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Abstract—Classification of hyperspectral data with high spatial
resolution from urban areas is investigated. A method based on
mathematical morphology for preprocessing of the hyperspectral
data is proposed. In this approach, opening and closing morpho-
logical transforms are used in order to isolate bright (opening)
and dark (closing) structures in images, where bright/dark means
brighter/darker than the surrounding features in the images. A
morphological profile is constructed based on the repeated use of
openings and closings with a structuring element of increasing size,
starting with one original image. In order to apply the morpholog-
ical approach to hyperspectral data, principal components of the
hyperspectral imagery are computed. The most significant prin-
cipal components are used as base images for an extended mor-
phological profile, i.e., a profile based on more than one original
image. In experiments, two hyperspectral urban datasets are clas-
sified. The proposed method is used as a preprocessing method for
a neural network classifier and compared to more conventional
classification methods with different types of statistical computa-
tions and feature extraction.

Index Terms—Hyperspectral remote sensing data, morpholog-
ical profiles, neural networks, principal components.

I. INTRODUCTION

H IGH-RESOLUTION hyperspectral remote sensing data

from urban areas have recently become available. Such

data provide both detailed structural and spectral information

about urban scenes. Therefore, the data should be useful for in-

formation and classification. However, the classification of hy-

perspectral urban data is a challenging problem for two main

reasons. First, the hyperspectral data contain a lot of information

about the spectral properties of the land cover in the data, but no

spatial information is inherent in the spectral data. Second, the

individual images from an urban scene contain spatial informa-

tion but very limited information about the spectral nature of the

data. Consequently, a joint spectral/spatial classifier is needed

for classification of urban hyperspectral data, but few such ap-

proaches have been proposed. In this paper, we propose such an

approach, i.e., a morphological method that is based on making

use of both the spectral and spatial information for classification.
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Fig. 1. Morphological profile based on a circular structuring element, three
openings, and three closings. In the shown profile, circular structural elements
with R = 2; 4, and 6 were used.

Fig. 2. Combined morphological profile for two PCs with two openings and
two closings for each PC. In the combined profile, circular structural elements
with R = 2 and 4 were used.

Classification of urban hyperspectral data has been discussed

in some recent papers where the primary focus has often been

on either advanced pixel classifiers [1], [2] or feature extraction

[3]. In addition, approaches based on spectral signature recog-

nition in urban areas have recently been proposed [4], [5]. Most

such approaches do not consider the spatial content of the data,

the reason being that the resolution of hyperspectral data usu-

ally has been low. Other papers on analysis of urban data have

addressed spectral mixture analysis for hyperspectral data [6]

or the identification of spectral signatures in mixed pixels [7].

Such approaches are important in urban areas, since the spatial

scale of urban objects usually is on the order of a few meters.

The proposed approach is based on mathematical mor-

phology [8], [9], [19] and has recently been used successfully

in classification of panchromatic urban data. Pesaresi and

Benediktsson [10] used a composition of geodesic opening

and closing operations of different sizes in order to build a

morphological profile and a neural network approach for the

classification of features. A potential problem with approaches

based on morphological profiles is that these methods create

a large feature set from one original image by applying a

series of opening and closing transforms. Although the use of

morphological profiles should help in creating an image feature
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Fig. 3. Pavia data. Three-channel color composite of the area used for
classification.

Fig. 4. Pavia data. The available reference data.

set that is more effective in discrimination of different urban

features, a lot of redundancy will be evident in the feature set.

Therefore, feature extraction can be used in finding the most

important features in the feature space. In [11], Benediktsson

et al. extended the method in [10] and successfully included

decision boundary feature extraction to reduce the redundancy

in the morphological profile.

In both [10] and [11], the approaches were applied on

panchromatic remote sensing data of high spatial resolution.

It is of interest to extend the approaches in [10] and [11] for

classification of hyperspectral urban data. Recently, Plaza et al.

[26] proposed an extension of the approach. Their approach

looks at both the spectral and spatial information in the imagery

TABLE I
PAVIA DATA. INFORMATION CLASSES AND SAMPLES

Fig. 5. Pavia data. Classification map obtained by maximum-likelihood
classification of seven DAFE features based on original statistics. The overall
accuracy of test data was 97.2% in this case.

and is based on a morphological endmember selection, which

integrates spectral/spatial information from the hyperspectral

data. That means for hyperspectral data, that a characteristic

image needs to be extracted from the data. Another much

simpler approach was suggested in [12], i.e., using only the

first principal component (PC) of hyperspectral image data to

build a morphological profile.

In this paper, the proposed extended morphological profile

method is compared to statistical classification methods based

on different statistical computations and feature extraction

methods that have previously been applied in classification of
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TABLE II
PAVIA DATA. OVERALL TEST ACCURACIES IN PERCENTAGE FOR STATISTICAL

APPROACHES WITH DIFFERENT TYPES OF STATISTICS COMPUTATIONS

AND FEATURE EXTRACTION METHODS

TABLE III
PAVIA DATA. CLASS-SPECIFIC TEST ACCURACIES IN PERCENTAGE FOR

STATISTICAL APPROACHES WITH DIFFERENT TYPES OF STATISTICS

COMPUTATIONS AND FEATURE EXTRACTION METHODS: OS, LOOC, AND ES

hyperspectral data from urban areas. The paper is organized as

follows. In Section II, the proposed mathematical morphology

approach to classification of hyperspectral data from urban

areas is discussed. Feature extraction is discussed in Section III

and statistical parameter estimation in Section IV. Experi-

mental results are given in Section V and conclusions drawn in

Section VI.

II. MORPHOLOGICAL PROFILES FOR HYPERSPECTRAL DATA

Recent theoretical advances in mathematical morphology,

such as definitions of leveling and morphological spectrum,

form a theoretical framework, which is used for the formal

definition of the morphological profiles [8], [14]. Standard

morphological segmentation approaches are based on an

edge-detection phase (watershed line extraction on a gradient

image), but here we consider a morphological segmentation

method, which avoids the gradient calculation, and can be

applied either to single-scale or multiscale image processing

problems.

Watershed line detection [15] is the main tool of mathemat-

ical morphology used for image segmentation. Watershed seg-

mentation was introduced in image analysis by Beucher and

Lantuéjoul [16] and defined mathematically by both Meyer [17]

and Najman and Schmitt [18]. However, except for a few simple

cases where the target object is brighter than the background or

vice versa, watershed segmentation cannot be applied directly.

TABLE IV
PAVIA DATA. EIGENVALUES OF THE PRINCIPAL COMPONENTS

Fig. 6. Pavia data. The first four PCs: (lower left) first component, (lower
right) second component, (upper left) third component, and (upper right) fourth
component.

TABLE V
PAVIA DATA. OVERALL TEST ACCURACIES IN PERCENTAGE FOR NEURAL

NETWORK CLASSIFICATION AFTER MORPHOLOGICAL PROCESSING OF

THE FIRST AND SECOND PRINCIPAL COMPONENTS

Generally, the method is applied to images that have been trans-

formed by a gradient-like operator based on the measure of the

local slope of the gray-level function. Watershed extraction gen-

erally involves the thinning of the gradient image with a homo-

topic transformation, and the detection of basins as regions and

crest lines as boundaries of these regions. For these reasons, the

watershed approach generally leads to finding the features of
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TABLE VI
PAVIA DATA. CLASS-SPECIFIC TEST ACCURACIES IN PERCENTAGE FOR NEURAL NETWORK CLASSIFICATION OF MORPHOLOGICAL PROFILES

an image based on an edge-detection strategy. This character-

istic of watershed segmentation is responsible for the difficulty

in applying this technique in cases where the sensor resolution

approaches the size of the objects in the scene.

The fundamental operators in mathematical morphology are

erosion and dilation. When mathematical morphology is used

in image processing, these operators are applied to an image

with a set of a known shape, called a structuring element (SE).

The application of the erosion operator to an image gives an

output image, which shows where the SE fits the objects in the

image. On the other hand, the application of the dilation operator

to an image gives an output image, which shows where the SE

hits the objects in the image. The erosion and dilation operators

are in general dual but noninvertible. All other morphological

operators can be expressed in terms of erosion and dilation.

Two commonly used morphological operators are opening

and closing. The idea behind opening is to dilate an eroded

image in order to recover as much as possible of the eroded

image. In contrast, the idea behind closing is to erode a dilated

image in order to recover the initial shape of image structures

that have been dilated. The filtering properties of the opening

and closing operators are based on the fact that not all struc-

tures from the original image will be recovered when these op-

erators are applied. It is a common practice to use the opening

and closing transforms in order to isolate bright (opening) and

dark (closing) structures in images, where bright/dark means

brighter/darker than the surrounding features in the images.

In order to isolate features with a thinner support than a

given SE, a widely used technique is to take the residuals of

the opening, closing, and original images, by a morphological

transformation called top-hat and inverse top-hat (or bot-hat)

[8]. The chosen approach for the opening and closing calcu-

lation should use a non-Euclidean metric known as filtering

by reconstruction [20], [21]. The reason for using the recon-

struction approach is that this family of morphological filters

has proven to have a better shape preservation than classical

morphological filters. In fact, reconstruction filters introduce

less shape noise, since an interaction between the shape of the

structures present in the image and the shape of the structuring

element is used in the filtering.

Some structures may have a high response for a given SE

size, and a lower response for other SE sizes, depending on the

interaction between the SE size and the size of the structure.

Sometimes, the size of the structures that we want to detect is

known exactly. However, that is often not possible, and then a

single-SE-size approach appears to be too simplistic. For these

reasons, in exploratory or more complex cases, it is often a good

idea to use a multiscale approach based on a range of different

SE sizes. This can allow us to explore a range of different hy-

pothetical spatial domains and to use the best response of the

structures in the image for the classification process (see Fig. 1).

Given the above-proposed notion of morphological character-

istic, it is straightforward to extend the same concept to multi-

scale processing, by introducing the concepts of morphological

profile and of the derivative of the morphological profile (DMP).

A. Definition

Let be the opening profile at the point of the image

defined as a vector

(1)

and let be the closing profile at the point of the image

defined as a vector

(2)

with

for by definition of opening and closing by reconstruc-

tion. Given (1) and (2), the opening profile can also be defined as

a granulometry made with opening by reconstruction, while the

closing profile can be defined as antigranulometry made with

closing by dual reconstruction. The derivative of the morpho-

logical profile is defined as a vector where the measure of the

slope of the opening–closing profile is stored for every step of

an increasing SE series.

When the morphological profile approach is applied to hyper-

spectral data, a characteristic image needs to be extracted from

the data. As stated above, it was suggested in [12] to use the first

PC of the hyperspectral data for such a purpose. Although that

approach seems reasonable because principal component anal-

ysis is optimal for data representation in the mean square sense,

it should not be forgotten that with only one PC, the hyperspec-

tral data are reduced from potentially several hundred data chan-

nels into one single data channel. In addition, although the first
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Fig. 7. Pavia data. A classification map obtained by applying a neural network
classifier on an extended morphological profile with two PCs, four openings,
and four closings. The neural network classifier was applied to 18 features.
The overall accuracy of the test data was 93.9% in this case.

PC may represent most of the variation in the image, some im-

portant information may be contained in the other PCs. There-

fore, we propose an extension to the approach in [12] and build

an extended morphological profile from several different PCs.

For example, we could decide to use the PCs that account for

around 90% of the total variation in the image. If two PCs con-

tain 90% of the variation, the extended profile would be a double

morphological profile where the first profile would be based on

the first PC and the second profile on the second PC (see Fig. 2).

The extended profile would then be considered a single stacked

vector to be used in neural network classification. Obviously, the

computations will be more extensive because of this approach.

On the other hand, better information should be extracted from

the hyperspectral data than for the simple approach proposed

in [12]. Also, some redundancies should be observed for the ex-

tended morphological profile. Therefore, feature extraction may

be important. Feature extraction is the topic of the next section.

III. FEATURE EXTRACTION

Feature extraction can be viewed as finding a set of vectors

that represents an observation while reducing the dimension-

ality. In pattern recognition, it is desirable to extract features

that are focused on discriminating between classes. Although a

reduction in dimensionality is desirable, the error increment due

to the reduction in dimension has to be without sacrificing the

discriminative power of classifiers. In linear feature extraction,

the number of input dimensions corresponds to the number of

selected eigenvectors [27]. The transformed data are determined

by , where is the transformation matrix composed

of the eigenvectors of the feature matrix, is the data in the

Fig. 8. Washington, DC data. Three-channel color composite of the area used
for classification.

original feature space, and is the transformed data in the new

feature space. Several feature extraction approaches have been

proposed for remote sensing data [27].

A. Discriminant Analysis Feature Extraction (DAFE)

Discriminant analysis is a method that is intended to enhance

separability. A within-class scatter matrix and a between-

class scatter matrix are defined in [22] and [27]. The crite-

rion used for optimization of separability may be defined as

(3)

where denotes the trace of a matrix. New feature vectors

are selected to maximize the criterion.
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Fig. 9. Washington, DC data. The available reference data. The number of
available reference samples for each class is given in parantheses.

The necessary transformation from to is found by

taking the eigenvalue–eigenvector decomposition of the ma-

trix and then taking the transformation matrix as the

normalized eigenvectors corresponding to the eigenvalues in a

decreasing order. For this method, the maximum rank of is

for a -class problem, which indicates that at maximum

features can be extracted by this approach [22].

B. Decision Boundary Feature Extraction (DBFE)

Lee and Landgrebe [30] showed that both discriminately in-

formative features and discriminately redundant features can be

extracted from the decision boundary itself. They also showed

that discriminately informative feature vectors have a compo-

nent that is normal to the decision boundary at least at one point

Fig. 10. Washington, DC data. Classification map obtained by
maximum-likelihood classification of five NWFE features based on original
statistics. The overall accuracy of test data was 99.8% in this case.

TABLE VII
WASHINGTON, DC DATA. INFORMATION CLASSES AND SAMPLES
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on the boundary. Further, discriminately redundant feature vec-

tors are orthogonal to a vector normal to the decision boundary

at every point on the boundary. In [30], a decision boundary fea-

ture matrix (DBFM) was defined to extract discriminately infor-

mative features and discriminately redundant features from the

decision boundary. The rank of DBFM is not dependent on the

number of classes.

C. Nonparametric Weighted Feature Extraction (NWFE)

Although the DBFE overcomes some of the problems with

the DAFE, it does have its limitations, i.e., it can be computa-

tionally intensive, and because it is based on the training sam-

ples, it does not perform well for small numbers of training

samples [22]. To assume the advantages of both the DBFE and

DAFE and mitigate their limitations, Kuo and Landgrebe [3]

proposed nonparametric weighted feature extraction. In partic-

ular, NWFE improves DAFE by focusing on samples near the

eventual decision boundary location, and different weights are

put on every sample to compute the “local means” and defining

new nonparametric between-class and within-class scatter ma-

trices to get more features. The NWFE can give as many features

as in the original feature space and has been shown to perform

well in experiments [22].

IV. STATISTICS ESTIMATION IN MULTISPECTRAL ANALYSIS

Supervised statistical classification relies heavily on the avail-

able training samples, which are used to estimate the mean vec-

tors and the covariance matrices for the individual classes [27].

If the mean vectors and the covariance matrices are only based

on the available training data (called original statistics), prob-

lems may be observed in hyperspectral classification because

of the Hughes phenomenon [22]. There are several approaches

that have been proposed to overcome the Hughes phenomenon

in hyperspectral classification. Such methods include enhanced

statistics and leave one out (LOO) statistics, which are discussed

next.

A. Statistical Enhancement of Remotely Sensed Data

A well-trained classifier must successfully model the distri-

bution of the entire dataset, but the modeling must be done in

such a way that the different classes of interest are as distinct

from one another as possible. Shahshahani and Landgrebe [29]

accomplished the modeling by an iterative calculation based on

both the training samples and a systematic sampling of all the

pixels in the scene. Their method is based on the EM algorithm

and is called enhanced statistics. In the method, the statistics

are adjusted or enhanced so that, while still being defined by

the training samples, the collection of class conditional statis-

tics better fit the entire dataset. This amounts to a hybrid super-

vised/unsupervised training scheme.

B. LOO Statistics

With limited training samples, discriminant functions that do

not contain many parameters may provide improved classifica-

tion results even though they result in simpler decision bound-

aries. Hoffbeck and Landgrebe [28] proposed a covariance es-

TABLE VIII
WASHINGTON, DC DATA. OVERALL TEST ACCURACIES IN PERCENTAGE FOR

STATISTICAL APPROACHES WITH DIFFERENT TYPES OF STATISTICS

COMPUTATIONS AND FEATURE EXTRACTION METHODS

timator that provides this advantage. This covariance estimator

examines mixtures of the sample covariance, diagonal sample

covariance, common covariance, and diagonal common covari-

ance [28] This optimization criterion is referred to as the leave

one out method, and the obtained covariance is referred to as

leave one out covariance (LOOC).

V. EXPERIMENTAL RESULTS

Two hyperspectral datasets from urban areas were used

in classification. One dataset is from the city of Pavia, Italy.

The other dataset is from Washington, DC. In both cases, the

proposed morphological preprocessing method was applied

along with a backpropagation neural network classifier with

one hidden layer. The number of neurons in the hidden layer is

computed as the geometric average of the number of inputs and

outputs. The number of openings (and closings) varied for the

experiments, and different radius increments were also tested

for the SE. The results are compared to statistical Gaussian

ML classification based on different types of statistics compu-

tations and feature extraction. The statistics methods applied

are original statistics, LOOC statistics and enhanced statistics

[13]. The considered feature extraction approaches are DAFE,

DBFE [30], and NWFE [22]. A feature set based on the 99%

variance was selected for the DBFE and NWFE methods, but a

feature set based on 95% variance was selected for the DAFE

approach. MultiSpec [23] was used for the statistical classifica-

tion but Matlab for the morphological preprocessing and neural

network classification. The results from the experiments are

discussed below.

A. Results for Data From Pavia, Italy

The data in this experiment are very fine resolution hyper-

spectral data, part of the records of four flight lines over the

urban area of Pavia, in northern Italy [13]. The flight was done

in the framework of the HySens project, managed by Deutsches

Zentrum fuer Luft- und Raumfahrt (the German Aerospace

Center) and sponsored by the European Union within the

transnational access to major research infrastructures (Contract

no. HPRI-CT-1999-00075). The urban area was imaged by

means of the Digital Airborne Imaging Spectrometer (DAIS).

The flight altitude was chosen as the lowest available for the

airplane, which resulted in a spatial resolution of 2.6 m. The

lines were chosen so that the images are partially overlapping,
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TABLE IX
WASHINGTON, DC DATA. CLASS-SPECIFIC TEST ACCURACIES IN PERCENTAGE

FOR STATISTICAL APPROACHES WITH DIFFERENT TYPES OF STATISTICS

COMPUTATIONS AND FEATURE EXTRACTION METHODS:
OS, LOOC, AND ES

Fig. 11. Washington, DC data. The first four principal components: (left) first
component to the (right) fourth component.

which allows studying the effect of the directional reflectance of

urban materials on mapping accuracy [24]. In the experiments,

it was decided to take into account only bands of reflective

energy and thus skip the seven thermal infrared bands. Also,

the middle infrared bands above 1.958- m wavelengths were

skipped because of heavy noise in those bands. Therefore, only

the first 40 (out of 80) spectral bands of DAIS (visible and

near-infrared bands, from 0.496–1.756 m) are considered in

the experiments. The test site is the middle part of the DAIS

7915 image swath 1 over center of the city of Pavia, Italy (see

Fig. 3). Its size is 400 400 pixels. The test site comprises a

number of different land cover classes, from a dense residential

area on one side of the river to open areas and meadows on the

other side. In detail, the land cover classes that can be differ-

entiated are: water, trees, asphalt, parking lot cover, bitumen,

TABLE X
WASHINGTON, DC DATA. EIGENVALUES OF PRINCIPAL COMPONENTS

TABLE XI
WASHINGTON, DC DATA. OVERALL TEST ACCURACIES IN PERCENTAGE FOR

NEURAL NETWORK CLASSIFICATION AFTER MORPHOLOGICAL PROCESSING

OF THE FIRST AND SECOND PRINCIPAL COMPONENTS

brick roofs, meadows, bare soil, and shadows. Ground truth

information provided by the University of Pavia is available for

all these classes (see Table I and Fig. 4).

The test accuracies for the applied statistical approaches are

shown in Tables II and III. The Gaussian ML classifier was ap-

plied in all cases. Table II summarizes the results in terms of the

number of features used. The highest overall classification accu-

racy was achieved when DAFE was used (seven data channels).

The classification map for this best case is shown in Fig. 5. The

performance of the classification of the DAFE and NWFE fea-

tures is noteworthy. In classification of small feature sets (seven

and five features, respectively), similar or higher overall test

accuracies are achieved as for classification of the full feature

space (40 data channels). The classification of 20 DBFE also

gives similar overall accuracies for 20 features. It is interesting

to note that enhanced statistics do not work very well in the full

feature space. The main reason for this is that some noise was

observed in the data although most of the noisy channels had

been removed.

PCs were computed from the hyperspectral data. The results

for the eigenvalues are shown in Table IV, and the first four prin-

cipal component images are shown in Fig. 6. From Fig. 6, it

is clear that the individual principal component images provide

different information. In Table IV, the left column gives the com-

ponent number, the center column the eigenvalues for the com-

ponents, and the right column the percentage for the eigenvalue

of the total eigenvalue sum. By looking at the right column, it is

seen that 96.2% of the total eigenvalue sum is contained in the

first two components, whereas the first component had 78.2% of

the total. Therefore, it can be expected that the first two PCs are

needed in the morphological preprocessing of the hyperspectral

data (the upper two images in Fig. 6).

For the morphological processing, a circular SE with a step

size increment of 2 gave the best results. Four openings and four
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TABLE XII
WASHINGTON, DC DATA. CLASS-SPECIFIC TEST ACCURACIES IN PERCENTAGE FOR NEURAL NETWORK CLASSIFICATION OF MORPHOLOGICAL PROFILES

closings were computed for each PC. The test accuracies for

the neural network classification of the morphological profiles

are shown in Tables V and VI. From Table V, it is seen that

the best overall accuracy was obtained when an extended mor-

phological profile based on the first two principal components

was used with no feature extraction, resulting in an overall test

accuracy of 93.9%. Also, the use of two PCs in an extended

profile resulted in far higher accuracies than when only one PC

was used for classification, regardless of the feature extraction

method used. With feature extraction, the best performance was

seen with the NWFE. When no morphological processing was

done on a single PC, the accuracy was poor as expected, i.e.,

only about 56%.

The class-specific accuracies for the morphological approach

are shown in Table VI. There it can be seen that the classifica-

tion of the morphological profile based on two PCs gave higher

class-specific accuracies for most classes than the classification

approach based on the use of one PC. In particular, the method

that uses two PCs and no feature extraction outperformed the

one-PC profile significantly in terms average classification ac-

curacy. The classified map for the morphological profile based

on two PCs without feature extraction is shown in Fig. 7. De-

tails of the given urban structures are evident in Fig. 7. For both

Figs. 5 and 7, it must be kept in mind that they are based on

very limited training data. More training data would be needed

to classify the whole area satisfactorily.

B. Results for Data From Washington, DC

In the second experiment, analysis was done on a Hyper-

spectral Digital Imagery Collection Experiment (HYDICE) air-

borne hyperspectral data flightline over the Washington, DC

Mall (see Fig. 8). Two hundred and ten bands were collected in

the 0.4–2.4- m region of the visible and infrared spectrum. The

water absorption bands were then deleted, resulting in 189 chan-

nels. In order to reduce the feature set further, every fifth data

channel was selected from the 189 channels. The analyzed fea-

ture set contained 38 data channels. The dataset contains 1280

scan lines with 307 pixels in each scan line. The Washington,

DC dataset has been studied extensively by Kuo and Landgrebe

[3], [22], [25] and Dundar and Landgrebe [1]. The dataset is

available in the student CD-ROM of [22]. The MultiSpec project

file provided on the student CD-ROM was used to select training

samples in our experiments.

There are seven information classes in the Washington, DC

data. The information classes and training and test samples are

listed in Table VII and shown in Fig. 9. As can be seen from

Table VII, only 40 samples per class were used here to train the

classifier. All other samples were used to test the neural clas-

sifiers. The low number of training samples was expected to

have a significant effect on the classification accuracies in the

experiments.

The test accuracies for the applied statistical approaches are

shown in Tables VIII and IX. The Gaussian ML classifier was

applied in all cases. Table VIII summarizes the results in terms

of the number of features used. As in Experiment 1, the perfor-

mance of the ML classifier when applied to the NWFE feature

set is noteworthy. Here, the NWFE outperforms all other fea-

ture extraction methods in terms of overall test accuracies when

the ML classifier is applied. The classification map for the ML

classification of the NWFE feature set is shown in Fig. 10. In a

similar way as in Experiment 1, enhanced statistics do not show

a good performance in the full feature space. Here, the problem

is mostly related to the individual class specific accuracy of the

largest class (roofs).

As in the experiment on the Pavia data, PCs were computed

from the hyperspectral data. The first four principal component

images are shown in Fig. 11. Again, striking visual differences

are seen between the individual PCs. The eigenvalues for the

individual components are given in Table X. By looking at the

right column of Table X, it is seen that 97.5% of the total eigen-

value sum is contained in the first two components but only

66.0% in the first component. Therefore, we expect the first two

PCs to be needed in the morphological preprocessing of the hy-

perspectral data.

In the morphological processing of the Washington, DC data,

a circular SE with a step size increment of 2 gave the best re-

sults. Six openings and six closings were computed for each PC.

The test accuracies for the neural network classification of the

morphological profiles are shown in Tables XI and XII. From
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Fig. 12. Washington, DC data. A classification map obtained by applying a
neural network classifier on an extended morphological profile with two PCs,
four openings, four closings, and no feature extraction. The neural network
classifier was applied to 26 input features. The overall accuracy of the test data
was 98.9% in this case.

Table XI, it can be seen that the best overall and average accu-

racies were obtained when the first two principal components

were used in an extended morphological profile with no fea-

ture extraction, giving an overall test accuracy of 98.5%. The

use of 14 NWFE features also gave a similar overall accuracy.

These classification results can be considered outstanding, es-

pecially in light of the fact that only 40 training samples were

used for each class. Also, the use of two PCs in an extended

profile resulted in higher accuracies than the use of only one

PC, regardless of whether feature extraction war used or not.

Fig. 13. Washington, DC data. A classification map for obtained by applying
a neural network classifier on an extended morphological profile with two PCs,
four openings, four closings, and nonparametric weighted feature extraction.
The neural network classifier was applied to 14 NWFE features. The overall
accuracy of the test data was 98.5% in this case.

When no morphological processing was done on a single PC,

the overall accuracy was only 49.4%, as expected.

The class-specific accuracies for the morphological approach

are shown in Table XII. It is clear from the table that the use

of two PCs resulted in increased average accuracies over the

method based on one PC. Also, the use of DBFE with the mor-

phological profile outperformed the DAFE, but both feature ex-

traction methods gave good accuracies. The classified map for

two PCs and no feature extraction is shown in Fig. 12, and the

comparable result with NWFE feature extraction is given in

Fig. 13.
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VI. CONCLUSION

Classification of hyperspectral data from urban areas has

been discussed. A method was proposed, which is based on

using several principal components from the hyperspectral data,

building a morphological profile for each of the PCs and using

them all together in one extended morphological profile. The

extended morphological profiles were then classified with a

neural network, with and without feature extraction. In experi-

ments on two datasets, the proposed approach was compared to

a Gaussian ML classifier with several different feature extrac-

tion and statistics estimation methods. The proposed approach

performed well in terms of accuracies and was comparable in

accuracies to the Gaussian ML classifier, especially when deci-

sion boundary feature extraction was applied on the extended

morphological profile.

In this paper, principal component analysis was chosen for di-

mension reduction because it is both simple and gives optimal

representation of data in the mean squared sense. Several dif-

ferent dimension reduction techniques can be used to reduce the

hyperspectral data. Such approaches include, for example, inde-

pendent component analysis [31] and projection pursuit [22]. A

topic of future research is to investigate the use of other dimen-

sionality reduction techniques to create characteristic images for

the morphological profiles.

The excellent performance of the proposed morphological

approach in experiments is interesting because it mostly uses

spatial information instead of the rich spectral information avail-

able in the hyperspectral data. In our current research, we are

working toward making more use of the spectral information

by fusing spectral and spatial classification results. Such fusion

could be important for pixels which should be classified based

on spectral rather than spatial information, e.g., vegetation in-

side urban areas.
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