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Abstract—The deep convolutional neural network (DeCNN) is
considered one of promising techniques for classifying the high-
spatial-resolution remote sensing (HSRRS) scenes, due to its pow-
erful feature extraction capabilities. It is well-known that huge
high-quality labeled datasets are required for achieving the better
classification performances and preventing overfitting, during the
training DeCNN model process. However, the lack of high-quality
datasets limits the applications of DeCNN. In order to solve this
problem, in this article, we propose a HSRRS image scene classifica-
tion method using transfer learning and the DeCNN (TL-DeCNN)
model in a few shot HSRRS scene samples. Specifically, three typical
DeCNNs of VGG19, ResNet50, and InceptionV3, trained on the
ImageNet2015, the weights of their convolutional layer for that of
the TL-DeCNN are transferred, respectively. Then, TL-DeCNN
just needs to fine-tune its classification module on the few shot
HSRRS scene samples in a few epochs. Experimental results in-
dicate that our proposed TL-DeCNN method provides absolute
dominance results without overfitting, when compared with the
VGG19, ResNet50, and InceptionV3, directly trained on the few
shot samples.

Index Terms—Deep convolutional neural network (DeCNN),
few shot, high-spatial-resolution remote sensing (HSRRS), scene
classification, transfer learning.
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I. INTRODUCTION

W
ITH the development of satellite remote sensing and

computer technology, the spatial resolution and tex-

ture information of remote sensing image have been improved

and corresponding processing approaches have been updated.

High-spatial-resolution remote sensing (HSRRS) image with

higher spatial resolution and abundant texture details have been

performed well in object identification, classification, and in-

formation extraction [1]–[3]. In recent years, a lot of HSRRS

images have been acquired and significant efforts have been

made for land use land cover (LULC) scene classification in the

field of pattern recognition [4], [5]. These approaches extract

features first from training data and then build a classification

model for testing other data. Most of the recognition methods

are based on deep learning.

Deep learning has been successfully applied in extraction of

abstract and semantic features [6]–[12], and it performs well

in target identification, object detection, and classification. The

convolutional neural network (CNN) is one of typical deep

learning algorithms, and many types of algorithms based on

CNN (e.g., ResNet, VGG, Inception) have been developed in

computer vision, natural language processing, medical, and

remote sensing image processing [13]. These practical appli-

cations indicated that the depth of a network is vital for the

model, when adding layers to the network, it can extract more

complex features. While the model with a deeper layer will

obtain better performance and training CNN model, especially

the deep CNN (DeCNN) model often requires a lot of labeled

data. However, it is hard to obtain a huge amount of labeled

data to train the DeCNN model for HSRRS scene classification

problem. In addition, it takes a lot of manpower and resources to

label the HSRRS data. When the size of labeled data is not large

enough, the trained DeCNN model easily show an overfitting

problem. Several studies have shown that transfer learning get

a good performance in classification and recognition for small

scale training data [14].

In this article, we propose a transfer learning and DeCNN

(TL-DeCNN) model-based classification method to reduce the

overfitting problem and improve the classification accuracy with

limited labeled samples. Specifically, three typical DeCNN mod-

els, i.e., VGG19, ResNet50, and InceptionV3, are combined with

transfer learning, respectively. And these combined algorithms
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are called TLVGG19, TLResNet50, and TLInceptionV3. To

assess the performance of TL-DeCNN for few shot HSRRS

scene classification, the retraining and testing accuracy, loss,

confusion matrix, overall accuracy (OA), and kappa coefficient

(KC) are used. The main contribution of this article includes the

following three aspects.

1) The DeCNN-based HSRRS image scene classification

method is presented in a few shot samples. We train three

CNN models, i.e., VGG19, ResNet50, and InceptionV3,

in a few shot samples and evaluate their accuracy. Ex-

periment results show that InceptionV3 is the best mode

among the three models.

2) TL-DeCNN-based HSRRS image scene classification is

proposed in limited labeled samples case. Our proposed

TL-DeCNN model is trained in a limited labeled HSRRS

scene samples in a few epochs by considering fine-tune.

3) The DeCNN-based scene classification method is also

considered as a benchmark method using large amount

of labeled HSRRS images.

The rest of this article is organized as follows. An overview

of CNN-based HSRRS image scene classification and transfer

learning-based application is presented in Section II. The pro-

posed architectures based on the DeCNN model and TL-DeCNN

for HSRRS image scene classification with small and large

amounts of labeled data are given in Section III, respectively.

In Section IV, the HSRRS image preprocessing, the architec-

ture based on VGG19, ResNet50, and InceptionV3 for scene

classification will be described, respectively. Also the evaluation

indexes of the classification model will be described. Following,

the results of HSRRS scene classification with DeCNN and

TL-DeCNN with a few shot samples and quantitative indicators

are described in Section V. Meanwhile, the results of the large

amount of labeled HSRRS image scene classification based on

DeCNN are compared with that of TL-DeCNN with few shot.

Finally, some concluding remarks are drawn in Section VI.

II. RELATED WORK

HSRRS image scene classification problem can be extracted

subregions into different semantic classes, and it is a fundamen-

tal task and significant application for remote sensing, such as

urban planning, object detection, and natural resource manage-

ment. Many recent works have demonstrated that CNN is the

most successful and widely applied deep learning method, and

has been applied to make HSRRS image scene classification task

[16]–[19]. Especially, the DeCNN performs well in semantic

features extraction with a lot of convolutional layers and a large

amount of training dataset. However, it is difficult to train a

DeCNN model with a few samples.

HSRRS image has higher spatial resolution and fewer spectral

channels compared with a coarse or medium spatial resolution

remote sensing data, and it is more difficult to identify subtle

differences among similar land cover types. Meanwhile, the

phenomenon “same object represents different spectrum” and

“same spectrum belongs to different objects” of HSRRS image

leads to the failure in solving lots of classification tasks with

high-accuracy demand. Tremendous efforts have been made

to develop robust and automatic image classification methods.

Machine learning approaches (e.g., support vector machine,

random forest, k-nearest neighbor, and multilayer perception)

have been used widely in HSRRS image classification, and lots

of achievements have been gained [20]–[22].

Recently, deep learning has represented the state of the art in a

variety of domains, and CNN as a typical deep learning method,

has obtained excellent results in the field of computer vision

[23], wireless communications [24], [25] and remote sensing

image processing [15], [16]. HSRRS image scene classification

based on CNN has achieved excellent results recently. Penatti

et al. evaluated the generalization power of CNN features from

fully connected layers and obtained a state of the art result with

a public HSRRS image data set [26]. Feature fusion strategies

to integrate the multilayers features to CNNs for HSRRS image

scene classification have been proposed to complete the clas-

sification tasks [16], [27]–[30]. Gong et al. proposed a deep

structural metric based learning approach for HSRRS image

scene classification [31]. Ji et al. proposed a model based on

multilevel features and attention model for remote sensing image

scene classification [32]. Bi et al. proposed an attention pooling

based convolutional network for aerial scene classification [33].

The early works have achieved excellent results in HSRRS

image scene classification with a fully training CNN model.

However, training a CNN model needs a considerable amount

of labeled dataset, which is rather difficult for HSRRS images.

Many efforts have been made to add the training samples or

improve the robustness of CNN, including data augmentation,

detecting adversarial perturbations [34], increasing the depth of

CNN and transferring the pretrained CNN model or knowledge

into a scene classification task [35].

Transfer learning is an important solution for improving the

robustness of CNN-based classification models. Zhang et al.

based on the features of adjacent parallel lines searched for re-

gions of interest and confirmed the final targets through transfer

learning on the AlexNet [37]. Li et al. proposed a best activation

model in the end-to-end process for LULC image classifica-

tion [4]. Nogueira et al. proposed a method by transferring

parameters from a pretrained network and retrained the new

network without parameter selection [38]. Zhao et al. combined

the pretrained AlexNet with a multilayer perception structure to

make classification [39]. Huang et al. constructed a semitransfer

DeCNN to make image classification [40].

III. PROPOSED TL-DECNN-BASED METHOD

Deep learning-based HSRRS scene classification problem is

still a challenge due to the limited labeled images. In this section,

a robust classification method using TL-DeCNN is proposed.

The architecture of our proposed TL-DeCNN based HSRRS

image scene classification is shown in Fig. 1. We can see that

the architecture can be divided into the following three steps.

1) The first step is training classification model based on Im-

ageNet2015 and transferring the knowledge to the target

classification task.

2) The second step is fine-tuning with limited labeled HSRRS

images.



1988 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 1. Architecture of TL-DeCNN for HSRRS scene classification.

3) The third is the evaluation indicators for model and results.

The goal of the architecture is to transfer deep knowledge

from the ImageNet2015 to the limited training HSRRS image

data in urban built-up areas scene classification, and improve the

accuracy of classification.

A. Transfer Learning

Transfer learning is a popular training strategy to overcome

the label-limited difficulty by initializing the training model

with the parameters or knowledge, which have been learned

from other large datasets. Through fine-tuning with a small

amount of labeled data of the target task to obtain a better

training model. Section II has shown that CNN performs well

in semantic information extraction and scene classification for

HSRRS scene classification and object identification, and the

pretrained CNN model can be transferred to the current clas-

sification task. However, most of the research works focus on

a shallow network with insufficient samples. And the DeCNN

mostly focuses on object identification or classification with

a large number of training samples, it needs a lot of labeled

samples. When the depth of network increases, HSRRS image

scene classification architecture may not be feasible. In order

to solve this problem, we proposed TL-DeCNN-based HSRRS

image scene classification methods with a few shot samples.

B. Knowledge Transfer From ImageNet2015 to HSRRS Scene

Classification Task

This work is divided into the following three parts: model

training based on ImageNet2015, feasibility of transfer learning

between the ImageNet2015 and HSRRS scene classification task

and the method for knowledge transfer. First, the architectures

of DeCNN models, VGG19, ResNet50, and InceptionV3 are

applied to extract features. Second, the applicable conditions of

transfer learning are introduced. Finally, the extracted features

are transferred into the HSRRS scene classification task.

1) DeCNN Training: DeCNN contains more than one layer

of CNN to extract diacritical features and for accurate classi-

fication. A DeCNN usually is constructed by stacking several

convolutional layers, pooling layers to form deep architecture

[41]. CNN is one of the typical supervised learning methods,

which need labeled data to learn and then make predictions for

the unlabeled data. The input labeled data can be expressed as

x = [x(1),x(2), . . . ,x(i), . . . ,x(n)]T (1)

where x(i) represents ith feature of x, and the training data are

formed by pairs of featurexi and output fi(x). Then, the training

function can be expressed as

T = {(x1, f1(x)), (x2, f2(x)), . . . , (xN , fN (x))} (2)

where xi = [x
(1)
i

, x
(2)
i

, . . . , x
(n)
i

]
T

. The training method of

CNN is similar with (2). And the goal of CNN is to learn mapping

from input features to output, which is represented by a model

in application. The model can be expressed as

T = fCNN(θ;S) (3)

where θ is the parameters trained by CNN with samples S, and

θ can be divided into two parts: θ=(θF , θCCE). The former is

feature extraction or learning and the latter is called classifi-

cation cross-entropy (CCE) loss function, which is applied to

make multi-category classification or prediction. Therefore, the

equation can be written as

T̃ = fCNN(θ
F , θCCE;S) (4)

where T̃ is the approximation of T , and the formulas of CCE

is given as

CCE(x) = −

C∑

i=1

yilog(fi(x)) (5)

where C is the number of categories, yi is the true label of ith

category, and fi(x) is the corresponding output of the model.

Hence, features and classifiers will be got through CNN train-

ing with ImageNet2015. To extract deeper semantic features,

VGG19, ResNet50, and InceptionV3 are applied to train the

classification model, respectively. All of the training can be

classified into two parts, feature extraction, and classifier. Since

only the features or knowledge are useful for the following

applications, the introduction of the approaches mainly focuses

on the feature extraction.

2) VGG19: One of the most popular DeCNN models is

VGG19, which is developed by Simonyan and Zisserman [42].

It is an influential DeCNN model, and it considers the depth

of appropriate layers without increasing the total number of

parameters. There are 16 convolutional layers and 3 fully con-

nected layers in VGG19 with 3× 3 convolution kernel size and

2× 2maximum pooling size. And a series of convolutional, max

pooling, and rectified linear unit (ReLu) functions construct a

convolutional block.

3) ResNet50: ResNet50 is one of the most common DeCNN

for object detection and classification with a huge amount of

samples, and it well resolves the degradation caused by the

increasing number of layers in the network. It has been indicated

that ResNet50 performs better in image scene classification than

other CNN models in the ImageNet datasets [43]. The main idea

of ResNet is to add a direct connection channel in the network,

and it is called a highway network, which allows the original

input information to be passed directly into the next layer. And

its formula is given as

xl = ReLU(f(xl−1, wl) + xl−1) (6)

where xl−1 and xl are the input and output features of the lth and

(l + 1)th layers, respectively. wl is the weights associated with

the lth layer of ResNet block. Each residual block consists of
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Fig. 2. Schematic diagram of transfer learning.

a series of layers, convolutional, batch normalization, pooling,

and ReLU. And it can resolve the gradient degradation and

overfitting problems very well.

4) InceptionV3: InceptionNet is proposed to increase the

depth and width of the network, and finally improve the per-

formance of the neural network. InceptionV3 is one of the most

popular InceptionNet for classification [36]. It introduces the

idea of factorization into small convolutions and uses branches

not only in the inception module but also in the branches, which

can promote high-dimensional representations.

5) Transfer Learning-Based Method: Fig. 2 is the schematic

diagram of transfer learning, and given a source domain DS

and learning task TS , a target domain DT , and learning task

TT , transfer learning is defined to help improve the learning of

the target predictive function fT (·) in DT with the knowledge

in DS and TS , where DS �= DT , or TS �= TT . What is need

to be noted is that each domain is a pair DS = XS , P(X )S
and DT = XT , P(X )T , the condition implies for the source

and target tasks, either the term features are different or their

marginal distribution are different. Similarly, the tasks have the

same requirement. Therefore, it can be inclined to that when

the domains are different, either the feature spaces are different

or the feature spaces between the domains are the same but

the marginal probability distributions are different. And the

definition implies that when there is some relationship (overt

or covert) between the feature spaces of the two domains, the

source and target domains are considered related, and transfer

learning can be carried out between the two domains.

There are three topics in transfer learning, the first one is what

to transfer, the second is how to transfer, and the third is when

to transfer. What to transfer means which part of knowledge can

be transferred across domains or tasks. How to transfer means

developing algorithms to transfer the knowledge and when to

transfer asks in which situations, transfer learning should be

done. In this article, we aim to achieve a good performance

in the target HSRRS scene classification task by transferring

knowledge from the source ImageNet2015 task, and as there are

labeled data both in source and task domains, it belongs to the

inductive transfer learning setting [44]. Meanwhile, the prelimi-

nary trained model based on DeCNN with ImageNet2015 is also

geared to deep transfer learning. Compared with the nondeep

approach, deep transfer learning automatically extracts more

expressive features and meets the requirement of end-to-end in

practical applications [44].

C. Fine-Tuning for HSRRS Image Scene Classification Task

Fine-tuning is the process to initialize the HSRRS scene

classification task network with the trained knowledge, which

is transferred from the ImageNet2015. And the model is trained

with the labeled HSRRS images further, the adjustment of

parameters is the same with that in scratch training. It requires the

layer of the initial network is the same with that of the source net-

work, including the same layer name, types, setting parameters,

and so on. The fine-tuning is a vital process for HSRRS scene

classification, not only make the network converge as quickly as

possible but also make generic features contribute to a specific

task. Compared with the learning rate in model training with

ImageNet2015 (0.005), the fine-tuning learning rate is smaller

(0.001), this setting could improve the accuracy of the HSRRS

scene classification.

D. Accuracy Verification

The evaluation metrics include confusion matrix, OA, KC,

and precision. The confusion matrix is the most commonly

used indicator for evaluating the performances. The OA is an

indicator for evaluating the proportion correctly classified. The

KC calculated using the confusion matrix is applied to check

consistency and evaluate classification precision. It considers not

only the OA but also the imbalance of the number of samples

in each category. The precision is an indicator measuring the

accuracy of each class, and it means the number classified into

a certain class, which actually belongs to the true class.

IV. EXPERIMENTS

In this section, to check the performance of the proposed

TL-DeCNN, experiments have been conducted on three aspects.

The first one is few shot HSRRS image scene classification

based on VGG19, ResNet50, and InceptionV3, respectively. The

second one is limited labeled HSRRS image scene classification

based on TL-DeCNN, which means transferring the knowledge

trained by VGG19, ResNet50, and InceptionV3 based on Ima-

geNet2015, to the target limited labeled HSRRS image dataset

to make classification, respectively. And the third one is a large

amount of labeled HSRRS images for scene classification based

on VGG19, ResNet50, and InceptionV3, respectively.

A. Data Description

The HSRRS images collected in urban built-up areas are

extracted from the UC merced land use dataset [45] and the

remote sensing image classification benchmark dataset [46].

There are ten categories of objects needed to be classified in

our experiments, and the sample size of training and testing

for few, TL-DeCNN-few and large amount labeled samples are
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Fig. 3. Accuracy and loss during training and testing for (a) VGG19, (b) Resnet50, and (c) InceptionV3 with limited labeled HSRRS images.

TABLE I
SAMPLE SIZE IN OUR EXPERIMENTS

1Category.
2Sample size.
3Few shot learning.
4TLDCNN-few shot learning.
5Large amount labeled sample.
6Knowledge.

shown in Table I, respectively. All of the testing sample sizes

are the same, and it is 100 samples for each category. The few

and TL-DeCNN-few amount of labeled samples for training

is randomly selected in the large number of labeled samples.

The training samples for TL-DeCNN-few not only contain the

few HSRRS image samples but also include the knowledge

transferred from the ImageNet2015. Therefore, it combines the

prior knowledge with the target to make an identification. It is

noticed that effective data augmentation has been made for all of

the labeled samples to enlarge the number of training samples,

increase their diversity, and enhance the generalization of the

trained model [16].

B. HSRRS Image Scene Classification With a Few Shot

Samples

In this experiment, VGG19, ResNet50, and InceptionV3 are

applied for HSRRS image scene classification in few shot case,

respectively.

1) VGG19: There are 16 convolutional layers mainly using

3× 3 convolutional kernels and 3 fully connected layers. The

combination of convolutional, BN and ReLu layers constructs a

convolutional block. The max-pooling layer is applied in every

two or three convolutional blocks. And the convolutional blocks

are followed by the dense layers, which are set as 4096, 4096,

and 10 in our experiment. Finally, the softmax is applied to

make a classification. The accuracy and loss in the training

and testing stages are shown in Fig. 3(a). It is easier to see

that the accuracy in training is nearly to 100% and that in

testing is lower than 40%. Meanwhile, the loss is close to 0 and

fluctuating around 8 in training and testing stages, respectively,

which means the VGG19 model is overfitting in HSRRS image

scene classification with limited labeled samples.

2) ResNet50: As illustrated in Fig. 1, the limited labeled

HSRRS images are input into the ResNet50 model. And the

accuracy and loss in training and testing phases are shown in

Fig. 3(b). It can be seen that the training accuracy is nearly

to 100%, and the testing accuracy is about 75% after training

and testing process is stabilized. Meanwhile, the training loss is

nearly to 0, and the test loss is larger than 2 when the model

is stable. Compared with the accuracy and loss of VGG19,

ResNet50 obtains a better performance, which reduces the over-

fitting phenomenon to some extent. However, the ResNet50

proposed for HSRRS scene classification with few shot samples

still demonstrates a certain overfitting problem.

3) InceptionV3: To solve the overfitting problem further,

InceptionV3 is applied to the limited labeled HSRRS scene

classification task. As described in Section III, the idea of Incep-

tionV3 is the factorization, which promotes high-dimensional

representations. The accuracy and loss during training and test-

ing stages are shown in Fig. 3(c). It shows that the accuracy

is 100% and 83.0% in training and testing after stabilization,

respectively. And the loss is 0 and about 1.8 in the training and

testing phases, respectively. Compared with the accuracies and

losses of VGG19 and ResNet50, the InceptionV3 is better in

solving the overfitting problem. But the testing result is still

much worse than that of training, and there is still overfitting for

the InceptionV3 model with few shot samples.

C. TL-DeCNN-Based HSRRS Image Scene Classification

Method

The TL-DeCNN is proposed to solve the overfitting problem

with limited training HSRRS images. Similar with that of few

shot experiments, TL-DeCNN experiment is carried out based

on limited labeled HSRRS image and knowledge transferred
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Fig. 4. Accuracy and loss during training and testing for (a) TLVGG19, (b) TLResnet50, and (c) TLInceptionV3 with few shot samples.

from ImageNet2015. Three typical DeCNN models VGG19,

ResNet50, and InceptionV3 are considered in this experiment.

1) TLVGG19: The architecture of HSRRS scene classifica-

tion based on transfer learning and VGG19 (TLVGG19) model

can be seen from Fig. 1. The knowledge trained by VGG19 with

ImageNet2015 is transferred to the limited labeled HSRRS scene

classification task. The accuracy and loss during the task training

and testing are shown in Fig. 4(a). When the process is stabilized,

the training accuracy is 100%, and the testing accuracy is 90.0%.

Meanwhile, the training loss is 0, and the testing loss is nearly

to 0.25. Compared with that without transferred knowledge, the

HSRRS scene classification task based on TLVGG19 performs

better in accuracy and loss. The testing accuracy increases from

about 40% to 90%, and the testing loss decreases from about 8

to 0.25. It demonstrates that the proposed approach can greatly

reduce the effect of overfitting problems with limited labeled

HSRRS images.

2) TLResNet50: In few shot HSRRS image scene classifica-

tion task, the architecture of transfer learning based on ResNet50

(TLResNet50) is also shown in Fig. 1. Similar to TLVGG19, the

architecture transfers the knowledge trained with ImageNet2015

to the target HSRRS scene classification task. The accuracy and

loss during task training and testing are shown in Fig. 4(b), the

training accuracy is 100% and the testing accuracy is about

96.0% when the processes are stable. The loss is 0 and 0.18

in the training and testing phase after the process stabilized, re-

spectively. Compared with that without transfer knowledge, the

testing accuracy increases about 21.2%, and the loss decreases

about 91%. This result indicates that the TLResNet50 solve the

effect of overfitting problem well with limited labeled HSRRS

image.

3) TLInceptionV3: The architecture of transfer learning

combined with InceptionV3 (TLInceptionV3) for limited la-

beled HSRRS image is also shown in Fig. 1. The accuracies and

losses in training and testing processes are shown in Fig. 4(c).

After the process is stabilized, the testing accuracy and loss

is about 92.4% and 0.26, respectively. Compared with the In-

ceptionV3 without transferred knowledge, the testing accuracy

increases by 9.4%, and the testing loss decreases from 1.8 to

0.26, which indicates that the approach we proposed is effective

in solving the overfitting problem with limited labeled HSRRS

images.

D. HSRRS Image Scene Classification in a Large Number

of Labeled Samples

From the abovementioned experiments in Sections IV-B and

IV-C, it has been found that the TL-DeCNN architectures,

including TLVGG19, TLResNet50, and TLInceptionV3 are ef-

ficient and effective in solving the overfitting problem. However,

whether the accuracy and loss of TL-DeCNN can compare with

that of a large number of labeled samples based on DeCNN.

This experiment is carried out with augmented HSRRS images

using VGG19, ResNet50, and InceptionV3, respectively.

1) VGG19: As described in Section IV-A, there are more

than 1064 samples (the size of the fewest samples is 266, and

geometric transformations have been applied for data augmenta-

tion) for training in each category in the large amount of labeled

data experiment. The accuracies and losses in training and

testing are shown in Fig. 5(a), and it can be seen that the testing

accuracy is about 90% and the testing loss is about 0.38, which

is similar with that of TLVGG19. Therefore, it indicates that

compared with the VGG19-based HSRRS scene classification

trained with a large number of labeled samples, the TLVGG19

with few shot samples could obtain similar results, and reduces

the effect of overfitting problem.

2) ResNet50: The ResNet50 is suitable for scene classifica-

tion with a large number of labeled samples. The accuracies

and losses in training and testing are shown in Fig. 5(b). After

about ten epochs, the testing accuracy and loss are stable, and the

testing accuracy is close to 98% and the testing loss is nearly to

0. Compared with the testing accuracy and loss in TLResNet50

with few shot samples, ResNet50 architecture with a large num-

ber of labeled samples is better for HSRRS scene classification

task. It demonstrates that the transfer learning contributes to the

classification task, and the performance of TLResNet50 with

limited labeled samples is inferior to the approach based on

ResNet50 with large amount of labeled samples.

3) InceptionV3: The InceptionV3 is a typical DeCNN for the

extraction of deep features. It is good at extracting deep features

from a large number of labeled samples. The accuracies and

losses of InceptionV3 with a large amount of labeled HSRRS

images in training and testing are shown in Fig. 5(c). It can be

seen that after about 15 epoches, the testing accuracy and loss

are stable, and the former is stable around 99.3%, the latter is

stable around 0.1, which is better than that in TLInceptionV3.
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Fig. 5. Accuracy and loss during training and testing for (a) VGG19, (b) Resnet50, and (c) InceptionV3 with large labeled samples.

Fig. 6. Confusion matric of limited HSRRS image samples based on (a) VGG19, (b) ResNet50, and (c) InceptionV3.

Fig. 7. Confusion matric of limited HSRRS image samples based on (a) TLVGG19, (b) TLResNet50, and (c) TLInceptionV3.

V. RESULTS AND DISCUSSIONS

First of all, we present the confusion matrix of each DeCNN

classifier. Fig. 6 shows the confusion matric of HSRRS image

scene classification with VGG19, ResNet50, and InceptionV3

based on limited labeled samples. The OA of classification

is 35.9%, 77.8%, and 87.0% for VGG19, ResNet50, and

InceptionV3 architecture, respectively. The KC is 0.287,

0.753, and 0.856 for VGG19, ResNet50, and InceptionV3

architecture, respectively. Fig. 7 shows the confusion matric of

HSRRS image classification with TLVGG19, TLResNet50, and

TLInceptionV3 based on limited labeled samples. The OA is

89.0%, 95.7%, and 92.4% and the KC is 0.878, 0.952, and 0.916

for TLVGG19, TLResNet50, and TLInceptionV3 architecture,
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TABLE II
PRECISION OF EACH CATEGORY WITH SIX DIFFERENT ARCHITECTURES.

1Category.
2Precision.

Fig. 8. OA and KC of DeCNN and TL-DeCNN with (a) fine-tuning, and
(b) without fine-tuning.

respectively. Fig. 8(a) shows the OA and KC of DeCNN and

TL-DeCNN with fine-tuning. From the figure, we can see

that the transferred knowledge improves the OA and KC for

TL-DeCNN classification models. Transfer learning improves

the OA of VGG19 (increases by 53.1%) most obviously,

and has the least effect on the OA of InceptionV3 (increases

by 5.4%). Meanwhile, for few shot learning, InceptionV3

obtains the best OA and KC, and after adding the transferred

knowledge the TLResNet50 gets the best performance in OA

and KC. The performance of InceptionV3 is better with few

shot samples is complementary for the argumentation that the

performance of InceptionV3 is better than that of VGG19 and

ResNet50 with abundant labeled data in [47]. And Fig. 8(b) is

the corresponding OA and KC without fine-tuning for the three

TL-DeCNN models, it may indicate that fine-tuning is a key

step for ensuring forward transfer learning.

Then, the precision of each category with VGG19, ResNet50,

InceptionV3, TLVGG19, TLResNet50, and TLInceptionV3 is

labeled in Table II. VGG19 obtains the lowest precision 9.0%
for “road” identification, at the same time ResNet50 and In-

ceptionV3 gets 99.0% and 91.0% precision for the same class.

The same phenomenon appears in “roadside tree” and “marina”

classes, and it may indicate that ResNet50 and InceptionV3

perform better for these objects identification. When the trans-

ferred knowledge is considered, the precisions for each category

obtained by TLVGG19 are greatly improved, and the category

with the greatest growth is “avenue,” from 24.0% to 99.0%.

Compared with VGG19, ResNet50 obtains better precision for

all categories. The lowest precision is “bridge” 46.0%, and

after the knowledge transferred into the model, the precision

increases to 96.0%. Similar to the situation of VGG19, when

the transferred knowledge is considered, the precisions of all

categories are improved. The lowest precision is 41% of the

InceptionV3 model for “bridge” identification. After the knowl-

edge transferred into the architecture, the precision increases to

83%. Most of the precisions are improved, but the precision of

the “airport” category decreases from 98% to 89%. It may be

caused by the transferred knowledge that is extracted from huge

airport information in ImageNet2015. The transferred knowl-

edge contains intricate airport information, which is not similar

or the same with our task “airport” in features. In short, the

transferred knowledge improves the precisions of most of the

categories for DeCNN scene classification tasks.

Finally, to evaluate the performance gap between TL-DeCNN

based on limited labeled samples and DeCNN based on a large

amount of labeled HSRRS images, the VGG19, ResNet50, and

InceptionV3 are applied to make HSRRS scene classification

with a large amount of labeled samples, respectively. The OA

and KC is 96.1%, 97.1%, 99.4%, 0.956, 0.968, and 0.993 for

VGG19, ResNet50, and InceptionV3, respectively. It is obvious

that the OA and KC are both larger than that obtained by TL-

DeCNN, among which the InceptionV3 obtains the best result

for a large number of labeled samples, and for few shot samples

TLResNet50 is the best architecture.

VI. CONCLUSION

In this article, three TL-DeCNN models, i.e., TLVGG19,

TLResNet50, and TLInceptionV3 are proposed for HSRRS

scene classification in urban built-up areas. The main contri-

bution of our work is to solve the overfitting and gradient

disappearance problems with limited labeled HSRRS images.

Three experiments have been carried out: the first one is the

DeCNN-based HSRRS scene classification with few shot; the

second one is the TL-DeCNN-based scene classification with

the same few shot; and the third one is DeCNN-based HSRRS

scene classification with a large number of labeled samples.

Experimental results show that for few shot HSRRS scene clas-

sification, all of the three architectures TLVGG19, TLResNet50,

and TLInceptionV3 greatly improve the performance compared

with those without transferred knowledge. And the ResNet50
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is more suitable for transfer learning applications compared

with VGG19 and InceptionV3, and InceptionV3 could reduce

the overfitting and gradient disappearance problems to a cer-

tain degree and it performs better with few shot. Meanwhile,

DeCNN-based HSRRS scene classification with a large amount

of labeled HSRRS images show that their performance are better

compared with TL-DeCNN with few shot. It indicates that there

is still space for improvement of the classification performance

for TL-DeCNN with few shot samples.
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