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Abstract— In this article, we propose an efficient and effective
framework to fuse hyperspectral and light detection and ranging
(LiDAR) data using two coupled convolutional neural networks
(CNNs). One CNN is designed to learn spectral–spatial features
from hyperspectral data, and the other one is used to capture the
elevation information from LiDAR data. Both of them consist of
three convolutional layers, and the last two convolutional layers
are coupled together via a parameter-sharing strategy. In the
fusion phase, feature-level and decision-level fusion methods are
simultaneously used to integrate these heterogeneous features
sufficiently. For the feature-level fusion, three different fusion
strategies are evaluated, including the concatenation strategy,
the maximization strategy, and the summation strategy. For the
decision-level fusion, a weighted summation strategy is adopted,
where the weights are determined by the classification accuracy
of each output. The proposed model is evaluated on an urban
data set acquired over Houston, USA, and a rural one captured
over Trento, Italy. On the Houston data, our model can achieve a
new record overall accuracy (OA) of 96.03%. On the Trento data,
it achieves an OA of 99.12%. These results sufficiently certify the
effectiveness of our proposed model.

Index Terms— Convolutional neural networks (CNNs), decision
fusion, feature fusion, hyperspectral data, light detection and
ranging (LiDAR) data, parameter sharing.
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I. INTRODUCTION

ACCURATE land-use and land-cover classification plays

an important role in many applications such as urban

planning and change detection. In the past few years, hyper-

spectral data have been widely explored for this task [1]–[3].

Compared to multispectral data, hyperspectral data have more

rich spectral information, ranging from the visible spectrum

to the infrared spectrum [4]. Such information, combined with

some spatial information in hyperspectral data, can generally

acquire satisfying classification results [5], [6]. However, for

urban and rural areas, there often exist many complex objects

that are difficult to discriminate because they have similar

spectral responses. Thanks to the development of remote

sensing technologies, nowadays, it is possible to measure

different aspects of the same object on the Earth’s surface

[7]. Different from hyperspectral data, light detection and

ranging (LiDAR) data can record the elevation information

of objects, thus providing complementary information for

the hyperspectral data. For instance, if both the building

roof and the road are made up of concrete, it is very

difficult to distinguish them using only hyperspectral data

since their spectral responses are similar. However, LiDAR

data can accurately classify those two classes as they have

different heights. On the contrary, LiDAR data cannot dif-

ferentiate between two different roads, which are made up

of different materials (e.g., asphalt and concrete), having

the same height. Therefore, fusing hyperspectral and LiDAR

data is a promising scheme whose performance has already

been validated in the literature for land-cover and land-use

classification [7], [8].

In order to take advantage of the complementary infor-

mation between hyperspectral and LiDAR data, a lot of

works have been proposed. One widely used class of meth-

ods is based on feature-level fusion. In [9], morphological

extended attribute profiles (EAPs) were applied to hyperspec-

tral and LiDAR data. These profiles and the original spectral

information of hyperspectral data were stacked together for

classification. However, the direct stacking of these high-

dimensional features inevitably results in the well-known

Hughes phenomenon, especially when only a relatively small

number of training samples is available. To address this issue,

principal component analysis (PCA) was employed to reduce

the dimensionality. Similar to this article, many subspace-

related models can be designed to fuse the extracted spectral,

spatial, and elevation features [10]–[14]. For example, a graph
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embedding framework was proposed by Liao et al. [11]; a

low-rank component analysis model was proposed by Rasti

et al. [12]. Different from them, Gu et al. [16] attempted to

use multiple-kernel learning [15] to combine heterogeneous

features. They constructed a kernel for each feature and then

combined these kernels together in a weighted summation

manner. Different weights can represent the importance of

different features for classification.

Besides the feature-level fusion, decision-level fusion is

another popularly adopted method. In [17], spectral features,

spatial features, elevation features, and their fused features

were fed into the support vector machine (SVM) individu-

ally to generate four classifiers, and the final classification

result was determined by them. In [18], two different fusion

strategies named hard decision fusion and soft decision fusion

were used to integrate the classification results from a different

data source. Their fusion weights were uniformly distributed.

In [19], three different classifiers, including the maximum

likelihood classifier, SVM, and the multinomial logistic regres-

sion, were used to classify the extracted features. The fusion

weights for these classifiers were adaptively optimized by a

differential evolution algorithm. Recently, a novel ensemble

classifier using random forest was proposed, in which a major-

ity voting method was used to produce the final classification

result [20]. In summary, the difference between feature-level

fusion and decision-level fusion methods lies in the phase

where the fusion process happens, but both of them require

powerful representations of hyperspectral and LiDAR data.

To achieve this goal, one needs to spend a lot of time designing

appropriate feature extraction and feature selection methods.

These handcrafted features often require domain expertise and

prior knowledge.

In recent years, deep learning has attracted more and more

attention in the field of remote sensing [21], [22]. In contrast

to the handcrafted features, deep learning can learn high-level

semantic features from data itself in an end-to-end manner

[23]. Among various deep learning models, convolutional

neural networks (CNNs) gain the most attention and have been

explored in various tasks. For example, in [24], CNN was

applied to object detection in remote sensing images. In [25],

three CNN frameworks were proposed for hyperspectral image

classification. Liu et al. [26] used CNNs to learn multiscale

deep features for remote sensing image scene classification.

Due to its powerful feature learning ability, some researchers

attempted to use CNN for hyperspectral and LiDAR data

fusion recently. An early attempt appears in [27]. It directly

considered LiDAR data as another spectral band of hyperspec-

tral data, and then fed the concatenated data into CNN to learn

features and perform classification. Ghamisi et al. [28] tried

to combine the traditional feature extraction method and CNN

together. They fed the fused features to CNN for learning a

higher-level representation and getting a classification result.

Similarly, Li et al. [29] constructed three CNNs to learn spec-

tral, spatial, and elevation features, respectively, and then used

a composite kernel method to fuse them. Different from them,

an end-to-end CNN fusion model was designed in [30], which

embedded feature extraction, feature fusion, and classification

into one framework. Specifically, the hyperspectral and LiDAR

data were directly fed into their corresponding CNNs to extract

features, and then these features were concatenated together,

followed by a fully connected layer to further fuse them. Based

on this two-branch framework, Xu et al. [31] also proposed

a spectral–spatial CNN for hyperspectral data analysis and

another spatial CNN for LiDAR data analysis.

It is well-known that the performance of CNN-based models

heavily depends on the number of available samples. However,

in the field of hyperspectral and LiDAR data fusion, there

often exists a small number of training samples. To address

this issue, an unsupervised CNN model was proposed in

[32] based on the famous encoder–decoder architecture [33].

Specifically, it first mapped the hyperspectral data into a

hidden space via an encoding path, and then reconstructed

the LiDAR data with a decoding path. After that, the hidden

representation in the encoding path can be considered as fused

features of hyperspectral and LiDAR data. Nevertheless, there

still exist some issues. For example, the loss of supervised

information from labeled samples will lead to a suboptimal

feature representation; it also needs to design another network

to classify the learned representation, which will increase

the computation complexity. In this article, we propose a

supervised model to fuse hyperspectral and LiDAR data by

designing an efficient and effective CNN framework. Similar

to [30], we also use two CNNs but with a more efficient

representation. We use three convolutional layers with small

kernels (i.e., 3 × 3), and two of them share parameters. Besides

the output layer, we do not use any fully connected layers. The

major contributions of this article are summarized as follows.

1) In order to sufficiently fuse hyperspectral and LiDAR

data, two coupled CNNs are designed. Compared to

the existing CNN-based fusion models, our model is

more efficient and effective. The coupled convolution

layers can reduce the number of parameters, and more

importantly, guide the two CNNs learn from each other,

thus facilitating the following feature fusion process.

2) In the fusion phase, we simultaneously use feature-level

and decision-level fusion strategies. For the feature-level

fusion, we propose summation and maximization fusion

methods in addition to the widely adopted concatena-

tion method. To enhance the discriminative ability of

learned features, we add two output layers to the CNNs,

respectively. These three output results are finally com-

bined together via a weighted summation method, whose

weights are determined by the classification accuracy of

each output on the training data.

3) We test the effectiveness of the proposed model on two

data sets using standard training and test sets. On the

Houston data, we can achieve an overall accuracy (OA)

of 96.03%, which is the best result ever reported in the

literature. On the Trento data, we can also obtain very

high performance (i.e., an OA of 99.12%).

The rest of this article is organized as follows. Section II

describes the details of the proposed model, including the

coupled CNN framework, the data fusion model, and the

network training and testing methods. The descriptions of data
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Fig. 1. Flowchart of the proposed model.

sets and experimental results are given in Section III. Finally,

Section IV concludes this article.

II. METHODOLOGY

A. Framework of the Proposed Model

As shown in Fig. 1, our proposed model mainly consists

of two networks: an HS network for spectral–spatial feature

learning and a LiDAR network for elevation feature learning.

Each of them includes an input module, a feature learning

module, and a fusion module. For the HS network, PCA

is firstly used to reduce the redundant information of the

original hyperspectral data, and then a small cube is extracted

surrounding the given pixel. For the LiDAR network, we can

directly extract an image patch at the same spatial position

as the hyperspectral data. In the feature learning module,

we use three convolutional layers, and the last two of them

share parameters. In the fusion module, we construct three

classifiers. Each CNN has an output layer, and their fused

features are also fed into an output layer.

B. Feature Learning via Coupled CNNs

Given a hyperspectral image Xh ∈ R
m×n×b and a corre-

sponding LiDAR image Xl ∈ R
m×n covering the same area

on the Earth’s surface. Here, m and n represent the height

and width, respectively, of the two images, and b refers to

the number of spectral bands of the hyperspectral image. Our

goal is to sufficiently fuse the information from Xh and Xl

to improve the classification performance. As with any other

classification tasks, feature representation is a critical step

here. Due to the effects of multipath scattering and the hetero-

geneity of subpixel constituents, Xh often exhibits nonlinear

relationships between the captured spectral information and

the corresponding material. This nonlinear characteristic will

be magnified when dealing with Xl [7]. It has been proved

that CNNs are capable of extracting high-level features, which

are usually invariant to the nonlinearities of hyperspectral

[34]–[36] and LiDAR data [30], [37]. Inspired from them,

Fig. 2. Architecture of the coupled CNNs.

we design a coupled CNN framework to learn features from

Xh and Xl efficiently.

The detailed architecture of the coupled CNNs is demon-

strated in Fig. 2. First of all, PCA is used to extract the first k

principle components of Xh to reduce the redundant spectral

information. Then, for each pixel, a small cube xh ∈ R
p×p×k

and a small patch xl ∈ R
p×p centered at it are chosen

from Xh and Xl , respectively. According to [30] and [32],

the neighboring size p can be empirically set to 11. After

that, xh and xl are fed into three convolutional layers to

learn features. For the first convolutional layer, we adopt two

different convolution operators (the blue box and the orange

box) to obtain an initial representation of xh and xl , respec-

tively. This convolutional layer is sequentially followed by a

batch normalization (BN) layer to regularize and accelerate

the training process, a rectified linear unit (ReLU) to learn a

nonlinear representation, and a max-pooling layer to reduce

the data variance and the computation complexity.

For the second convolutional layer, we let the HS network

and the LiDAR network share parameters. Such a coupling

strategy has at least two benefits. First, it can significantly
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Fig. 3. Structure of the fusion module.

reduce the number of parameters twice, which is very useful

with a small number of training samples. Second, it can

make these two networks learn from each other. Without

weight sharing, the training parameters in each network will be

optimized independently using their own loss functions. After

adopting the coupling strategy, the backpropagated gradients to

this layer will be determined by the loss functions of both net-

works, which means that the information in one network will

directly affect the other one. For the third convolutional layer,

we also use the coupling strategy, which can further improve

the discriminative ability of the learned representation from

the second convolutional layer. Again, these two convolutional

layers are followed by BN, ReLU, and max-pooling operators.

The sizes (i.e., 3 × 3) and the number of kernels (i.e., 32, 64,

and 128 sequentially) of each convolutional layer are shown

at the left side under each data. Similarly, the output size (e.g.,

11 × 11 × 32) of each operator is shown at the right side. It

is worth noting that all the convolutional layers have padding

operators to make the output size the same as the input size.

C. Hyperspectral and LiDAR Data Fusion

After getting the feature representations of xh and xl , how to

combine them becomes another important issue. Most of the

existing deep learning models [30]–[32] choose to stack them

together and use a few fully connected layers to fuse them.

However, fully connected layers often contain a large number

of parameters, which will increase the training difficulty when

there exists only a small number of training samples. To this

end, we propose a novel combination strategy based on

feature-level and decision-level fusions. Assume Rh ∈ R
128×1

and Rl ∈ R
128×1 denote the learned features for xh and xl ,

respectively. As shown in Fig. 3, we first combine Rh and

Rl to generate a new feature representation. Then, we input

these three features into output layers separately. Finally, all

the output layers are integrated together to produce a final

result. The whole fusion process can be formulated as

O = D[ f1(Rh; W1), f2(Rl; W2), f3(F(Rh, Rl); W3); U]

(1)

where O ∈ R
C×1, where C is the number of classes to

discriminate, represents the final output of the fusion module;

D and F are decision-level and feature-level fusions, respec-

tively; f1, f2, and f3 are three output layers connected to

Rh , Rl , and F(Rh, Rl ), respectively; W1 ∈ R
C×128, W2 ∈

R
C×128, W3 ∈ R

C×128, denote the connection weights for

f1, f2, and f3, respectively; U ∈ R
C×3 corresponds to the

fusion weight for D.

For the feature-level fusion F , we use summation and maxi-

mization methods in addition to the widely used concatenation

method. The summation fusion aims to compute the sum of

the two representations

F(Rh, Rl ) = Rh + Rl . (2)

Similarly, the maximization fusion aims at performing an

element-wise maximization

F(Rh , Rl) = max(Rh , Rl). (3)

Obviously, the performance of F depends on its inputs Rh

and Rl . Therefore, we add two output layers f1, and f2 to

supervise their learning processes. In the output phase, they

can also help make decisions. The output value of f1 can be

derived as follows:

ŷ1 = f1(Rh; W1) = softmax(W1Rh) (4)

where so f tmax represents the softmax function. Similar to

(4), we can also derive the output values ŷ2 and ŷ3 for f2 and

f3, respectively. For the decision-level fusion D, we adopt a

weighted summation method

O = D(ŷ1, ŷ2, ŷ3; U) = u1 ⊙ ŷ1 + u2 ⊙ ŷ2 + u3 ⊙ ŷ3 (5)

where ⊙ is an element-wise product operator, u1, u2 and u3

are three column vectors of U, and the i th element of u j , j ∈

{1, 2, 3} depends on the i th class accuracy acquired by the j th

output layer on the training data.

D. Network Training and Testing

The whole network in Fig. 1 is trained in an end-to-

end manner using a given training set {(x
(i)
h , x

(i)
l , y(i))|i =

1, 2, · · · , N}, where N represents the number of training

samples, and y(i) is the groundtruth for the i th sample. After

a feed-forward process, we are able to obtain three outputs for

each sample. Their loss values can be computed by a cross-

entropy loss function. For instance, the loss value between the

first output ŷ1 and the groundtruth y can be formulated as

L1 = −
1

N

N
∑

i=1

[

y(i)log
(

ŷ
(i)
1

)

+ (1 − y(i))log
(

1 − ŷ
(i)
1

)]

. (6)

Similarly, we can also derive L2 and L3 for the other two

outputs. L3 is designed to supervise the learning process of the

fused feature between hyperspectral and LiDAR data, whereas

L1 and L2 are responsible for the hyperspectral and LiDAR

features, respectively. The final loss value L is represented as

the combination of L1, L2, and L3

L = λ1 L1 + λ2 L2 + L3 (7)

where λ1 and λ2 represent the weight parameters for L1

and L2, respectively. In the experiments, we empirically set

them to 0.01 because it can achieve satisfactory performance.

The effects of them on the classification performance will be

analyzed in Section III-D.
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TABLE I

NUMBERS OF TRAINING AND TEST SAMPLES IN EACH CLASS

FOR THE HOUSTON DATA

TABLE II

NUMBERS OF TRAINING AND TEST SAMPLES IN EACH CLASS

FOR THE TRENTO DATA

The same as most CNN models, L can be optimized using

a backpropagation algorithm. Note that L1 and L2 can also be

considered as regularization terms for L3, thus reducing the

overfitting risk during the network training process.

Once the network is trained, we can use it to predict the

label of each test sample. First, u j , j ∈ {1, 2, 3} is computed

on the training set. Its i th element u j i can be derived as

a j i =

∑N
ℓ=1

∑

y(ℓ)=i I
(

ŷ
(ℓ)
j = y(ℓ)

)

∑N
ℓ=1 I(y(ℓ) = i)

u j i =
a j i + 10−5

a1i + a2i + a3i + 10−5
(8)

where a j i is the i th class accuracy of the j th output, and I

is an indicator function, the value of which equals 1 when

the condition exists and 0 otherwise. Second, for the tth test

sample, we are able to obtain three output values ŷ
(t)
1 , ŷ

(t)
2 , and

ŷ
(t)
3 via a feed-forward propagation. Finally, the output value

can be derived by using (5).

III. EXPERIMENTS

A. Data Description

We test the effectiveness of our proposed model on two

hyperspectral and LiDAR fusion data sets.

1) Houston Data: The first data were acquired over the

University of Houston campus and the neighboring urban

area in June 2012 [8]. It consists of a hyperspectral image

Fig. 4. Visualization of the Houston data. (a) Pseudo-color image for the
hyperspectral data using 64, 43, and 22 as R, G, B, respectively. (b) Grayscale
image for the LiDAR data, (c) Training data map. (d) Test data map.

Fig. 5. Visualization of the Trento data. (a) Pseudo-color image for the
hyperspectral data using 40, 20, and 10 as R, G, B, respectively. (b) Grayscale
image for the LiDAR data. (c) Training data map. (d) Test data map.

and LiDAR data, both of which contain 349 × 1905 pixels

with a spatial resolution of 2.5 m. The number of spectral

bands for the hyperspectral data is 144. Fig. 4 demonstrates a

pseudocolor image of the hyperspectral data, a grayscale image

of the LiDAR data, and groundtruth maps of the training and

test samples. As shown in the figure, there exist 15 different
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classes. The detailed numbers of samples for each class are

reported in Table I. It is worth noting that we use the standard

sets of training and test samples which makes our results fully

comparable with several works such as [7] and [8].

2) Trento Data: The second data were captured over a

rural area in the south of Trento, Italy. The LiDAR data

was acquired by the Optech ALTM 3100EA sensor, and the

hyperspectral data was acquired by the AISA Eagle sensor

with 63 spectral bands. The size of these two data is 166 × 600

pixels, and the spatial resolution is 1 m. Fig. 5 visualizes this

data, and Table II lists the number of samples in six different

classes. Again, we also use the standard sets of training and

test samples to construct experiments.

B. Experimental Setup

In order to validate the effectiveness of our proposed

models, we comprehensively compare it with several different

models. Specifically, we first select the HS network (i.e., CNN-

HS) and the LiDAR network (i.e., CNN-LiDAR) in Fig. 1 as

two baselines and compare different fusion methods on both

Houston and Trento data. Then, we focus on the Houston data

and compare our model with numerous state-of-the-art models.

All of the deep learning models are implemented in the

PyTorch framework. To optimize them, we use the Adam

algorithm. The batch size, the learning rate, and the number of

training epochs are set to 64, 0.001, and 200, respectively. The

experiments are implemented on a personal computer with an

Intel core i7-4790, 3.60-GHz processor, 32-GB RAM, and a

GTX TITAN X graphic card.

The classification performance of each model is evaluated

by the OA, the average accuracy (AA), the per-class accuracy,

and the Kappa coefficient. OA defines the ratio between the

number of correctly classified pixels to the total number of

pixels in the test set, AA refers to the average of accuracies in

all classes, and Kappa is the percentage of agreement corrected

by the number of agreements that would be expected purely

by chance.

C. Experimental Results

1) Comparison With Different Fusion Models: In addition

to two single-source models (i.e., CNN-HS and CNN-LiDAR),

we also test the effectiveness of feature-level fusion models,

i.e., using f3 only. The three feature-level fusion methods

CNN-F-C, CNN-F-M, and CNN-F-S stand for the concate-

nation method, the maximization method, and the summa-

tion method, respectively. Similarly, the three decision-level

and feature-level fusion methods in Fig. 3 are abbreviated

as CNN-DF-C, CNN-DF-M, and CNN-DF-S, respectively.

Table III shows the detailed classification results of eight

models on the Houston data. Several conclusions can be

observed from it. First, for the single-source models, CNN-

HS achieves significantly better results than CNN-LiDAR in

each class. It indicates that the spectral–spatial information

in the hyperspectral data is more discriminative than the

elevation information in the LiDAR data. Second, all of the

three feature-level fusion models (i.e., CNN-F-C, CNN-F-M,

and CNN-F-S) obtain higher accuracies than the CNN-HS

model in most classes. This can be explained by the fact that

LiDAR data can provide complementary information for the

hyperspectral data, and by combining them together in a proper

way, the classification performance can be improved. Third,

based on the feature-level fusion models, if we further use

the decision-level fusion (i.e., CNN-DF-C, CNN-DF-M, and

CNN-DF-S), the performance is improved again. Taking the

summation fusion method as an example, by the simultaneous

use of feature-level and decision-level fusions, the OA is

increased from 94.49% to 96.03%, which is the best result

ever reported in the literature. Last but not the least, compared

to the widely used concatenation method, our proposed max-

imization and summation fusion methods can achieve better

OA, AA, and Kappa values. Besides the quantitative results,

we also qualitatively analyze the performance of different

models. Fig. 6 demonstrates the classification maps of different

models. In this figure, different colors represent different

classes of objects. From Fig. 6(b), we can see that the CNN–

LiDAR model generates many outliers, and misclassifies a lot

of objects. In comparison with it, other models obtain more

homogeneous classification maps. However, some objects are

a little over-smoothed because all of the models use the small

patches and cubes as inputs.

Similar to the Houston data, Table IV and Fig. 7 show the

quantitative and qualitative results, respectively, on the Trento

data. The data have larger and more homogeneous objects

to discriminate than the Houston data, so all of the models

can achieve relatively high performance (e.g., the OA values

are larger than 90%). Specifically, CNN-HS is better than

CNN-LiDAR, and the feature-level fusion method can improve

the performance of CNN-HS. More importantly, simultaneous

feature-level and decision-level fusion is more effective than

using feature-level fusion only. The best results appear when

adopting the maximization fusion method.

2) Comparison With State-of-the-Art Models: In the exist-

ing hyperspectral and LiDAR data fusion works, most of the

models tested their performance on the Houston data. To high-

light the superiority of our proposed models, we also compared

them with state-of-the-art models, including seven traditional

models and five CNN-related models, using standard training

and test sets. These traditional models include the multiple

feature learning model MLRsub in [38], the generalized graph-

based fusion model GGF in [11], the sparse and low-rank

component analysis model SLRCA in [12], the total variation

component analysis model OTVCA in [13], the adaptive

differential evolution-based fusion model ODF-ADE in [19],

the unsupervised graph fusion model E-UGF in [20], and the

composite kernel extreme learning machine model HyMCKs

in [39]. The CNN-related models include the deep fusion

model DF in [30], the CNN model combined with graph-

based feature fusion method CNNGBFF in [28], the three-

stream CNN-based composite kernel model CNNCK in [29],

the two-branch CNN model TCNN in [31], and the patch-to-

patch CNN model PToPCNN in [32].

Table V reports the detailed comparison results of different

models in terms of OA, AA, and Kappa coefficients. Note that

all the results are directly cited from their original articles

because we are not able to reproduce them due to missing
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TABLE III

CLASSIFICATION ACCURACIES (%) AND KAPPA COEFFICIENTS OF DIFFERENT MODELS ON THE HOUSTON DATA. THE BEST ACCURACIES

ARE SHOWN WITH THE BOLD TYPE FACE

Fig. 6. Classification maps of the Houston data using different models. (a) CNN-HS. (b) CNN-LiDAR. (c) CNN-F-C. (d) CNN-F-M. (e) CNN-F-S.
(f) CNN-DF-C. (g) CNN-DF-M. (h) CNN-DF-S.

parameters or the availability of codes. For the traditional mod-

els, the best OA, AA, and Kappa values are 95.11%, 94.57%,

and 0.9447, respectively, achieved by a recent work named E-

UGF [20]. For the CNN-related models, CNNCK [29] obtains

the best OA and Kappa values, while PToPCNN [32] acquires

the best AA. Compared to the E-UGF model, both CNNCK

and PToPCNN models obtain inferior performance, which

indicate that the existing CNN-related fusion models still have

some potentials to explore. Similar to DF [30] and TCNN [31]

models, our proposed models (i.e., CNN-DF-M and CNN-

DF-S) can also be considered as a two-branch CNN model.

However, the proposed models can obtain significantly better

results than them, even than E-UGF, which sufficiently certify

the effectiveness of the proposed model.

D. Analysis on the Proposed Model

1) Analysis on the Reduced Dimensionality: For the pro-

posed model, we have two hyperparameters to predefine.

The first one is the number of reduced dimensionality k of

hyperspectral data using PCA, and the second one is the

neighboring size p × p extracted from hyperspectral and
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TABLE IV

CLASSIFICATION ACCURACIES (%) AND KAPPA COEFFICIENTS OF DIFFERENT MODELS ON THE TRENTO DATA. THE BEST ACCURACIES

ARE SHOWN WITH THE BOLD TYPE FACE

Fig. 7. Classification maps of the Trento data using different models. (a) CNN-HS. (b) CNN-LiDAR. (c) CNN-F-C. (d) CNN-F-M. (e) CNN-F-S. (f) CNN-
DF-C. (g) CNN-DF-M. (h) CNN-DF-S.

LiDAR data. To evaluate the effect of k, we fix p and select

k from a candidate set {1, 5, 10, 15, 20, 25, 30}. Since the

fusion models have the same hyperparameter values as single

models (i.e., CNN-HS and LiDAR-HS), we only demonstrate

the results of single models here. Fig. 8 shows the performance

(i.e., OA) of CNN-HS on the Houston (the blue line) and

Trento (the red line) data. From this figure, we can observe

that as k increases, OA firstly increases and then tends to

a stable state. Considering the computation complexity and

classification performance, k can be set to 20 for both data.

2) Analysis on the Neighboring Size: Similar to the analysis

of k, we can also fix k and choose p from a candidate set

{9, 11, 13, 15, 17, 19} to evaluate the effect of p. Table VI

reports the changes in OA values at different sizes. When the

size increases from 9 to 11 on the Houston data, the improve-

ments of OA acquired by CNN-HS and CNN-LiDAR are more

than 1%. But for the other sizes, these two models do not

change significantly. For the Trento data, CNN-HS is relatively

stable when the size changes, but CNN-LiDAR will increase

more than 1% from 9 to 11, and decrease from 11 to 13. Based

on the above analysis, 11 is a reasonable choice for CNN-HS

and CNN-LiDAR on both data. This choice is consistent with

the works in [30] and [32].

3) Analysis on the Coupling Strategy: Benefiting from the

coupling strategy, the number of parameters in the second

and the third convolutional layers is reduced by two times.

Taking CNN-DF-M and CNN-DF-S models as examples,

on the Houston data, the total number of parameters to train is
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TABLE V

PERFORMANCE COMPARISON WITH THE STATE-OF-THE-ART MODELS ON THE HOUSTON DATA

Fig. 8. Effect of the reduced dimensionality on the OA (%) achieved by the
CNN-HS model.

TABLE VI

EFFECT OF THE NEIGHBORING SIZE ON THE OA (%) ACQUIRED BY THE

CNN-HS AND CNN-LIDAR MODELS

TABLE VII

COMPUTATION TIME (SECONDS) OF DIFFERENT MODELS ON THE HOUS-
TON DATA

196 128 without weight sharing, while this number is reduced

to 103 968 after adopting the coupling strategy; on the Trento

data, the trainable parameters are 192 672 and 100 512 without

and with weight sharing, respectively. In summary, the para-

meter numbers in CNN-DF-M and CNN-DF-S models are

reduced by about 47% on both data when the coupling strategy

TABLE VIII

COMPUTATION TIME (SECONDS) OF DIFFERENT MODELS ON THE TRENTO

DATA

Fig. 9. Comparisons before and after adopting the coupling strategy on two
data. (From left to right) Houston data and the Trento data.

is employed. Besides, we also test the effects of the coupling

strategy on the classification performance. Fig. 9 illustrates the

changes of OA before and after adopting the coupling strategy

on the Houston data (left one) and the Trento data (right one).

This indicates that the performance of CNN-DF-C, CNN-DF-

M, and CNN-DF-S in terms of OA is slightly improved after

adopting the coupling strategy.

4) Analysis on the Computation Cost: To quantitatively

analyze the computation cost of different models, Tables VII

and VIII report their computation time on the Houston and

Trento data, respectively. From these two tables, we can

observe that CNN-HS and CNN-LiDAR models take less

training time than the other fusion models because they only

need to process single-source data, without any interactions

between different sources. On the contrary, the proposed

decision-level and feature-level fusion models cost much more

training time than the single-source and the feature-level fusion

models. Nevertheless, once the networks are trained, their test

efficiency is very high. In particular, it takes not more than

2 s to finish the test process, which is close to the time costs

of the other models.

5) Analysis on the Weight Parameters: The loss function

of the proposed model in (7) contains two hyper-parameters
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Fig. 10. Effects of weight parameters λ1 and λ2 on the classification
performance achieved by the CNN-DF-S model on two data. (From left to
right) Houston data and the Trento data.

(i.e., λ1 and λ2). In order to test their effects on the classifica-

tion performance, we firstly fix λ1 and change λ2 from a can-

didate set {0.001, 0.01, 0.1, 1}. Then, we set λ2 to the optimal

value and change λ1 from the same set {0.001, 0.01, 0.1, 1}.

Fig. 10 shows the OAs obtained by the proposed CNN-DF-S

model on the Houston and Trento data with different λ1 and

λ2 values. In this figure, the pink and the blue lines repre-

sent the CNN-DF-S model with different λ1 and λ2 values,

respectively. It is shown that as λ2 increases, the OA will

firstly increase and then decrease on both data. The highest

OA value appears when λ2 = 0.01. Similar conclusions can

be observed for λ1. Therefore, the optimal values for λ1 and

λ2 are 0.01.

IV. CONCLUSION

This article proposed a coupled CNN framework for hyper-

spectral and LiDAR data fusion. Small convolution kernels and

parameter sharing layers were designed to make the model

more efficient and effective. In the fusion phase, we used

feature-level and decision-level fusion strategies simultane-

ously. For the feature-level fusion, we proposed summation

and maximization methods in addition to the widely used con-

catenation method. For the decision-level fusion, we proposed

a weighted summation method, whose weights depend on the

performance of each output layer. To validate the effectiveness

of the proposed model, we constructed several experiments on

two data sets. The experimental results show that the proposed

model can achieve the best performance on the Houston data

and very high performance on the Trento data. Additionally,

we also thoroughly evaluated the effects of different hyper-

parameters on the classification performance, including the

reduced dimensionality and the neighboring size. In the future,

more powerful neighboring extraction methods need to be

explored, because the current classification maps still exist

over-smoothing problems.
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