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Abstract 

Purpose. 

Microaneurysms (MAs) are considered a hallmark of retinal vascular 

disease, yet what little is known about them is mostly based upon histology, 

not clinical observation. Here, we use the recently developed adaptive optics 

scanning light ophthalmoscope (AOSLO) fluorescein angiography (FA) to 

image human MAs in vivo and to expand on previously described MA 
morphologic classification schemes. 

Methods. 

Patients with vascular retinopathies (diabetic, hypertensive, and 

branch and central retinal vein occlusion) were imaged with reflectance 

AOSLO and AOSLO FA. Ninety-three MAs, from 14 eyes, were imaged and 

classified according to appearance into six morphologic groups: focal bulge, 

saccular, fusiform, mixed, pedunculated, and irregular. The MA perimeter, 

area, and feret maximum and minimum were correlated to morphology and 

retinal pathology. Select MAs were imaged longitudinally in two eyes. 

Results. 

Adaptive optics scanning light ophthalmoscope fluorescein angiography 

imaging revealed microscopic features of MAs not appreciated on conventional 

images. Saccular MAs were most prevalent (47%). No association was found 

between the type of retinal pathology and MA morphology (P = 0.44). 

Pedunculated and irregular MAs were among the largest MAs with average 

areas of 4188 and 4116 μm2, respectively. Focal hypofluorescent regions 

were noted in 30% of MAs and were more likely to be associated with larger 

MAs (3086 vs. 1448 μm2, P = 0.0001). 

Conclusions. 

Retinal MAs can be classified in vivo into six different morphologic 

types, according to the geometry of their two-dimensional (2D) en face view. 

Adaptive optics scanning light ophthalmoscope fluorescein angiography 

imaging of MAs offers the possibility of studying microvascular change on a 

histologic scale, which may help our understanding of disease progression and 

treatment response. 

Keywords: microaneurysm, AOSLO, fluorescein angiography 

  

http://dx.doi.org/10.1167%2Fiovs.13-13122
http://epublications.marquette.edu/
http://epublications.marquette.edu/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 

accessed by following the link in the citation at the bottom of the page. 

Investigative Ophthalmology and Visual Science, Vol. 55, No. 3 (March 2014): pg. 1299-1309. DOI. This article is © 

Association for Research in Vision and Ophthalmology and permission has been granted for this version to appear in e-

Publications@Marquette. Association for Research in Vision and Ophthalmology does not grant permission for this article 

to be further copied/distributed or hosted elsewhere without the express permission from Association for Research in 

Vision and Ophthalmology. 

4 

 

Introduction 

Initially described in diabetes, MAs appear as manifestations of 

a wide range of systemic and retinal diseases, including ischemic, 
infectious, inflammatory, hematologic, and radiation-related 

disorders.1–5 Retinal MAs have been shown to be an important sign in 
the progression of systemic disease,6–12 and they have been used as 
components of multiple retinopathy severity classification schemes.13–

16 Microaneurysm counting17–21 and dynamic turnover22–25 studies have 
revealed associations linking MAs to increased retinopathy, suggesting 

that even a single MA may have predictive value.26 Furthermore, 
clinical imaging has demonstrated that MAs are correlated with 

extravascular leakage and vision loss.23,27 

Despite their clinical significance, the pathogenesis and natural 
history of individual MAs remains poorly understood. Histologic studies 
using India ink infusion and trypsin digest techniques have 

investigated the role of pericytes,28,29 lipid and hyaline infiltration,2,30 
neovascularization,31 and endothelial disruption32 in attempts to 

understand MA formation and progression. The relationship between 
the MA wall and lumen has been investigated using trypsin digest 
processing,33 electron microscopy,34 and confocal scanning laser 

microscopy with von Willebrand factor staining.35 One recent study has 
suggested that MA radius-to-associated-vessel-diameter ratio may be 

a useful metric for stratifying risk of leakage,36 helping to explain why 
some smaller MAs lead to leakage while some larger ones do not. As 
treatment modalities advance to target individual MAs with laser 

therapy,37 the ability to determine which MAs are at higher risk for 
leakage or rupture is increasingly valuable. However, since most MA 

knowledge is derived from post mortem histopathology, we currently 
have a very limited understanding of the dynamics of MA development 
and natural progression in vivo. 

Advances in retinal imaging have increased our ability to image 
the retinal vasculature, including the development of time-differential 
fundus photography,38–40 optical coherence tomography (OCT),41–46 

and entoptic viewing.47–49 A recent study using spectral-domain OCT 
(SD-OCT) was able to extract basic MA dimensions through diameter 

measurements.50 The correction of the ocular monochromatic 
aberrations using adaptive optics, when added to the fundus 
camera,51,52 scanning light ophthalmoscope (AOSLO),53–57 and OCT 

(AO-OCT),58,59 has further improved our capacity to study healthy and 
diseased microvasculature anatomy. Recently, we demonstrated that 

in vivo imaging of the healthy human retinal microvasculature could be 
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performed with safe light levels by combining AOSLO with fluorescein 
angiography (AOSLO FA).60 

Studying MAs with the resolution of AOSLO technology has the 

potential to reveal helpful information about their formation, natural 
progression, and response to treatment. In this manuscript, we use 

AOSLO FA to expand upon previous MA classification schemes35,52 and 
to introduce qualitative and quantitative metrics to describe MA 

geometry in vivo. Using the complementary aspect of AOSLO 
reflectance imaging, we investigated MA capillary wall and lumen 
relationships as well as regions of MA and capillary nonperfusion. The 

associations between MA morphology, size, and luminal fluorescence 
were evaluated statistically. 

Methods 

Human Subjects 

To ensure that the MA classification scheme presented here was 

comprehensive and applicable to different pathologies, subjects with 
various vascular retinopathies and ophthalmic treatment histories were 
recruited. Ophthalmic diagnoses were established for each patient 

based upon review of their medical records by New York Eye and Ear 
Infirmary ophthalmologists. The presence of retinal MAs had been 

previously documented by color fundus photography (Topcon 3D OCT 
2000; Topcon Corporation, Tokyo, Japan) and/or standard FA (Topcon 
3D OCT 2000; Topcon Corporation; Optos P200; Optos plc, 

Dunfermline, Scotland; and Heidelberg Spectralis HRA-OCT; 
Heidelberg Engineering, Inc., Heidelberg, Germany). Following 

discussion of the nature and possible consequences of the study, 
informed written consent was obtained from each subject. This study 
adhered to the tenets of the Declaration of Helsinki and was approved 

by the institutional review board of the New York Eye and Ear 
Infirmary. 

AOSLO Imaging Protocol 

Mydriasis and cycloplegia were achieved by instillation of one 
drop of 2.5% phenylephrine hydrochloride ophthalmic solution (Bausch 

& Lomb, Inc., Rochester, NY) and one drop of 1% tropicamide 
ophthalmic solution (Akorn, Inc., Lake Forest, IL). Ocular axial length 
measurements were collected (IOL Master; Carl Zeiss Meditec AG, 

Jena, Germany) in order to calculate the scale of the AOSLO images 
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using the Emsley schematic eye model.61 The AOSLO used in this 
study was a modified version of the one originally described by Dubra 

and Sulai62 with the addition of a 488-nm light source, an emission 
filter centered at 525 nm, and a 45-nm transmission bandwidth. The 

subjects were positioned in front of the instrument using a dental 
impression made with dental putty (Splash! Putty; DenMat Holdings, 
LLC, Lompoc, CA) on a bite bar mounted on a translation stage. Fine 

adjustments of the stage allowed for stable and repeatable alignment 
of the subject's pupil with the entrance pupil of the AOSLO (7.75 mm 

in diameter). Subjects were instructed to direct their gaze toward an 
internal fixation target that was moved until the desired region of 
interest was within the AOSLO field of view. These areas, all located 

within 15° from the center of the fovea, contained microangiopathic 
features previously identified on color fundus photography and/or 

standard FA. The reflectance channel was used to scout important 
regions to be examined with the fluorescence channel following 
fluorescein administration. 

Adaptive optics scanning light ophthalmoscope fluorescein 
angiography imaging was performed using our previously described 
protocol,60 after administering fluorescein at 20 mg/kg of body weight 

in 50 mL of orange juice. Imaging was initiated at 15 minutes 
following ingestion. Simultaneous image sequences of fluorescence 

and reflectance images, consisting of up to 500 frames each, were 
recorded at 15 frames/s using either a 1.0°, 1.5°, or 1.75° field of 
view. Subjects were given short breaks at regular intervals and 

encouraged to blink frequently to maintain normal tear film. Imaging 
sessions concluded once all regions of interest had been imaged, the 

patient tired, or the image signal waned. No imaging session extended 
longer than 45 minutes. The feasibility of studying MA dynamics was 
explored through longitudinal imaging at 1-month intervals in two 

subjects. 

Light Safety 

During AOSLO imaging, the retina was simultaneously scanned 

with three light sources, with wavelengths centered at 488, 790, and 
850 nm. These light sources were coaxial and entered the eye with 

collimation accounting for the longitudinal chromatic aberration of an 
average eye. The three beams overlapped producing a square raster, 
30% larger than the imaged area, using a 14.5-KHz horizontal 

resonant optical scanner (Electro-Optical Products Corporation, New 
York, NY) and a 16-Hz vertical scanner (Physik Instrumente, 

Karlsruhe, Germany). Synchronous modulation of the light sources 
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turned them on at the beginning of each horizontal line used for 
imaging when scanning from left to right. As a result, only the central 

portion of the scanning raster was exposed to light. The optical powers 
without modulation (i.e., continuous wave) measured at the cornea 

were 15 μW for the 850-nm wavefront sensing superluminescent diode 
(SLD; Superlum, Carrigtwohill, Ireland), 210 μW for the 790-nm 
imaging SLD (Superlum), and 32 μW for the 488-nm diode laser 

(Lasos, Lasertechnick GmbH, Jena, Germany). During imaging, the 
on/off modulation reduced the average powers delivered by 

approximately 75%. No retinal location was exposed to the combined 
light sources for longer than 120 seconds. All sources were considered 
as lasers for calculating maximum permissible exposure (MPE) under 

the American National Standards I (ANSI) Z136.1 2000 guidelines.63 
These imaging parameters, as described above, resulted in light 

exposures six times below both the photochemical and the thermal 
MPE limits. In order to avoid any possibility for light or fluorescein 
toxicity, repeat imaging sessions were performed after at least a 7-day 

interval. 

Image Processing 

The reflectance image sequences, collected using 790-nm light, 

were used to estimate eye motion64 in order to create a single 
registered average image with high signal-to-noise ratio from each 

image sequence. The AOSLO reflectance and fluorescence images 
included in this manuscript were created in this manner, using 
sequences of 32 to 100 frames after compensation of the warping due 

to the sinusoidal motion of the resonant scanner. Registered images 
were manually tiled (Adobe Photoshop CS6; Adobe Systems, Inc., San 

Jose, CA) to create larger montages of the retinal vasculature, as 
needed. 

Microaneurysm Classification 

The qualitative morphologic classification of MAs proposed in 
this work is an extension of the scheme suggested by Moore et al.35 
Reflectance AOSLO images were often obscure in subjects with 

extensive vascular pathology, preventing interpretable visualization of 
vascular features, while AOSLO FA was often able to clarify these 

complex vascular relationships. The variation in longitudinal chromatic 
aberration across individuals prevented both reflectance and 
fluorescence images from being in focus at the same time for all 

subjects. 
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There were 93 MAs identified and classified according to their 
two-dimensional (2D) geometry in the en face AOSLO FA images (Fig. 

1), as follows: 

 
 
Figure 1 Proposed expanded anatomical classification of MAs as seen with 

conventional fluorescein angiography (left) and AOSLO FA (center) with corresponding 

illustrated examples (right). All images have been contrast stretched. Scale bar: 50 

μm. 

1. Focal bulge were defined as MAs where the combined width of 
the associated capillary and MA was less than twice the width of 

an adjacent nonaffected region of the capillary. All other 
morphologies represented MAs where the combined width of the 
associated capillary and MA was more than twice the width of an 

adjacent nonaneurysmal region. 
2. Saccular MAs were defined as those with asymmetric dilatations 

with at least 75% of the total area of the MA on one side of the 
central axis of the associated capillary. 

3. Fusiform MAs were defined as symmetrically dilated MAs around 

their associated capillary, with less than 75% of the total area of 
the MA on either side of the associated capillary. 

http://dx.doi.org/10.1167%2Fiovs.13-13122
http://epublications.marquette.edu/
http://epublications.marquette.edu/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3943418/figure/i1552-5783-55-3-1299-f01/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3943418/figure/i1552-5783-55-3-1299-f01/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3943418/figure/i1552-5783-55-3-1299-f01/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 

accessed by following the link in the citation at the bottom of the page. 

Investigative Ophthalmology and Visual Science, Vol. 55, No. 3 (March 2014): pg. 1299-1309. DOI. This article is © 

Association for Research in Vision and Ophthalmology and permission has been granted for this version to appear in e-

Publications@Marquette. Association for Research in Vision and Ophthalmology does not grant permission for this article 

to be further copied/distributed or hosted elsewhere without the express permission from Association for Research in 

Vision and Ophthalmology. 

9 

 

4. Mixed saccular/fusiform were defined as MAs that could not be 
categorized as either saccular or fusiform and it was uncertain 

which capillary was associated with it, or when the orientation of 
the MA prevented a clear en face view. 

5. Pedunculated MAs were asymmetric MAs tethered to their 
associated capillary via a tapered narrowing of the lumen. 

6. Irregular MAs were saccular, fusiform, or pedunculated with a 

nonconvex shape (note: a convex shape is one in which the line 
segment defined by any two points within it is fully contained 

within the shape). For pedunculated MAs, this definition 
excludes the region associated with the tapered narrowing of 
the lumen and applies to the remainder of the aneurysm. 

As MA features appear different in AOSLO FA and reflectance 
images, comparing the two techniques allows inferences to be made 
about capillary walls and perfusion. Reflectance AOSLO images 

typically reveal the capillary and MA wall, while AOSLO FA shows 
exclusively the intraluminal, perfused space. Accordingly, AOSLO 

reflectance images were used to locate nonperfused capillaries, which 
did not appear in AOSLO FA. With AOSLO FA, the presence of focal 
hypofluorescent regions within the otherwise highly fluorescent lumen 

of the MA was recorded. 

Three trained examiners familiar with the MA classification (Fig. 1) 
independently graded all 93 MAs. Based on their classifications, 

interexaminer agreement was quantified by calculating the Fleiss' 
kappa reliability coefficient.65 

Microaneurysm Geometry Quantification 

The boundaries of all 93 MAs were manually segmented on the 
2D AOSLO FA images using custom MATLAB (Mathworks, Natick, MA) 
software. The area, perimeter, feret maximum (longest intraluminal 

diameter of MA), and feret minimum (longest diameter perpendicular 
to feret maximum) of these boundaries were then calculated (Fig. 2). 

Traditionally, MA measurements have frequently used width of the 
aneurysm along the direction perpendicular to the associated capillary. 
That requires identifying, with certainty, the capillary associated with 

each MA and determining the location and extent of that capillary's 
connection with the MA, which is not always possible. Feret maximum 

(max) and minimum (min) were therefore selected instead, as they 
can be more readily measured even when information surrounding the 
associated capillary was not clear. 
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Figure 2 Adaptive optics scanning light ophthalmoscope fluorescein angiography 

image of saccular MA (A) with schematic (B) depicting manual boundary segmentation 

of aneurysm in order to determine area (within red dotted lines), perimeter (red 

dotted line), feret max (thin arrow), and feret min (thick arrow). Scale bar: 50 μm. 
 

Correlations between metrics, primary ophthalmic diagnoses, 
and morphologies were studied by performing a two-step analysis. 
First, ANOVA tests were used to test whether there were significant 

differences among the metrics derived from each of the conditions and 
morphologies. When these tests showed significance (P < 0.05), then 

the Scheffe's post hoc test was used to evaluate the differences 
between each possible pair of variables examined. 

Interobserver segmentation reliability was assessed by having 
three trained, independent examiners segment the boundary of 14 
randomly selected MAs. Then, intraclass correlation of their 
measurements was calculated. 
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Results 

Patient Demographics 

Included in this study were 13 subjects (7 men, 6 women; mean 
age 52.8 years; range, 44–68 years) from various racial/ethnic 

backgrounds (Table 1). Ophthalmic diagnoses, included diabetic 
retinopathy (DR) in six patients, central retinal vein occlusion (CRVO) 

in four patients, branch retinal vein occlusion (BRVO) in two patients, 
and hypertensive retinopathy (HTN) in one patient. One DR subject 
had imaging performed in both eyes. 

 
Table 1 Patient Demographics 
PRP, pan-retinal photocoagulation. 

Morphology and Pathology 

Among the six morphologies, saccular MAs were the most 
prevalent, followed by focal bulge, fusiform, mixed, irregular, and 

pedunculated, respectively (Table 2). No relationship was seen 
between systemic pathology and MA morphology (ANOVA, P = 0.44). 

This is consistent with the fact that even when imaging a relatively 
small retinal area affected by a single pathology, as shown in Figure 3, 

multiple types of MAs were simultaneously present. Interobserver 
morphology identification agreement among the three readers was 
high (kappa coefficient: 0.88). 
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Figure 3 Montage of AOSLO FA images, showing the foveal capillary network and 

the foveal avascular zone (FAZ) in the right eye of a subject with hypertension. 

Microaneurysms of various size and morphology are visible. Red dots indicate 

arterioles. Blue dots indicate venules. Scale bar: 300 μm. 
 

 
Table 2 Distribution of MA Morphology in Each Pathology Imaged 

FB, focal bulge; S, saccular; F, fusiform; M, mixed; P, pedunculated; I, irregular. 

Wall and Lumen 

Imaging using AOSLO reflectance and FA provide 
complementary information about capillary wall and lumen (Fig. 4). 
The combination of these imaging modalities revealed that, even 

within a single eye affected by a single condition, MAs with varying 
degrees of wall thickening and fluorescence could be observed (Fig. 5, 

subject with CRVO). Reflectance AOSLO imaging can also reveal 
evidence of nonperfused capillaries and obliterated MAs that cannot be 
visualized with AOSLO FA imaging alone (Fig. 6). 
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Figure 4 Adaptive optics scanning light ophthalmoscope reflectance (A) and 

fluorescence (B) images of an irregular MA, nasal to FAZ in Figure 3. The 

superposition of these images ([C], with [B] in red) shows the relationship between 

wall and lumen. Scale bar: 100 μm. 
 

 
 
Figure 5 
Reflectance AOSLO images (left) and AOSLO FA (right) of pathologic 

regions in a patient with CRVO reveal various states of MAs. 
Hyperfluorescent saccular and fusiform MAs (A2) were visualized in a 

region without additional pathology (A1). Asterisks ( ... 
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Figure 6 Reflectance AOSLO images (left) and AOSLO FA (right) of pathologic 

regions in a patient with CRVO reveal various states of MAs. Hyperfluorescent saccular 

and fusiform MAs (A2) were visualized in a region without additional pathology (A1). 

Asterisks (B1, C1) indicate thickened vascular walls that were seen in both 

hyperfluorescent MAs (B2) and a hypofluorescent MA (C2). Arrows (C2, D2) indicate 

intraluminal hypofluorescence. Carets (D1, D2) depict location of small MAs that do 

not fluoresce on AOSLO FA. Scale bar: 100 μm. 

Pathology and MA Geometrical Metrics 

Interobserver segmentation reliability among the three readers 
was high (intraclass correlation: 0.99). There was a significant 

difference between the mean metric values estimated for MAs from 
each disease (Table 3) for area (P = 0.05, ANOVA), perimeter (P = 
0.04, ANOVA), feret max (P = 0.05, ANOVA), and feret min (P = 0.05, 

ANOVA). Further analysis using the Scheffe test, summarized in Table 
4, failed to find statistically significant differences between all possible 

pairs of systemic pathologies. Statistical significance (P < 0.05) and 
near statistical significance (0.05 < P < 0.10) was found only between 
CRVO and DR for perimeter, feret max, and feret min. Bubble graphs 

(Fig. 7A) show the similarity of quantitative metrics between 
pathologies. 
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Figure 7 Graphs comparing quantitative metrics (area versus perimeter) for 

pathologies (A) and morphologies (B). Center point of each ellipse represents area 

mean (x-axis) and perimeter mean (y-axis). Horizontal extent of ellipses determined 

by area mean ± SD. Vertical extent of ellipses determined by means of perimeter ± 

SD. 
 

 
Table 3 Pathology Versus MA Quantitative Metrics 
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Table 4 Significance Levels (Scheffe's Method) of Quantitative Metrics Between 

Pathologies 

Y greater than X, statistically significant results bolded, nearly statistically significant 

results italicized. 

Morphology and MA Geometrical Metrics 

Among the six MA morphologies, there were significant 

difference between their mean measurements of area (P = 0.0001, 
ANOVA), perimeter (P = 0.0001, ANOVA), feret max (P = 0.0001, 

ANOVA), and feret min (P = 0.0001, ANOVA) (Table 5). Further 
analysis using the Scheffe test (Table 6), found differences between 

several pairs of morphologies. Several statistical significant (P < 0.05) 
and nearly statistically significant (0.05 < P < 0.10) results were found 
for the greater perimeter, feret max, and feret min of pedunculated 

and irregular MAs as compared with the other morphologies. Bubble 
graphs (Fig. 7B) show the differences of quantitative metrics between 

morphologies. 
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Table 5 MA Morphology Versus Quantitative Metrics 

 

 
Table 6 Significance Levels (Scheffe's Method) of Quantitative Metrics Between 

Morphologies 

Y greater than X, statistically significant results bolded, nearly statistically significant 

results italicized. 
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Intraluminal Hypofluorescent Regions Versus 

Morphology and Quantitative Metrics 

Adaptive optics scanning light ophthalmoscope fluorescein 

angiography images revealed intraluminal hypofluorescence in 28 out 
of 93 (30.1%) MAs (Fig. 1, AOSLO FA fusiform, irregular, 
pedunculated; Fig. 4B; Figs. 5C2, 5D2, boxes). This hypofluorescence 

was never found in focal bulge MAs (0%), often found in saccular 
(25%), fusiform (30%), mixed (50%), and pedunculated (50%), and 

most frequently in irregular MAs (75%). Microaneurysms with 
hypofluorescent regions were statistically (ANOVA) larger in area 
(3086 vs. 1448 μm2, P = 0.0001), perimeter (358 vs. 209 μm, P = 

0.0001), feret max (121 vs. 73 μm, P = 0.0001), and feret min (96 vs. 
54 μm, P = 0.0001). Although there was no correlation between 

systemic pathology and intraluminal hypofluorescence (ANOVA, P = 
0.68), there was a strong correlation between the presence or absence 

of hypofluorescent regions and the various morphologies (ANOVA, P = 
0.0001). 

Longitudinal Imaging 

A fusiform retinal MA (Fig. 8, left column) in a subject with 

hypertensive retinopathy (Fig. 3) was shown to remain unchanged 
over a 4-month period (variability of each metric was <±2% 

throughout). An adjacent retinal region, imaged only at time 0 and 
again after 4 months (Fig. 8, middle column), shows an MA with mixed 
shape that dramatically increased in size adjacent to a focal bulge MA 

that regressed over the same time. Imaging in a subject with CRVO 
before and after anti-VEGF injection shows regression of a mixed MA 

that was sustained 3 months later (Fig. 8, right column), while an 
adjacent, saccular MA remained stable. 
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Figure 8 Left and center columns from one subject with hypertensive retinopathy; 

right column from one subject with CRVO. Left column shows AOSLO FA images of a 

fusiform MA with stable boundaries at four different imaging sessions over a 4-month 

period. Center column follows a mixed MA with growth between time 0 (perimeter: 

162 μm, area: 1702 μm2, feret max: 52 μm, feret min: 57 μm) and a second imaging 
session at 4 months (perimeter: 230 μm, area: 3676 μm2, feret max: 63 μm, feret 
min: 77 μm). The initial image shows a focal bulge MA in the upper right corner that 

appears to have regressed by the later session. Right column depicts a region with 

saccular (perimeter: 145 μm, area 1415 μm2, feret max: 52 μm, feret min: 39 μm) 
and mixed MAs (perimeter: 120 μm, area 1030 μm2, feret max: 40 μm, feret min: 35 
μm) imaged before and after anti-VEGF treatment (asterisk indicates treatment had 

occurred 3 weeks prior). The mixed MA regressed and continued to be hypofluorescent 

at an additional follow-up imaging session while the saccular MA remained stable. 

Scale bar: 100 μm. ND, no data. 

Discussion 

Emerging high-resolution ophthalmic imaging modalities such as 

AOSLO and motion contrast OCT are allowing for the visualization of 
retinal capillaries with unprecedented transverse and axial resolution. 

When used to image retinas affected by vascular disease, AOSLO FA 
reveals MAs with great detail, permitting a rich morphologic 

categorization scheme. The retinal MA classification presented in this 
work is based on the en face, 2D geometry of MAs. It incorporates the 
saccular, fusiform, and focal bulge designations proposed in previous 

studies,35,52 as well as three additional morphologies discernable with 
AOSLO FA. Although our proposed classification is based on AOSLO FA 

images, it can be applied to MA images acquired using other 
modalities, such as emerging motion contrast techniques.53–55,57,66–69 
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This study is limited by the relatively small number of MAs from 
13 patients representing a variety of retinal conditions and ophthalmic 

treatment histories. Additionally, our analysis attempted to classify 
MAs, which are three-dimensional (3D) structures, based solely upon 

their 2D, en face appearance. This may have limited our accuracy in 
geometrical assessment and will need to be validated using additional 
techniques. Three-dimensional imaging modalities with isotropic or 

near-isotropic resolution (e.g., AO-OCT) might help to reveal additional 
complexities of MA structure, including the nature of mixed 

morphology MAs. With all of these limitations considered, the data 
resulting from the classification and boundary-derived metrics provides 
a number of interesting, early findings. 

The first observations derived from statistical testing was that 
retinal pathology appeared to place no limits or bias to development of 
MA morphology, and that multiple, if not all, MA morphologies can be 

found within an adjacent, small area of an individual retina. Thus, 
while assaying for the presence of MAs may be a sensitive tool for 

following retinal pathology, MA morphology does not seem to have a 
propensity for any vasculopathy. Consistent with a previous study in 
DR,35 we found that saccular MAs were more prevalent than fusiform 

and focal bulge morphologies; this trend applied not only to DR, but 
also to the subjects with CRVO, BRVO, and HTN. 

An initial ANOVA test indicated that the mean metric values are 

different among the retinal conditions tested in this work (P = 0.04–
0.05). However, Scheffe tests used to evaluate differences in metric 
values between any pair of pathologies only showed that diabetic MAs 

had statistically greater (P < 0.05) mean perimeter and feret max than 
CRVO MAs. Thus, based on the metrics used in this study, there are 

few obvious differences between MAs due to retinal pathology. In 
contrast, the different types of MA morphologies show several, more 
statistically significant differences in some cases, including the 

relatively greater size of irregular and pedunculated morphologies and 
the smaller dimensions of the focal bulge MAs. This is expected as the 

classification itself is, like these metrics, based on the MA geometry. 
Future studies will be needed to further elaborate on the differences 

between the pathologies and morphologies presented here. 

A recent study by Wang et al.50 found no correlation between 
MA leakage and lumen diameter, wall diameter, or wall thickness, 
suggesting that increasing size may not lead to increased risk of 

leakage. Ezra et al.36 found that the physical relationship between the 
MA radius and associated vessel wall may contribute to leakiness in 
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saccular MAs. Several neuroradiology studies have found that 
multilobular intracranial aneurysms are more likely to rupture than 

unilobular aneurysms,70–72 with one group determining that aneurysm 
neck diameter and not overall aneurysm size was more important in 

determining the risk of rupture.73 These studies indicate that size alone 
is not a sufficient predictor for course of MA pathology, and that other 
metrics may need to be identified. It is likely that a deeper 

understanding of MA morphology may help determine the risk of 
leakiness or rupture. 

In addition to determining boundaries, AOSLO FA reveals 

intraluminal hypofluorescent regions within some larger MAs. These 
regions, not readily observable using conventional FA, appeared in 

almost one-third of the imaged MAs, irrespective of the underlying 
retinal condition. Notably, such hypofluorescent areas were absent in 
focal bulge MAs, but appeared in the majority of the pedunculated and 

irregularly shaped ones. Histologic studies have revealed that MA 
lumens can be infiltrated by a variety of cell types, ranging from acute 

inflammatory cells such as polymorphonuclear cells and monocytes to 
red blood cell breakdown products and cellular debris.34 The 
hypofluorescence we observed could represent such luminal clots. The 

greater luminal surface area of larger MAs like the pedunculated and 
irregular morphologies may produce more turbulent blood flow, which 

may increase the risk of endothelial injury and the formation or 
enlargement of luminal clots. Further studies are needed to elucidate 
the relationship between these hypofluorescent regions and advanced 

disease. 

The complementary information provided by reflectance AOSLO 
and FA imaging proved useful in evaluating wall thickness and 

identifying nonperfused capillaries and MAs. The different perspective 
provided by each imaging modality was helpful in exploring MA natural 
progression. This was further examined via imaging a few MAs 

longitudinally (Fig. 8), demonstrating that AOSLO FA can show MA 
stability, growth, and resolution as well as potentially evaluate the 

efficacy of various treatments. The observation of MAs in various 
stages of resolution only a few microns apart on the same capillary 

illustrates a complex dynamic at play. While the regression of an MA 
following anti-VEGF treatment (Fig. 8, right column) is encouraging, it 
remains to be seen whether the regression was due to treatment or 

just coincident to natural history. As such, monitoring a small sample 
of MAs, or their turnover, may not accurately portray all possible 

patterns of progression or treatment response. With additional work 
beyond this preliminary study, the AOSLO FA may prove to be a 
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powerful tool in studying the treatment effects of anti-VEGF 
interventions on MAs. 

Combining a robust qualitative classification with quantitative 

metrics may allow us to better stratify MAs clinically in terms of risk of 
leakage or rupture and associated capillary dropout. Clinical 

applications of this approach may prove useful in better understanding 
microvascular disease progression and help point the way to more 

successful treatment regimes. 
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