Axis-parallel and Linear Decision Boundariels 

Even though a non-parametric classifier offers the flexibility to classify data of 

unknown distribution, it requires a generous amount of training samples to achieve the 

desirable accuracy. A study [3] has estimated that the required nulmber of training 

samples grows exponentially with respect to the number of features for a non-parametric 

classifier. As previously mentioned, the number of training samples rlzmains relatively 

few for hyperspectral data. Although feature selection may alleviate the problem of few 

training samples, the solution obtained may not be optimal. Therefore, these design 

app1:oaches are not suitable for classifying hyperspectral data. 

An alternative tree design approach that has been introduced in the pattern 

recognition research area assumes that the data distribution is known. Most commonly, 

the data is assumed to be normally distributed. When the classes are indeed normal as in 

the case of remote sensing data, the tree design problem is then reduced to parameter 

estimation. In addition, the parametric approach requires much fewer training samples 

than the non-parametric one. 

You and Fu [40] suggested a linear binary tree design which combined classes into 

two non-overlapping subgroups at each node using class statistics. The two subgroups 

were found by comparing a measure of pairwise separability over all classes. A varying 

subset of features was selected from the feature space for each node bat the number of 

features remained fixed. Then using an iterative process with an initial guess, a classifier 

is found that provides minimum error probability. If this error exceedls the pre-defined 

error bound, the class that commits the maximum error is include'd in both of the 

subgroups and is removed from consideration in computing the error,. By including a 

class in both nodes, this method allows overlapping of classes which means that two 

nodes can contain at least one common class. 



Another parametric tree classifier design was proposed by Kim and Landgrebe [41] 

using both bottom-up and top-down methods (hybrid approach) sequentially for 

c1as:sifying hyperspectral data. The bottom-up method computes th'e Bhattacharyya 

distance between each pair of classes and the two classes with the sma:lllest distance are 

merged to form a new group. The mean vector and covariance matrix in the newly 

fomied group are computed, and the process is repeated until two groups are left to form 

two cluster centers. These two subgroups are then assumed to be normally distributed 

and form a maximum likelihood decision rule. Several feature extradon methods are 

incclrporated and compared for their effectiveness. This method does not allow 

overlapping of classes. 

The above mentioned parametric decision tree classifiers require the merging of 

classes using the statistics obtained from training data. While mergin.g of classes can 

simj)lify the decision boundary and hence the decision process, miscla.ssification could 

easily occur if the combination of these simple decision boundaries does not yield a good 

app1:oximation of the global decision boundary. This problem can br: solved to some 

extent by allowing overlapping of classes. When a common class is included in several 

nodes, the overall decision boundaries generated by the tree is more complex and offers a 

way to improve the classification rate. Figure 4.3 illustrates an example of the decision 

bou:ndaries generated by overlapping classes. It is shown that when class overlapping is 

allowed, the decision boundary generated is more complex and precise, thus reducing 

misclassification risk. 

Decision 1 

Decision 1 .. ............. .. 

Class 2 

Figure 4.3 Illustration of A Tree Classifier with Overlapping Classes 

In spite of the obvious advantage, excessive overlapping of classes will result in a 

large tree, and thus reducing the efficiency of the tree classifier. The following section 

describes a binary tree design which compares two classes at each node, instead of two 



subgroups of classes. Consequently, the problem of merging can be avoided. In 

addition, overlapping of classes is allowed. To reduce the size of the tree due to common 

classes, the classes with the largest separation are processed near the top of the tree. In 

other words, the classes are "ordered". This forms the so-called hybrid design. 

4.3.3 Proposed binary tree structure design 

The proposed binary tree constructed uses the hybrid approach, which is a 

conlbination of the top-down and bottom-up methods. The bottom-up approach [42] 

typically uses the training samples to construct the tree and bears resemblance to 

agglomerative hierarchical clustering. Using some distance measure, such as Euclidean 

distance or Bhattacharyya distance, pairwise distances between a priori defined classes 

are 12omputed. Classes with smaller distances are merged first until the root contains only 

one group. In the proposed method, the pairwise distance between pre-defined classes is 

first computed. At each node, two classes with largest separation are selected and form 

the two cluster centers of two nodes and the rest of classes are then classified into the 

nodes. If a defined amount of training samples of any class are assigned. into both nodes, 

the class is included in both nodes for further comparison. This approach has the benefit 

of computing the pairwise distances only once and hence reducing computational time. 

Also, no merging of classes is required. 

In the top-down approach, the design consists of the following tasks [35]: 

1) selection of a node decision rule 

2) termination rule 

3) decision tree structure 

4) feature reduction 

These different aspects of a tree classifier should be considered simultaneously for 

an optimal design. Unfortunately, this problem of optimization is non-trivial. To 

simplify the design problem, a binary structure is adopted. The termination rule is simply 

the :majority rule, that is, the class label in the terminal node is assigned to the class with 

the most training samples at that node. Furthermore, the classes art: assumed to be 

nonnally distributed. Therefore, the decision rule for node splitting is a maximum- 



likelihood classification of Gaussian classes. Feature reduction is discussed in the next 

section. Therefore, the proposed binary tree design algorithm is summarized as follows: 

The Binary Tree Design Algorithm: 

Step 1 .  Compute the separability (Bhattacharyya distance or Euclidean distance) 

between each class pair. 

Step 2. Select two classes with the largest separation as two cluster centers. 

Compute the mean vectors and covariance matrices of the two classes 

and use them as the node statistics. 

Step 3. Classify the remaining classes into one of the two nodes using the 

following decision rule: 

Ji =(x-M, r A 1  Z; x-M
i 

+lnZi I A I  where i=n,orn,  

and x E nL if JnL < JnR 

where x is the data sample of p features 

M~ is the sample mean estimate of node i 

ki is the sample covariance matrix estimate of node i 

n, and n, represent left and right node, respectively. 

Step 4 .  If all the training samples from one class are classified1 into a node, the 

class is no longer considered at the other node. If not, the class is retained 

in both nodes for further pair-wise comparison. 



The proposed binary tree design has the following desirable characiteristics: 

1) 13y using the bottom-up approach in which the terminal nodes of the tree consist of the 

set sf pre-defined classes, the tree classifier ensures that the classes ha.ve informational 

values. 

2) By separating classes with the largest distance first, the occurrence of overlapped 

classes can be reduced, thus decreasing the size of the tree. 

3) Using two classes instead of two subgroups of classes avoids the prolblem of merging. 

In addition, since the classes are assumed to be normally distributed, the Gaussian 

maximum likelihood classification rule can be readily applied as the node splitting rule. 

4) Since the statistics used at each node are defined by the training set of two pre-defined 

classes, this information can be stored and used subsequently for other repetitious nodes 

by generating a simple look-up table. 

5) [n a two-class hierarchical structure, only two classes are considered at each node. 

This greatly simplifies the analysis process in the sense that the optimization criterion for 

two classes often exists in closed form, such as the Bhattachanya distance. Furthermore, 

the feature extraction methods for two classes are well understood, whereas the 

optimization for multiple classes is more complex and may not even exist. The next 

section will discuss this issue in detail. 

4.3.4 Feature extraction 

The benefits of performing feature reduction for remote sensing applications are 

twofold: 1) to circumvent the Hughes phenomenon and 2) to reduce the amount of 

con~putation required for classification. Feature reduction methods can be roughly 

divided into two categories: feature selection and feature extraction. In feature selection, 

features that do not contribute to the discrimination of classes can 11e eliminated by 

assessing some criteria before and after the removal. A criterion cornrnonly used is the 

separability of classes or the n-fold cross-validation method. If the removal does not 

lowjer the criteria substantially, the features are redundant. Unfortunately, optimal feature 

selection involves exhaustive search among all features, which is computationally 

infeasible for hyperspectral data. Suboptimal search involving subsets of features such as 



fonvard or backward selection may have undesirable effects for multispectral data [30]. 

Therefore, feature selection is not considered in this work. 

Feature extraction is the other form of feature reduction and involves the 

transformation of data into a smaller subset of features while retaining the class 

sepiirability as much as possible. The transformation is usually linear and based on the 

optimization of some criteria. This section reviews several feature extr,action algorithms 

and discusses their relative strengths and weaknesses when applied to a binary tree 

classifier. 

A. Principal Component Analysis 

This method involves representing x E 5RP by the summation of p orthonormal 

vecltors using Karhunen-Loeve transformation. The columns of transformation matrix 

consist of the eigenvectors corresponding to p eigenvalues of Z,, the covariance matrix 

of x , as follows: 

where y = a T x  is the linear transformation of x and 0 = 14, 4 . . . is the non- 

singular transformation matrix satisfying the condition 

1 for i = j 
4i4j = 

0 for i #  j 

To extract q < p features, q out of p eigenvectors are selected corresponding to the 

q lugest eigenvalues. Although this transformation is optimal with respect to fitting the 

data, it is not necessarily optimal with respect to discriminating the data [30]. 

B . Discriminant Analysis Feature Extraction (DAFE) 

Discrimimant analysis or canonical analysis [30] uses the ratio o:f a between-class 

scal ter matrix Z, to within-class scatter matrix Z,as a criterion function, and computes a 

vector d to maximize 



L 

zb = x ai(Mi - M,)(M, - Ma)' (between-class scatter matrix) 
i=l 

L 

Zw =xq% (within-class scatter matrix) 
i= l  

Here Mi, Xi, and ai are the mean vector, the covariance matrix, and the prior probability 

of class i respectively. And L is the total number of classes. 

Although the discriminant analysis performs well for most cases, there are several 

drawbacks for this method. First of all, the approach delivers features only up to the 

number of classes L minus one. For a binary tree classifier, this means that there is only 

one feature extracted at each node. One feature may not be optimal to discriminate 

between classes with complex decision boundary. Second, if the mean values are similar 

or the same, the extracted feature vectors are not reliable. Furthermore, for multiple 

classes, if a class has a mean vector very different from the other classes, the between- 

class scatter matrix is more biased towards that class, resulting in ineffective features. 

C. :Decision Boundary Feature Extraction (DBFE) 

The decision boundary feature extraction technique involves extracting features 

based on the effective decision boundaries between classes [32]. It was shown that all the 

features needed for classification are normal to the effective decision boundary, which is 

par1 of the decision boundary separating 90% of the training sample!;. In addition to 

findling the feature vectors, this method also predicts the minimum number of features 

necessary to achieve the same classification accuracy as conducted in the original space. 

In order to determine the effective decision boundary, the maj~ority of training 

samples are first selected. Using a Gaussian maximum likelihood classifier, the 

procedure begins with classifying the training samples at full dimensionality and 



thresholding the outliers. Therefore, for a p dimensional multispectral space the number 

of training samples must be greater than (p + 1) to avoid singularity. Since the method 

depends on how well the training samples approximate the decision boundaries, the 

number of training samples required could be much more for high dimei~sional data. For 

hyperspectral images, the number of training samples is usually not enough to prevent 

singularity or to yield a good covariance estimate. The DBFE method is also 

corr~putationally more intensive than the previous methods. In addition, DBFE for more 

than two classes is suboptimal. However, it generates more than (L- 1) features. 

Typically, as more features are added, the class separations improve as well. It functions 

well even when the means or the covariances are equal, and also simulta~neously provides 

information on the number of features required for good accuracy. 

D. 1Bhattacharyya Distance Feature Extraction (BDFE) 

The Bhattacharyya distance is a convenient measure of class separability for two 

classes. Furthermore, it gives an upper bound of Bayes error for norrnal distributions. 

The Bhattacharyya distance is given as [30] 

The optimization of the Bhattacharyya distance is non-trivial. One must either 

conlsider special cases or suboptimal solutions for the general case. To consider special 

cases, Eq. (4.1) can be decomposed into two terms: 

and 

1 
When XI = X2, p(-) is reduced to pl and hence the optimization involves only p, . 

2 

We can rewrite pl as follows: 



where = 
1 

+ " and a, = a, = - is assumed for Z, and Z,. Therefore, ignoring the 
2 2 

multiplicative constant, the optimization of p, alone is the same as the discriminant 

ana:lysis. From previous discussion, only one linear feature is needed to maximize this 

criterion and the transformation is given as: 

When MI = M, , p = p, . Based on the optimization of p, , 47 eigenvectors of (31 
ZilC, are selected corresponding to the q largest A + + 2 terms, where Ai is the ( f i i  ) 
eige:nvalue. Each eigenvalue of x; '~ ,  gives the ratio of the o,- and o,-variances along 

the respective eigenvectors. By selecting the largest terms, this method 

extracts the features where the variances of the two classes are different. 

Typically for one-stage classifiers, when the Bhattacharrya distance is used for 

feature reduction for more than two classes, the minimum or average pairwise distance 

between all class combinations is used as the sub-optimal criterion for optimization. For 

a binary tree classifier, this suboptimal choice of criterion can be avoided. When the 

node splitting rule involves two normal classes, the Bhattacharrya distance is an optimal 

criterion for feature extraction. 

Since the optimization of the Bhattacharyya distance is infeasible, a suboptimal 

procedure is adopted to find the effective features. The method proceeds as follows: 



Bha.ttacharyya Distance Feature Extraction (BDFE) Algorithm: 

Step I .  Compute the eigenvalues Ai and orthonormal eigenvectors @i of 
- 
Z-' (M,  - M,) (M,  - where = + Z 2  . Since the rank of the 

2 

matrix is one, only the first eigenvalue A, is non-zero. The class 

separability due to the mean difference is then preserved by the 

transformation @Tx.  

T 
Step 2. Perform the transformation y = [dm.. @,,I x by which x is mapped to the 

( p  - 1.) -dimensional subspace where there is no informaltion due to mean 

difference. Let 0,-, = - - 

Step 3. Extract (p - 1) features, Y = [ yl-.. yq-,] , by optimizing p, on y . These 

features then preserve the information due to covariance: difference. The 

overall transformation is then given by 

The above procedure has the advantage of adding more features based on 

covariance information to the one feature extracted by discriminant analysis for two 

classes. The benefit of having additional features is demonstrated in the following 

expl~riment. Using simulated data of 8 features and 2 classes, the experiment compares 

the effectiveness of discriminant analysis feature extraction (DAFE,) and the above 

numerical approach based on Bhattacharyya distance (BDFE). Three sets of computer 

generated data are generated, in which the mean difference (M), the covariance difference 

(C)! and both the mean and covariance differences (M-C) are domin'ant, respectively. 

Since there are only two classes, only one feature is used using DAFE. For BDFE, a total 

of four features are obtained. The classification results are summarized in Figure 4.4. 

These results show that when the class covariance matrices are: different, it is 

advantageous to use additional features obtained with BDFE based on covariance 

infclrmation. 
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Figure 4.4 Comparison of DAFE and BDFE Methods for Data With 
Dominant Mean Difference (M), Dominant Covariance Difference (C), and 

Both Mean and Covariance Difference (M-C) 

4.4 Binary Tree Design for Feature Extraction 

The above binary tree design can also be used as a feature extraction method. Since 

two classes are processed at each node, the features generated from the feature extraction 

algorithm are optimal with respect to the two classes. Therefore, features from each tree 

node can be combined to form collectively a set of features for the single-stage classifier. 

The advantage of this approach is that the feature extraction algorithms such as DBFE are 

not necessarily optimal for more than two classes whereas the BDFE algorithm is only 

app:licable for two classes. 

For multiclass problems, DBFE generates features by averaging pairwise decision 

boundary feature matrices for all classes. The average matrix may not be optimal for all 

classes since some class pairwise decision boundaries are not necessariljr effective for the 

multiclass situation. Therefore, the features obtained from the average rnatrix may not be 

optjmal. The binary tree design can circumvent this problem by extracting optimal 

features for each pair of classes based on their decision boundary feature matrix and use 



thes,e features for the single-stage classifier. Likewise, BDFE can be extended to the 

multiclass problem using the binary tree to extract features for pairwise classes. These 

features can then be combined for the single-stage classifier. The effectiveness of these 

methods will be demonstrated by experiments. 

4.5 Experimental Results 

In the following experiments, the proposed binary tree design is used both as a 

classifier and a feature extraction method. The data set consists of some agricultural 

classes from an AVIRIS image with 220 spectral bands taken over (of NW Indiana's 

Indjan Pine test site in June 1992. The water absorption bands and noisy bands (104-108, 

150-163, 220) are removed, resulting in a total of 200 bands. Since the data were 

collected in the early part of the growing season, soybean and corn canopies gave only 

about 5% ground cover. Four classes which present a challenging classification task are 

selected. The mean vectors of these classes are plotted in Figure 4.6. The figure shows 

that these classes have very similar mean values, thus presenting a challenging 

classification task. The covariance information should play an irnportant part in 

classification. The number of labeled samples of these classes are given. in Table 4.1 and 

their ground truth map is shown in Figure 4.5. Since the labeled samples are few, to 

retain enough samples as training and testing samples, the spectral channels are sampled 

at a fixed interval of 4, which leaves 50 channels for the experiment. 

Table 4.1 
Class Description for AVIRIS Data in Figure 4.5 

Class Names No. of Labeled Samples 
Corn-notill 1066 
Corn-min 834 
Soybean-notill 501 
Soy bean-min 662 
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Figure 4.5 AVIRIS Data and Ground Truth Used in Experiment 4.1 (Original in Color) 
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Figure 4.6 Mean Graph of AVIRIS Data in Figure 4.5 

There are six methods being tested and compared. The methods and their 

abbreviations are listed in Table 4.2. The method "Resubstitution" esser~tially uses all the 

labeled samples for training and testing as well. Therefore, its classi~fication accuracy 

provides an upper bound. In other words, it is the best performance attainable by the 

limited design set. The method "ML-DAFE" is the single-stage maximum likelihood 

classifier with discriminant analysis as the feature extraction method. "ML-DBFE" 

denotes the single-stage maximum likelihood classifier using decision boundary feature 

extraction (DBFE) method. The two-class binary tree classifier with DBFE method at 

each node is denoted as "DTC-DBFE" whereas the single-stage maximum likelihood 

classifier using features generated by the binary tree with DBFE is indicated as 

"MIJDTC-DBFE". Likewise, "DTC-BDFE" and "MLDTC-BDFE" represent the binary 

tree classifier with Bhattacharyya distance feature extraction (BDFE) at each node and 

the single-stage classifier with tree generated features using BDFE. 



Table 4.2 
Description of Methods Tested in Experiment 4.1 

Abbreviation Methods 
Resubstitution Single-stage Gaussian Maximum Likelihood using all labeled 

samples for training and testing 
ML-DAFE Single-stage Gaussian Maximum Likelihood with DAFB 
ML-DBFE Single-stage Gaussian Maximum Likelihood with DBF'E 
DTC-DBFE Decision Tree with DBFE 
ML/DTC-DBFE Single-stage Gaussian Maximum Likelihood with tree generated 

features using DBFE 
DTC-BDFE Decision Tree with BDFE 
ML/DTC-BDFE Single-stage Gaussian Maximum Likelihood with tree generated 

features using BDFE 

The experiment is repeated with different number of spectral features up to 50 

features and the training set size of 55, 100 and 500 per class. The training samples are 

randomly selected and thus the experiment is repeated 10 times. Ex~cept for the first 

experiment using 5000 labeled samples, the data samples are obtained directly from the 

image. The simulation data with 5000 samples is generated using the statistics from the 

labeled samples of the four classes. The purpose of this simulation is to compare the 

methods for large training and test sets. The results are shown in Figures 4.8-4.10. It 

sholuld be noted that for the binary tree generated features using ML/DTC-DBFE and 

MLDTC-BDFE methods, the total number of features from the collection of one feature 

genlcrated at each node is equivalent to the number of internal nodes with non-repeating 

dec:isions. The binary tree generated for this data is shown in Figure 4.7. Since the 

number of non-repeating decisions is six, in the results below, the number of features are 

in the multiple of six for the single-stage classifier with tree generated features using 

MLDTC-DBFE and MUDTC-BDFE methods. 

Figure 4.7 The Binary Tree Generated for AVIRIS Data 
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Figure 4.8 Classification Result for 500 Training Samples (AV1.RIS Data) 

The above figure shows the result obtained for various methods when there are 

ample training and test samples. Since this is the case of large sample size, no Hughes 

phenomenon takes place and the highest accuracy occurs at full dimensionality for all 

methods. The best result is achieved by the resubstitution method which provides the 

upper bound for the data set. The next best result is obtained by DTC-DBFE. It 

demonstrates that for large training set size, the optimal features are generated based on 

the decision boundary which is well-defined for large sample size. The two-class binary 

tree also generates the optimal features for DBFE as compared to the algorithm for 

multiclass DBFE as proposed in [32]. Since there are four classes, only three features are 

generated using DAFE. These features also do not utilize the covariance information. 



Therefore, its performance is worse than other methods. The result also shows that 

BDI'E is an suboptimal approach. 
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Figure 4.9 Classification Result for 100 Training Samples (AVIRIS Data) 

Using 100 training samples for 50 channels represent the case of moderate training 

set size. Figure 4.9 shows that the best result is obtained by DTC-EIDFE. Although 

BD:FE is suboptimal, it requires fewer training samples than DBFE for better 

perlomance. When the training set size decreases, the parameters are not well estimated 

which affect the decision boundary estimate as well. Therefore, the: performance of 

DBFE suffers. Since BDFE also uses covariance matrix estimate, the performance 



declines as well, but not as much as DBFE. The DAFE method uses only the mean 

infclrmation, so its classification accuracy remains comparatively stalole for moderate 

training set size. 
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Figure 4.10 Classification Results for 55 Training Samples (AVIRIS Data) 

Figure 4.10 shows the classification result for small training set size since there are 

only 55 training samples per class for 50 channels. In this setting, the c:ovariance matrix 

estimate becomes highly variable. Since both DBFE and BDFE meth.ods make use of 

covariance information, their performance deteriorates. However, by processing two 

classes at a time and using fewer features, the proposed tree classifier using BDFE (DTC- 



BDIFE) maintains a relatively good performance up to a point. As expected, the best 

result is obtained by using DAFE whose optimization is based on the mean vectors only. 

The previous experiment is repeated for another set of data taken by a different 

sensor. The test data was taken from the multispectral data collelcted using Field 

Spectrometer System (FSS) and the major parameters are shown in Table 4.3. Four 

multi-temporal classes of the type "Spring Wheat" are chosen from the FSS data collected 

in June, July and August, 1978. The number of labeled and training samples are given in 

Table 4.4. A total of 20 spectral bands are selected from the original 60 spectral bands. 

As shown in Figure 4.11, these multi-temporal classes have some difference in mean 

values. The generated binary tree is illustrated in Figure 4.12. Again, there are six non- 

repeating internal node decisions in the tree, so the tree generated features are in the 

multiples of six. Figure 4.13-4.15 show the classification results using different training 

set size. Since the training samples are randomly selected, the experiment is repeated 10 

times and the figures show the mean values of classification accuracy. 

Table 4.3 
Parameters of Field Spectrometer System 
Number of Bands 60 
Spectral Coverage 0.4 - 2.4 pm 
Altitute 60 m 
IFOV (ground) 25 m 

Table 4.4 
Class Description of FSS Data in Figure 4.1 1 

Multi-temporal Classes Abbreviations No. of Labeled Samples 
Spring Wheat 8/16 SP8-16 464 
Spring Wheat 7/26 SP7-26 5 15 
Spring Wheat 7/09 SP7-09 454 
Spring Wheat 6/02 SP6-02 5 15 
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Figure 4.11 Mean Graph of Multi-temporal FSS Data 

Figure 4.12 The Binary Tree Generated for FSS Data 
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Figure 4.13 Classification Results for 70 Training Samples (FSS Data) 

Using 70 training samples, all methods achieve the best result at higher 

dim,ensionality. This demonstrates that when there are many training samples, the 

Hughes effect does not exist. Among all methods, the tree classifier with Bhattacharyya 

distance feature extraction (DTC-BDFE) method achieves the best result using smaller 

nun~ber of features. 
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Figure 4.14 Classification Results for 30 Training Samples (FSS Data) 

Using only 30 training samples for 20 dimensional data, the results start to display 

the Hughes effect. The best results are obtained using the binary tree classifier with 

Bhattacharyya distance feature extraction (DTC-BDFE) method and the single-stage 

classifier using features generated from the binary tree using BDFE. 
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Figure 4.15 Classification Results for 25 Training Samples (FSIS Data) 

With only 25 training samples, the Hughes effect becomes more severe. As in the 

cast: of 30 training samples, the best results are still obtained by DTC-BDFE. It again 

sho.ws the relative robustness of Bhattacharyya distance feature extraction (BDFE) as 

conipared to decision boundary feature extraction (DBFE) method in the case of small 

training set size. 



Experiment 4.3 

In previous experiments, the methods are tested for the case in which the number of 

training samples is greater than the dimensionality. In this experiment, the proposed 

binary tree classifier is tested for numerous class some of which have fewer training 

samples than the number of spectral channels. Six classes are chosen from the FSS data 

collected on August 16, 1978. The number of labeled and training samples are given in 

Table 4.5. A total of 20 spectral bands are selected from the original 610 spectral bands. 

As shown in the table, the training samples of class "Alfalfa" and "Barley" are as few as 

11 and 20 respectively, while some other classes have many more training samples. In 

this case, DBFE is no longer applicable. Therefore, DAFE is used instead for the single- 

stage quadratic classifier and only BDFE is used for the binary tree classifier. Since the 

number of training samples for each class varies quite significantly, the number of 

features at each node should also differ depending on the available traini~ng samples. The 

optimal number of features for each node is difficult to determine. Therefore, as a rule of 

thumb, when one or both of the classes contain training set size which is less than the 

dimensionality, only a single feature is generated. And when the average covariance 

estimates at each node is singular, BDFE cannot be applied and thus the Euclidean 

distance classifier is adopted instead. On the other hand, when there are many training 

samples, more features can be generated at each node as defined by the user. In this 

experiment, the number of features selected for BDFE is 10. Table 4.6 shows the 

periormance comparison for the classifiers. 
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Figure 4.16 Mean Graph of FSS Data with Six Classes of Varying Size 

Table 4.5 
Class Description for FSS Data in Figure 4.16 

Class Names No. of Labeled Samples No. of Training Samples 
Native Grass 212 42 
Alfalfa 59 11 
Oats 165 33 
Summer Fallow 216 43 
Spring Wheat 464 92 
Barley 103 20 

Total samples 1278 252 



Table 4.6 
Classification Results for FSS Data with Varying Size 

Classification Accuracy (%) 
Class Names Resubstitution ML-DAFE DTC-:BDFE 
Native Grass 95.88 92.94 91.76 
Alfalfa 91.67 43.75 79.17 
Oats 78.79 77.27 65.91 
Summer Fallow 90.17 89.02 89.02 
Spring Wheat 77.42 72.58 82.53 
Barley 87.95 67.47 68.67 

Ave Accuracy (%) 86.98 73.84 79.51 

The resubstitution accuracy presents the most optimistic performance by using all 

1abe:led samples for training and testing as well. It was shown that by using the tree 

classifier, the performance improves by 6% from the single-stage classifier. The 

performance of the class Alfalfa which has only 11 training samples has increased from 

43.75% to 79.17% using the binary tree classifier. 

4.6 Summary 

A binary tree design for classification and feature extraction has been proposed in 

this work. As a classifier, the divide-and-conquer approach of the proposed binary 

classifier has been shown to mitigate the Hughes phenomenon when used with a proper 

feature extraction method. The experimental results show that when the design set size is 

large, the two-class binary tree classifier using decision boundary gesture extraction 

(DEiFE) gives better performance at small number of features. Also, DBFE for more than 

two classes is not optimal. However, since in this case the Hughes phenomenon does not 

exist, all methods give the same performance at full dimensionality. On the other hand, 

when the training set size is moderate or small compared to the number of features, the 

binary tree classifier with Bhattacharyya distance feature extraction (BDFE) has better 

results by using fewer features at each node. Also, BDFE does not suffer as much as 

DBFE due to limited training set size even though both methods utilize covariance 

infc~rmation. However, when the covariance matrices are poorly estimated, the single- 

stag;e classifier using discriminant analysis feature extraction (DAFE) is more reliable 

since DAFE utilizes only the mean information. 



A heuristic rule for employing different classification rules and :Feature extraction 

methods at each node has also been proposed to process data with varying sample size for 

each class. When the total number of training samples is close to or less than 

dim~ensionality , the Euclidean distance classifier is used instead. Experimental result 

shows that the multi-stage classifier has higher classification accurac!r than the single- 

stage approach. However, the types of classification rules and feature reduction methods 

are by no means limited to the ones mentioned in this work. The feature extraction 

methods mentioned in this chapter depend on the quality of the covariance estimate. 

Me1:hods which can deal with fewer training samples than dimensionality are needed. 

Projection pursuit [44] may be used to reduce dimensionality prior to performing feature 

extIaction. Future research can also be directed towards finding the best approach to deal 

with different types of data, thus making the tree classifier more automated. In addition, 

a method to determine the optimal number of features at each node should be a 

challenging research problem. A major disadvantage of using binay tree generated 

features is that the number of features is generated at a multiple of the number of non- 

repeating binary decisions. Therefore, a method which can select the most significant 

features from the collection of tree extracted features should be investigated. 



CHAPTER 5: CONCLUSIONS 

This thesis has presented several solutions to circumvent the problems of 

classification associated with high dimensionality. These problems have become more 

prevalent in remote sensing due to the increase in spectral and spatial resolution of the 

new sensors with higher dynamic range. Although more classes become spectrally 

sep'arable, unfortunately, when the number of spectral features increases, the 

classification performance deteriorates if the number of training samples remains fixed. 

Thi ;~ has been widely known as the Hughes phenomenon. The problem of the Hughes 

phenomenon is attributed to the fact that more training samples are required to specify the 

dec:ision boundary for classification at higher dimensionality. In the case of Gaussian 

maximum likelihood classification, the decision boundary is defined by the mean vector 

and covariance matrix. The variances of these estimates increase as tht: ratio of training 

sarr~ple size to the dimensionality decreases. Therefore, the estimation of these 

parameters becomes crucial for classification performance. In this thesis, methods have 

bee11 proposed to deal with these problems and shown to improve classification accuracy. 

In Chapter 2, the problem of limited training set size is addressed by including 

unlabeled samples for parameter estimation. The use of unlabeled samples in addition to 

training samples can also be viewed as estimating parameters under thle mixture model. 

The: maximum likelihood estimates for the mixture model are obtained via the 

expectation maximization (EM) algorithm. Unfortunately, the EM algorithm is sensitive 

to the presence of statistical outliers. As a result of increased spectral and spatial 

resc,lution, more classes are spectrally separable with varying sample sizes. Some classes 

with few samples may be difficult to identify and may form statistical outliers. Thus, a 

robust version of the EM algorithm was proposed. This robust EM (REM) algorithm 

reduces the influence of statistical outliers by assigning less weight to samples further 

away from the main body of distributions. Experimental results have shown that without 



statistical outliers, both the EM and REM algorithms perform better than the maximum 

likelihood (ML) parameter estimation using training samples alone. They can even 

mitigate the Hughes phenomenon if there are enough unlabeled samples available. In the 

presence of outliers, the REM algorithm achieves better classification accuracy than the 

EM and ML methods. Despite the promising results, the mixture model has to be used 

wit11 caution. In addition to the presence of statistical outliers, the pe:rformance of the 

mixture model is also affected by the number of unlabeled samples available and the 

initial conditions. It has been shown experimentally that without a sufficient number of 

unlabeled samples, the performance of the EM and REM algorithms is as poor as using 

training samples alone at high dimensionality. It was assumed in ttds work that the 

training samples provide reasonable initial parameter estimates far the iterations. 

Without a good initial estimate, the convergence to the optimal solution is not 

guaranteed. Also, if the number of training samples is less than the dimensionality, the 

covariance matrix becomes singular and hence the iterative equations c'annot be applied. 

In tlnis case, either a feature reduction method must be used or a non-singular covariance 

estiimate must be obtained from the training samples by imposing some constraint on its 

forrn. The latter approach is addressed in Chapter 3. 

The inverse of a covariance matrix becomes ill- or poorly-posed :if the training set 

size is small compared to dimensionality. Conventionally, the stalbilization of the 

c~v~ariance estimate has been accomplished by regularization which tends to reduce the 

variance of the estimate at the expense of increased bias. This method can also be 

viewed as a compromise between the linear and quadratic classifiers. In Chapter 3, a 

regularization method under the Bayesian setting has been proposed.. The proposed 

Bayesian leave-one-out covariance (bLOOC) estimation method war; shown to have 

better performance than other methods when the training set size reflects the true priors 

of the classes. This is particularly true for remote sensing app1ical:ions since more 

training samples are usually selected for larger classes. When used in conjunction with 

discriminant analysis feature extraction (DAFE), the proposed covariance estimation was 

demonstrated to circumvent the limited training set size problem. 

Since the leave-one-out likelihood is used as the criterion for these estimators, it has 

the drawback of not being directly related to class separability, and subsequently the 

classification accuracy. Therefore, some smooth loss function derive:d from the class 

separability is recommended for future work. Also, since decision lboundary feature 

extraction (DBFE) is not suitable for small training sample size and DIEE method does 



not work well when the classes have similar mean values, an alternative feature 

extraction or classification methods need to be explored. A solution is proposed in 

Chapter 4 using a two-class binary tree with a feature extraction   net hod based on 

maximizing Bhattacharyya distance. 

In Chapter 4, a two-class binary tree design has been proposed to function as a 

classifier and a feature extraction method. One advantage of using a divide-and-conquer 

method is that fewer features can be used at each node. Also, different decision rules can 

be applied depending on the training samples available at the local nodle. By using two 

classes instead of two subgroups of classes for node decision, the problem of merging can 

be avoided. Since the classes defined for remote sensing applications are assumed to be 

norlnally distributed, the two-class binary decision is basically a Gaussian maximum 

likelihood classification. The binary structure is also desirable for obtaining optimal 

features based on two normal classes using either decision boundary feature extraction 

(DEIFE) or Bhattacharyya distance feature extraction (BDFE) methods. These features 

can then be collectively used in a single-stage classifier. Experimental results have 

shovwn that BDFE is more robust than DBFE for limited training set size. This is due to 

the fact that BDFE is a suboptimal approach with the main empha.sis on the mean 

difference between two classes and with additional features based on covariance 

infclrmation. In contrast, DBFE relies on the decision boundary which j.s sensitive to the 

accuracy of mean and covariance estimates. DBFE for multi-class p:roblems has also 

been shown to be suboptimal. The discriminant analysis feature extraction (DAFE) 

method is mainly based on the class mean information. Therefore, BDFE can be 

considered as a compromise between DAFE and DBFE. Unfortunately, BDFE also uses 

covariance estimate and thus cannot be applied when the training set size is smaller than 

the dimensionality. 

To deal with the case in which some classes have fewer training samples than the 

dimensionality, a heuristic rule for employing different classification rules and feature 

exhaction methods at each node was proposed. When one (or both) of the classes in each 

node has training samples less than dimensionality, but the combined number of training 

sarrlples is greater than dimensionality, the linear classifier with their average covariance 

esti:mate may be applied. When the total number of training samples are close to or less 

than the dimensionality, the Euclidean distance classifier is used instea.d. Experimental 

results have confirmed the benefit of the binary tree classifier using different 

classification rules for each node based on the locally available training samples. Despite 



the promising results, more work remains to be done. For future work, a thorough study 

on i.he types of classifiers and feature extraction methods suitable for various types of 

data is recommended. In particular, feature extraction methods for two classes with 

fewer training samples than dimensionality are needed. In this case, projection pursuit 

may be used to reduce dimensionality prior to performing feature extraction. In addition, 

methods to decide the optimal number of features for each node and for selecting most 

significant features from a collection of tree generated features should be explored. 
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