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Abstract

The Anti-Nuclear Antibody (ANA) clinical pathology test is

commonly used to identify the existence of various diseases.

A hallmark method for identifying the presence of ANAs is

the Indirect Immunofluorescence method on Human Epithe-

lial (HEp-2) cells, due to its high sensitivity and the large

range of antigens that can be detected. However, the method

suffers from numerous shortcomings, such as being subjec-

tive as well as time and labour intensive. Computer Aided

Diagnostic (CAD) systems have been developed to address

these problems, which automatically classify a HEp-2 cell

image into one of its known patterns (eg., speckled, homoge-

neous). Most of the existing CAD systems use handpicked

features to represent a HEp-2 cell image, which may only

work in limited scenarios. In this paper, we propose a cell

classification system comprised of a dual-region codebook-

based descriptor, combined with the Nearest Convex Hull

Classifier. We evaluate the performance of several vari-

ants of the descriptor on two publicly available datasets:

ICPR HEp-2 cell classification contest dataset and the new

SNPHEp-2 dataset. To our knowledge, this is the first time

codebook-based descriptors are applied and studied in this

domain. Experiments show that the proposed system has

consistent high performance and is more robust than two

recent CAD systems.

1. Introduction

In recent years, there has been increasing interest in

employing image analysis techniques for various routine

clinical pathology tests [9, 10, 12]. Results produced by

these techniques can be incorporated into subjective anal-

ysis done by scientists, leading to test results being more

reliable and consistent across laboratories [10].

The Anti-Nuclear Antibody (ANA) test is commonly

used by clinicians to identify the existence of Connective

Tissue Diseases such as Systemic Lupus Erythematosus,

Sjorgren’s syndrome, and Rheumatoid Arthritis [16]. The

hallmark protocol for doing this is through Indirect Im-

munofluorescence (IIF) on Human Epithelial type 2 (HEp-

2) cells [16, 29]. This is due to its high sensitivity and
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Figure 1. Examples of strong positive ANA specimens.

the large range expression of antigens. Despite its advan-

tages, the IIF method is labour intensive and time consum-

ing [3, 20]. Each ANA specimen must be examined under

a fluorescence microscope by at least two scientists. This

also renders the test result more subjective, and thus has low

reproducibility and large inter-/intra- personnel/laboratory

variabilities [10, 24]. To address these issues, it is possible

to use Computer Aided Diagnostic (CAD) systems which

automatically determine the HEp-2 pattern in the given cell

images of a specimen [6, 7, 10, 11, 19, 24, 25]. Examples

of specimen images are shown in Figure 1.

Properties of existing CAD systems in the literature are

shown in Table 1. Most of these systems have a common

trend: they use carefully handpicked features which may

only work in a particular laboratory environment and/or mi-

croscope configuration. To address this, several approaches

employ a large number of features and apply an auto-

mated feature selection process [10]. Another approach

uses Multi Expert Systems to allow the use of a specifically

tailored feature set and classifier for each HEp-2 cell pat-

tern class [24]. Nevertheless, the generalisation ability of

these systems is still not guaranteed since these were only

evaluated in one particular dataset with a specific setup.

http://dx.doi.org/10.1109/WACV.2013.6475005


Table 1. Existing CAD systems for HEp-2 cell classification.

Approach Descriptors Classifier

Perner et al. [19] Textural Decision Tree

Hiemann et al. [10] Structural; textural (1400 features) LogisticModel Tree

Elbischger et al. [7] Image statistics; cell shape; textural (9 features) Nearest Neighbour

Hsieh et al. [11] Image statistics; textural (8 features) Learning Vector Quantisation (LVQ)

Soda et al. [24] Specific set of features (e.g. textural) for each class Multi Expert System

Cordelli et al. [6] Image statistics; textural; morphological (15 features) AdaBoost

Strandmark et al. [25] Morphological; image statistics; textural (322 features) Random Forest

One of the most popular approaches for automatic im-

age classification, here called the codebook approach, is

to express an image in terms of a set of visual words,

selected from a dictionary that has been trained before-

hand [13, 23, 28]. In order to model an image, the code-

book approach divides the image into small image patches,

followed by patch-level feature extraction. An encoding

process is then employed to compute a histogram of vi-

sual words based on these patches. Codebook-based de-

scriptors often have higher discrimination power compared

to the other image descriptors [13, 28, 30]. Thus, we ar-

gue that better classification performance can be achieved

by employing such descriptors for CAD systems.

Contributions. In this work we propose the use of

a dual-region codebook-based descriptor, specifically de-

signed to exploit the nature of cell images, coupled with

an adapted form of the Nearest Convex Hull classifier [17].

To our knowledge, this is the first time the codebook ap-

proach is applied and studied for the HEp-2 cell classifica-

tion task. We evaluate two methods for low-level feature

extraction from image patches, SIFT [15] and DCT [23],

in conjunction with three methods for generating the his-

tograms of visual words: vector quantisation [28], soft as-

signment [23] and sparse coding [30]. We furthermore pro-

pose a new HEp-2 cell image classification dataset, denoted

as SNPHEp-2, which allows the evaluation of the robust-

ness of CAD systems to various hardware configurations.

The number of images is much larger than the existing

ICPRContest dataset [8].

We continue this paper as follows. We first delineate the

HEp-2 cell classification task in Section 2. In Section 3

we present the dual-region codebook-based descriptor. In

Section 4 we overview the Nearest Convex Hull classifier.

Section 5 is devoted to experiments and discussions. Main

findings and future research avenues are given in Section 6.

2. HEp-2 Cell Classification System

Each positive HEp-2 cell image1 is represented as a

three-tuple (I,M , δ) which consists of: (i) the Fluores-

cein Isothiocyanate (FITC) image channel I; (ii) a binary

1 It is assumed that the cell images have been extracted from specimen

images via an approach such as background subtraction [21].

cell mask image M which can be manually defined, or ex-

tracted from the 4’,6-diamidino-2-phenylindole (DAPI) im-

age channel [10]; and (iii) the fluorescence intensity δ ∈

{strong,weak} which specifies whether the cell is a strong

positive or weak positive. Strong positive images normally

have more defined details, while weak positive images are

duller.

Let Y be a probe image Y = (I,M , δ), and

ℓ be its class label. Given a gallery set G =

{(I,M , δ)G1 , (I,M , δ)G2 , . . . , (I,M , δ)Gm}, the task of a clas-

sifier ϕ : Y × G 7→ ℓ̂ is to produce ℓ̂, where ideally ℓ̂ = ℓ.

We consider six HEp-2 cell patterns [29] listed below;

example images are shown in Fig. 2.

(1) homogeneous: a uniform diffuse fluorescence covering the en-

tire nucleoplasm sometimes accentuated in the nuclear periph-

ery

(2) coarse speckled: densely distributed, variously sized speckles,

generally associated with larger speckles, throughout nucleo-

plasm of interphase cells; nucleoli are negative

(3) fine speckled: fine speckled staining in a uniform distribution,

sometimes very dense so that an almost homogeneous pattern

is attained; nucloli may be positive or negative

(4) nucleolar: brightly clustered larger granules corresponding to

decoration of the fibrillar centers of the nucleoli as well as the

coiled bodies

(5) centromere: rather uniform discrete speckles located through-

out the entire nucleus

(6) cytoplasmic: a very fine dense granular to homogeneous stain-

ing or cloudy pattern covering part or the whole cytoplasm

Homogeneous Coarse
speckled

Fine
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Nucleolar Centromere Cytoplasmic
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Figure 2. Sample images from ICPRContest dataset [8] and the

proposed SNPHEp-2 dataset.



3. HEp-2 Cell Image Descriptor

The overall idea of the proposed HEp-2 cell image de-

scriptor is shown in Fig. 3. Each cell is divided into small

overlapping patches. The patches are then used to con-

struct two histograms of visual words: inner and outer his-

tograms, depending on whether the patches come from the

the inside of the cell, or its edges, respectively. We first

describe low-level patch-level features in Section 3.1, fol-

lowed by presenting the dual-region structure in Section 3.2.

In Section 3.3 we present several histogram encoding meth-

ods.

3.1. Patch­level Feature Extraction

Given a HEp-2 cell image (I,M , δ), both the FITC im-

age I and mask image M are divided into small over-

lapping patches PI = {pI,1, pI,2, . . . , pI,n} and PM =

{pM,1, pM,2, . . . , pM,n}. The division is accomplished in

the same manner of both images, resulting in each patch in

the FITC image having a corresponding patch in the mask

image. Let f be a patch-level feature extraction function

f : pI 7→ x, where x ∈ R
d. PI now can be represented as

X = {x1, x2, . . . , xn}.

We selected two patch-level feature extraction tech-

niques, based on the Scale Invariant Feature Transform

(SIFT) and the Discrete Cosine Transform (DCT). The low-

level SIFT descriptor is invariant to uniform scaling, orien-

tation and partially invariant to affine distortion and illu-

mination changes [15]. These attributes are advantageous

in this classification task as cell images are unaligned and

have high within class variabilities. DCT based features

proved to be effective for face recognition in video surveil-
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Figure 3. Conceptual diagram for the proposed HEp-2 cell im-

age descriptor. Both the FITC image and its corresponding mask

image are divided into small overlapping patches. Patch-level fea-

tures are extracted from FITC patches. Each FITC patch is then

classified into either outer or inner region by using information ex-

tracted from its corresponding mask patch. Finally, both inner and

outer histograms are obtained by an encoder employing a learned

dictionary of visual words.

lance [23, 30]. By using only the low frequency DCT co-

efficients (essentially a low-pass filter), each patch repre-

sentation relatively robust to small alterations [23]. We fol-

low the extraction procedures for SIFT and DCT as per [14]

and [23], respectively.

3.2. Dual­Region Structure

We aim to model cell characteristics by building sepa-

rate histograms for the inner region (which is often a uni-

form texture) and the outer region (which contains infor-

mation related to cell edges and shape). To this end, each

FITC patch is first classified as either belonging to the inner

or outer region by inspecting its corresponding mask patch.

Fig. 4 shows how the regions are imposed on a cell image.

Let X = Xo ∪ Xi, with Xo representing the set of outer

patches, and Xi the set of inner patches. The classification

of patch pI into a region is done via:

pI ∈

{
Xo if τ1 ≤ fg(pM ) < τ2
Xi if τ2 ≤ fg(pM )

(1)

where pM is the corresponding mask patch; fg(pM ) com-

putes the percentage of foreground pixels from mask patch

pM ; τ1 is the minimum foreground pixel percentage of a

patch belonging to the outer region; and τ2 is the maxi-

mum foreground pixel percentage of a patch belonging to

the outer region, as well as the minimum pixel percentage

of a patch belonging to the inner region.

3.3. Generation of Histograms

Let Xr be the set of patch-level features for either the

inner or outer region (ie., Xr = Xi or Xr = Xo). For each

patch-level feature xj ∈ Xr, a local histogram hj is obtained

by an encoding method. The overall histogram representa-

tion for region r is then obtained via averaging [23, 30]:

H
[r] =

1

|Xr|

∑|Xr|

j=1
hj (2)

where |Xr| is the number of elements in set Xr. In this

work we consider three popular histogram encoding meth-

ods: (1) vector quantisation; (2) soft assignment; (3) sparse

coding. The methods are elucidated below.

Inner region

Outer region

Cell boundary

Figure 4. Conceptual diagram for the proposed dual-region struc-

ture. The green line is the cell boundary. The outer region is de-

noted by the striped patterns, and inner region is the area denoted

by the red arrow.



3.3.1 Vector Quantisation (VQ)

Given set D, a dictionary of visual words, the i-th dimension

of local histogram hj for patch xj is computed via:

hj,i =

{
1 if i = argmin

k∈1,...,|D|

φ(k) = dist(xj ,dk)

0 otherwise
(3)

where dist(xj ,dk) is a distance function between xj and dk,

with dk the k-th entry in the dictionary D. The dictionary is

obtained via the k-means algorithm [2] on training patches.

The VQ approach is considered as a hard assignment

approach since each image patch is only assigned to one

of the visual words. This hard assignment is sensitive to

noise [28].

3.3.2 Soft Assignment (SA)

In comparison to the VQ approach above, a more robust

approach is to apply a probabilistic method [23]. Here the

visual dictionary D is a convex mixture of Gaussians. The

i-th dimension of the local histogram for xj is calculated as:

hj,i =
wipi(xj)

∑|D|
k=1 wk pk(xj)

(4)

where pi(x) is the likelihood of x according to the i-th com-

ponent of the visual dictionary:

pi(x) =
exp

[
− 1

2
(x− µi)

T
C−1

i (x− µi)
]

(2π)
d

2 |Ci|
1

2

(5)

with wi, µi and Ci representing the weight, mean vector

and covariance matrix of Gaussian i, respectively. The

scalar d represents the dimensionality of x. The dictio-

nary D is obtained using the Expectation Maximisation al-

gorithm [2] on training patches.

3.3.3 Sparse Coding (SC)

It has been observed that each local histogram produced via

Eqn. (4) is sparse in nature (ie., most elements are close to

zero) [30]. As such, it is possible to adapt dedicated sparse

coding algorithms in order to represent each patch as a com-

bination of dictionary atoms [5, 31].

A vector of weights α = [α1, α2, ..., αn]
T is computed

for each xj by solving a minimisation problem that selects a

sparse set of dictionary atoms. As the theoretical optimality

of the ℓ1-norm minimisation solution is guaranteed [27], in

this work we used:

min
1

2
‖Dα− xj‖

2
2 + λ

∑
k
‖αk‖1 (6)

where ‖ · ‖p denotes the ℓp-norm and D ∈ R
d×n is a matrix

of dictionary atoms. The dictionary D is trained by using

the K-SVD algorithm [1].

As α can have negative values due to the objective func-

tion in Eqn. (6), we construct each local histogram using the

absolute value of each element in α [30]:

hj = [ |α1|, |α2|, . . . , |αn| ] (7)

Compared to both Eqns. (3) and (4), obtaining the his-

togram using sparse coding is considerably more computa-

tionally intensive, due to the need to solve a minimisation

problem for each patch.

4. Classifiers

Let set QX =
{
H

[i]
X , H

[o]
X

}
represent the average inner

and outer histograms for cell image X. Below we describe

two classifiers that we have adapted to use both the inner

and outer regions: (1) nearest neighbour (NN), and (2) near-

est convex hull (NCH).

4.1. Nearest Neighbour (NN)

The NN classifier assigns the class of probe image A to

be the class of the nearest training image B. For the pur-

poses of this classifier, and inspired by [26], we define the

distance between images A and B as:

d (QA, QB) = γ
∥∥∥H [i]

A - H
[i]
B

∥∥∥
p
+ (1 - γ)

∥∥∥H [o]
A - H

[o]
B

∥∥∥
p

(8)

where γ ∈ [0, 1] is a mixing parameter found during train-

ing.

4.2. Nearest Convex Hull (NCH)

In NCH, each training class is approximated with a sim-

ple convex model, or more specifically, the convex hull of

the descriptors of the training images [17]. This reduces the

sensitivity to within class variation, as “missing” samples

can be approximated using the convex model [4].

Let λC =
{
Ω

[i]
C ,Ω

[o]
C

}
denote the model of class C, com-

prised of inner and outer components. In order to take into

account both the inner and outer histograms, we define dis-

tance between image A and class C as:

d (QA, λC) = γ dNCH

(
H

[i]
A ,Ω

[i]
C

)
+(1- γ) dNCH

(
H

[o]
A ,Ω

[o]
C

)
(9)

where γ ∈ [0, 1] is a mixing parameter found during train-

ing, and dNCH(H,ΩC) is the distance between histogram

H and convex model ΩC , defined as:

dNCH (H,ΩC) = min ‖H − ω‖1, ω ∈ ΩC (10)

where ΩC is a set of points generated by a linear combi-

nation of the training samples. Given a set of training his-

tograms for class C, {H1, H2, . . . , Hm}, each member of

ΩC is defined as [17]:

ω =
∑m

i=1
βiHi, subject to

∑m

i=1
βi = 1 (11)

The above model implicitly treats any combination of

histogram descriptors as a valid gallery example.



5. Experiments

In this section we first overview the two datasets used

in the experiments. We then evaluate the six variants of

the codebook-based descriptor, where each of two low-level

feature extraction techniques (SIFT and DCT) is coupled

with three possible methods for generating the histograms

of visual words (VQ, SA, and SC). Finally we compare the

best codebook-based variant against two recently proposed

systems. The various systems were implemented with the

aid of the Armadillo C++ library [22].

5.1. ICPR HEp­2 Contest Dataset

The ICPR HEp-2 Cell Classification Contest Dataset

(ICPRContest) [8] contain 1,457 cells extracted from 28

specimen images. It contains six patterns: centromere,

coarse speckled, cytoplasmic, fine speckled, homogeneous,

and nucleolar. Each specimen image was acquired by

means of fluorescence microscope (40-fold magnification)

coupled with 50W mercury vapour lamp and with a CCD

camera. The cell image masks were hand labelled. See

Fig. 2 for examples.

As the official test set is not yet publicly available, we

use only the official training set to create ten-fold validation

sets. The available images are divided into training and test-

ing sets with 14 specimens each. As such, in each set, each

pattern class only has 1-2 specimen images, where a spec-

imen image contains a set of cells having the same pattern

(see Fig. 1 for a visual representation). In total there are

721 and 736 cell images extracted for training and testing,

respectively. The validation sets were created by randomly

selecting the images from the 721 cell images. Each fold

contains 652 and 69 cell images for training and testing re-

spectively.

Note that due to the abovementioned limitation of avail-

able images, each class can only have 1-2 specimen images.

As such there is an assumed bias, as there is a high chance

that cells extracted from the same specimen image exist in

both the training and testing sets of each fold.

5.2. SNP HEp­2 Cell Dataset

The SNP HEp-2 Cell Dataset (SNPHEp-2) was obtained

between January and February 2012 at Sullivan Nicolaides

Pathology laboratory, Australia. The dataset2 has five pat-

terns: centromere, coarse speckled, fine speckled, homoge-

neous and nucleolar. The 18-well slide of HEP-2000 IIF

assay from Immuno Concepts N.A. Ltd. with screening di-

lution 1:80 was used to prepare 40 specimens. Each spec-

imen image was captured using a monochrome high dy-

namic range cooled microscopy camera, which was fitted

on a microscope with a plan-Apochromat 20x/0.8 objective

2The SNPHEp-2 dataset is available for download at

http://itee.uq.edu.au/˜lovell/snphep2/

lenses and an LED illumination source. DAPI image chan-

nel was used to automatically extract the cell image masks.

There are 1,884 cell images extracted from 40 specimen

images. The specimen images are divided into training and

testing sets with 20 images each (4 images for each pattern).

In total there are 905 and 979 cell images extracted for train-

ing and testing. Five-fold validation of training and testing

were created by randomly selecting the training and test im-

ages. Both training and testing in each fold contain around

900 cell images (approx. 450 images each). Examples are

shown in Fig. 2.

By using the SNPHEp-2 dataset in addition to the

ICPRContest dataset, we obtain the following benefits:

(1) the specimens of both datasets were not captured by the

same microscope configuration (eg., the microscope’s ob-

jective lens magnitude for ICPRContest is 40x, while 20x

for SNPHEp-2), allowing us to test the robustness of CAD

systems to variations in image capture conditions; (2) there

is no bias compared to the ICPRContest experiment setup,

allowing for a more thorough evaluation.

5.3. Codebook­Based Descriptor Variants

In this section we evaluate the discriminative power of

the codebook-based descriptor, with and without the dual-

region structure. When the dual-region structure is not em-

ployed, each cell image is represented by one histogram

constructed from both the inner and outer patches.

As there are three histogram encoding methods (ie., VQ,

SA and SC) and two patch-level features (ie., SIFT and

DCT), there are six variants of the codebook-based descrip-

tor. For clarity, each variant is styled as: [patch-level fea-

tures]-[histogram encoding method]. For example, the vari-

ant using DCT as its patch-level features and VQ as its en-

coding method is called DCT-VQ.

The NN classifier was employed in this comparison, in

order to reduce the total number of combinations. Based on

preliminary experiments, we selected ℓ1-norm distance in

Eqn. (8) to measure the distance between two images. All

other hyperparameters of each approach were found in the

training set of each cross-validation set.

Table 2 presents the average Correct Classification Rate

(CCR) for each descriptor variant on the ICPRContest and

SNPEHEp-2 datasets, using both single- and dual-region

configurations. We can observe that all variants have higher

CCR on ICPRContest than on SNPEHEp-2, which is con-

sistent with the bias in the ICPRContest dataset setup.

The DCT-SA variant is more discriminative and robust to

various hardware configurations, as it consistently outper-

forms the other variants on both datasets. This high perfor-

mance can be partly attributed to effect of soft-assignment,

which can be more expressive than the other variants [28].

Generally, DCT has better performance than SIFT on

most codebook-based variants on both datasets. The only

http://itee.uq.edu.au/~lovell/snphep2/


Table 2. Performance comparison of codebook-based descriptor

variants on the ICPRContest and SNPHEp-2 datasets, using the

NN classifier. The scores are shown as average correct classifica-

tion rate (in percentage) along with their standard deviations. SR

= single region; DR = dual region.

Descriptor ICPRContest SNPHEp-2

Variant SR DR SR DR

DCT-SA 93.8 ± 2.2 94.9 ± 2.1 74.7 ± 3.6 76.7 ± 2.5

DCT-VQ 89.5 ± 3.4 90.6 ± 3.2 72.3 ± 3.2 73.6 ± 2.1

DCT-SC 81.7 ± 3.4 84.8 ± 3.5 59.9 ± 2.7 63.6 ± 1.8

SIFT-SA 80.1 ± 3.8 82.6 ± 3.5 56.6 ± 3.1 59.2 ± 2.5

SIFT-VQ 86.4 ± 4.0 86.8 ± 3.7 64.7 ± 2.3 64.9 ± 2.5

SIFT-SC 79.9 ± 3.3 86.1 ± 2.6 66.4 ± 2.9 67.9 ± 2.5

exception is on SNPHEp-2, where the SIFT-SC outperforms

DCT-SC. This suggests that for this application, DCT is

more suitable than SIFT for representing low-level patch

features.

The results also show that imposing a spatial structure

(ie., using the dual-region setup in contrast to the single-

region setup) increases the performance of all of the vari-

ants, while generally reducing the standard deviation.

5.4. Classifier Variants

In this section we compare the performance of the NN

and NCH classifiers on both datasets. We use the most dis-

criminative descriptor found in Section 5.3, ie., DCT-SA.

In addition, we have also evaluated the performance of two

baseline descriptors: (i) raw image, where a raw cell image

is vectorised, and (ii) rotation invariant Linear Binary Pat-

terns (LBP) [18], using a configuration of 8 neighbours and

1 pixel radius. For the baseline descriptors, the cell images

were used without any further processing (eg., no spatial

structure was imposed).

The results, presented in Table 3, show that NCH gen-

erally outperforms NN regardless of the descriptor being

used. An exception is LBP on SNPHEp-2, where NN per-

forms slightly better. In most cases the NCH classifier

also provides the most improvement on the more difficult

SNPHEp-2 dataset. with its performance on the ICPRCon-

test dataset close to the performance of NN. The results also

show that the proposed DCT-SA approach (in both single-

and dual-region configurations) considerably outperforms

LBP, especially on the SNPHEp-2 dataset.

5.5. Comparative Evaluation of Systems

In this section we compare the best performing

codebook-based system found in Section 5.4, ie., dual-

region DCT-SA coupled with the NCH classifier, against

two recently proposed systems in Cordelli et al. [6] and

Strandmark et al. [25].

We implemented the best reported descriptor in [6],

which is comprised of features such as image energy, mean

Table 3. Performance comparison of the NN and NCH classifiers

on the ICPRContest and SNPHEp-2 datasets. SR = single region;

DR = dual region.

Descriptor ICPRContest SNPHEp-2

NN NCH NN NCH

DCT-SA + DR 94.9 ± 2.1 95.5 ± 2.2 76.7 ± 2.5 80.6 ± 2.1

DCT-SA + SR 93.8 ± 2.2 94.3 ± 2.3 74.7 ± 3.6 78.5 ± 3.2

LBP 85.8 ± 2.6 86.4 ± 3.1 49.9 ± 3.8 47.6 ± 2.2

Raw Image 39.8 ± 3.2 57.7 ± 4.5 39.1 ± 3.3 43.1 ± 4.2

Raw Image + NCH

Strandmark + RandomForest
Cordelli + LogitBoost

LBP + NCH
DCT-SA + SR + NCH
DCT-SA + DR + NCH

Figure 5. Performance comparison of various systems on the

ICPRContest and SNPHEp-2 datasets. SR = single region; DR =

dual region; NCH = Nearest Convex Hull Classifier.

and entropy, calculated from intensity and LBP channels.

The LBP channel is computed by computing the local pat-

tern code for each pixel in the intensity channel. We se-

lected Logistic Boosting (LogitBoost) as the classifier in-

stead of AdaBoost as the former obtained better perfor-

mance. We denote this system as Cordelli.

We denote the system in [25] as Strandmark, and used

the code provided by the authors. The system employs vari-

ous image statistics features (eg., mean, standard deviation)

and morphological features (eg., number of objects, area).

The random forest classifier is used.

The results are presented in Fig. 5. Both the Cordelli

and Strandmark systems have reasonable performance on

the ICPRContest dataset. Strandmark has slightly better

performance than the proposed DCT-SA system (96.1% vs

95.5%). However, both the Strandmark and Cordelli sys-

tems perform poorly on the more challenging SNPHEp-2

dataset, while the proposed system has considerably bet-

ter performance. This indicates that the descriptors used

by Cordelli and Strandmark systems are sensitive to hard-

ware configuration variations. The poor performance of

the Cordelli system on SNPHEp-2 can be partly explained

from the observation that LBP also performs poorly on

SNPHEp-2. As mentioned before, Cordelli uses the LBP

channel to compute some of its features.



6. Main Findings

The Indirect Immunofluorescence method on Human

Epithelial (HEp-2) cells is a hallmark method for identi-

fying the presence of Anti-Nuclear Antibodies in clinical

pathology tests. Despite its high sensitivity and the large

range of antigens that can be detected, it has numerous

shortcomings, such as being subjective as well as time and

labour intensive. Computer Aided Diagnostic (CAD) sys-

tems have been recently developed to address these prob-

lems, which automatically classify a HEp-2 cell image into

one of the known patterns (eg., speckled, homogeneous).

Most of the existing CAD systems use handpicked features

to represent a HEp-2 cell image, which may only work in

limited scenarios.

In this paper we have proposed a cell classification sys-

tem comprised of a dual-region codebook-based descriptor

combined with the Nearest Convex Hull Classifier. The

system splits a cell image into small patches, which are

then grouped into sets representing the inner and edge re-

gions of the cell. Each region is the described as a his-

togram of visual words. To our knowledge, this is the first

time codebook-based descriptors are successfully applied

and thoroughly studied in the domain of cell classification.

We evaluated numerous variants of the descriptor on two

publicly available datasets: ICPR HEp-2 cell classifica-

tion contest dataset and the new SNPHEp-2 dataset. We

found that DCT patch-level features in conjunction with

soft-assignment/probabilistic encoding of histograms leads

to the highest discrimination performance. We also found

that imposing the dual-region spatial structure increases dis-

crimination performance of all codebook-based descriptor

variants. Furthermore, the experiments show that the pro-

posed system has consistent high performance and is more

robust than two recent CAD systems presented in [6, 25].

We note that the proposed dual-region spatial structure

used in this work is intuitive and lacks a theoretical explana-

tion. Given the encouraging results, a more complete model

of spatial structure could be developed to further increase

performance.
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