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Abstract

Efficient exploitation of hyperspectral imagery is of great importance in remote sensing.

Artificial Intelligence approaches have been receiving favorable reviews for classifica-

tion of hypersepctral data because the complexity of such data challenges the limita-

tions of many conventional methods. Artificial Neural Networks (ANNs) were shown to

outperform traditional classifiers in many situations. However, studies that use the full

spectral dimensionality of hyperspectral images to classify a large number of surface

covers, are scarce if non-existent. We advocate the need for methods that can handle

the full dimensionality and a large number of classes, to retain the discovery potential

and the ability to discriminate classes with subtle spectral differences. We demonstrate

that such a method exists in the family of ANNs. We compare the Maximum Likelihood,

Mahalonobis Distance, Minimum Distance, Spectral Angle Mapper, and an hybrid ANN

classifier for real hyperspectral AVIRIS data, using the full spectral resolution to map

23 cover types, and using a small training set. Rigorous evaluation of the classification

accuracies shows that the ANN outperforms the other methods and achieves ≈ 90%

accuracy on test data.
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Classification of Hyperspectral Imagery with Neural

Networks: Comparison to Conventional Tools
Erzsébet Merényi, William H. Farrand, James V. Taranik, and Timothy B. Minor

Abstract—Efficient exploitation of hyperspectral imagery is of
great importance in remote sensing. Artificial Intelligence ap-
proaches have been receiving favorable reviews for classification
of hypersepctral data because the complexity of such data chal-
lenges the limitations of many conventional methods. Artificial
Neural Networks (ANNs) were shown to outperform traditional
classifiers in many situations. However, studies that use the full
spectral dimensionality of hyperspectral images to classify a large
number of surface covers, are scarce if non-existent. We advocate
the need for methods that can handle the full dimensionality and
a large number of classes, to retain the discovery potential and the
ability to discriminate classes with subtle spectral differences. We
demonstrate that such a method exists in the family of ANNs.
We compare the Maximum Likelihood, Mahalonobis Distance,
Minimum Distance, Spectral Angle Mapper, and an hybrid ANN
classifier for real hyperspectral AVIRIS data, using the full
spectral resolution to map 23 cover types, and using a small
training set. Rigorous evaluation of the classification accuracies
shows that the ANN outperforms the other methods and achieves
≈90% accuracy on test data.

I. BACKGROUND, MOTIVATION, OBJECTIVES

H IGH spatial and spectral resolution images from

advanced remote sensors such as NASA’s AVIRIS

(e.g., Green, 1996), Hyperion, HyMap, HYDICE (Basedow

et al., 1995) and others provide abundant information for the

understanding and monitoring of the Earth. At the same time

they produce data of unprecedented volume and complexity.

Unraveling important processes such as the evolution of the

solid earth, global cycling of energy, oxygen, water, etc., the

responses of the biosphere to disturbances, and others, man-

dates the best possible exploitation of the data. The challenge

is to develop methods that are powerful enough to make use

of the intricate details in hyperspectral data, and are fast,

robust, noise-tolerant, and adaptive. While the growing number

of spectral channels enables discrimination among a large

number of cover classes, many conventional techniques fail on

these data because of mathematical or practical limitations. For

example, the Maximum Likelihood and other covariance based

classifiers require, on the minimum, as many training samples

per class as the number of bands plus one, which creates

a severe problem of field sampling for AVIRIS 224-channel

data with many classes. Dimensionality reduction is frequently
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accepted to accomodate data for traditional methods but this

can result in an undesirable loss of information. Covariance

based methods, in particular, often fail to detect subtle but dis-

criminating features in the spectra even when enough training

samples are available, because they are limited to working with

first and second order statistics, while hyperspectral imagery

is typically far from being Gaussian.

The use of Artificial Neural Networks (ANNs) for complex

classification tasks is motivated by their power in pattern

recognition. For a review, see, e.g., Haykin (1999). Many

earlier works documented ANN capabilities for remote sens-

ing spectra on relatively modest scales: few (5–12) classes,

low-to-moderate number of channels (e.g., Huang and Lipp-

man, 1987, Hepner et al., 1990, Tenorio et al., 1990, Dryer,

1993, Paola and Schowengerdt, 1994, Abuelgasim and Gopal,

1994, Solaiman and Mouchot, 1994, Këpuska and Mason,

1995, Wang and Civco, 1995, Carpenter et al., 1997, Liu

et al., 2002, Foody and and Cutler, 2006, Aitkenhead and

Dyer, 2007). Several studies for higher spectral resolution

(e.g., 60 channels in Benediktsson et al., 1990a, Kim and

Landgrebe, 1991) used synthetic data which often favor a

particular (such as Maximum Likelihood) classifier, by virtue

of (Gaussian) data construction. Others offered some prin-

cipled dimensionality reduction and showed high accuracies

with the reduced number of bands for a moderate num-

ber of classes (e.g., Benediktsson et al., 1994, Benediktsson

et al., 1995, Monteiro et al., 2007). Some research targeted

selected, narrow spectral windows of hyperspectral data,

to classify one specific important spectral feature (Gilmore

et al., 2004). A small number of ANN works classified hyper-

spectral data directly, without prior dimensionality reduction

(Howell et al., 1994, Merényi et al., 1996, Rudd and Merényi,

2005). Experience suggests that the difference in quality be-

tween the performance of classical methods and ANN classi-

fiers increases in favor of the ANNs with increasing number of

channels. However, this has not yet been quantified for large-

scale classification of many cover types with subtle differ-

ences in complex, noisy hyperspectral patterns. Assessment of

ANN performance versus conventional methods for realistic,

advanced remote sensing situations requires comparisons using

the full spectral resolution of real hyperspectral data with many

cover classes because conventional techniques are most likely

to reach their limitations in such circumstances. Systematic

evaluation is needed to ensure powerful, reliable, automated

applications of ANNs or any other classifiers. The present

paper is a step toward filling this gap.
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We are comparing popular and easily accessible standard

classifiers with a neural network paradigm. One aspect that

we want to demonstrate in particular is that by using all

(or nearly all of the 224) AVIRIS bands more, geologically

meaningful spectral variations can be detected than from the

same AVIRIS cube reduced to 30–40 or less bands; that

hyperspectral imagery is highly complex and detailed surface

cover information can be extracted with sensitive enough

methods.

Another point we wish to highlight is that a sophisticated

ANN paradigm can perform well with a small training set,

which is always a concern for remote sensing tasks. There

have been studies to mitigate the effect of a small training set

(Lee and Landgrebe, 1997, Shahshahani and Landgrebe, 1994)

by iteratively labeling unlabeled data with the classifier under

training, and adding newly labeled samples to the training set.

These studies, however, were done mostly on synthetic data

or low-dimensional real data (Jackson and Landgrebe, 2001,

Fardanesh and Ersoy, 1998), and the relative benefits decreased

with increasing dimensionality. While these methods are very

interesting and statistically well founded they often favor par-

ticularly distributed (Gaussian) data, need prior probabilities,

and it is unclear how well they would do on the full spectral

resolution of real hyperspectral data.

The methods and analysis presented here provide a quan-

titative comparison between ANN and traditional covariance

based classifers using an AVIRIS data set. The data and

classification algorithms utilized in this study are described,

analysis and results of the comparisons are presented, followed

by a discussion of outstanding issues and future directions.

II. STUDY AREA, DATA, AND PREPROCESSING

A. The geologic area and data

The Lunar Crater Volcanic Field (LCVF) was the primary

focus of the NASA-sponsored Geologic Remote Sensing Field

Experiment (GRSFE) conducted in the summer of 1989

(Arvidson et al., 1991). Since 1992, the large playa in the

LCVF, Lunar Lake along with the surrounding terrain, has

been one of several standard sites used as a calibration location

by the AVIRIS team and imaged yearly by AVIRIS. We

selected this site because it has been studied extensively and

independently by other workers, and because one of the au-

thors (WHF) has directly been involved in field measurements

and field mapping of cover types through GRSFE and other

projects (Farrand, 1991, Farrand and Singer, 1991, Farrand

et al., 1994). Fig. 1 shows a false color composite of the Lunar

Lake area analyzed in this paper, with locations representative

of various cover types marked by their respective class labels

used in this study. The full list of classes is given in Table I.

The data considered here are a 614 samples by 420 lines

subsection of the image collected by AVIRIS on April 5, 1994

at 18:22 GMT. The LCVF, which lies roughly halfway be-

tween the towns of Ely and Tonopah in northern Nye County,

Nevada, consists of over 100 square miles of Quaternary

basaltic pyroclastic and flow deposits (Scott and Trask, 1971).

These deposits lie atop ignimbrites and silicic lava flows of

Tertiary age. The basaltic volcanics are in turn overlain by

Quaternary alluvial and playa deposits. Also included with the

analyzed subsection are the Lunar Lake playa, and outcrops

of the Rhyolite of Big Sand Spring Valley (label B) mapped

by Ekren (1973). Vegetation within the LCVF is sparse, but

locally abundant within washes (label C) and atop the plateau

(J) that makes up the lower left part of the scene, bordered by

”The Wall”, a prominent NE-SW trending scarp straddled by

the label G in Fig. 1.

Fig. 1. False color composite of the Lunar Crater Volcanic Field (LCVF)
site. Letters stand for the various cover classes used throughout this paper,
and mark some of the training locations of distinguishing geologic features
for the corresponding classes.

The reflectance signatures of surface materials within the

LCVF have variations that range from subtle to significant.

Oxidized basaltic cinders (label A) are associated with many

of the cinder cones in the LCVF. These cinders are rich in

hematite and thus have the prominent absorption band at 0.86

µm caused by crystal field effects and also the diagnostic UV-

visible absorption edge attributable to the Fe3+- O2− charge

transfer absorption centered in the UV. Hematite also has a

high reflectance in the near IR and these oxidized cinders show

up as bright aprons (classes L, W) about the cinder cones in

the longer wavelength AVIRIS channels. The Rhyolite of Big

Sand Spring Valley that is exposed in the lower left portion of

the subsection of the AVIRIS image (label B) contains enough

iron so that it too displays the Fe3+- O2− charge transfer

edge. It also displays a 2.2 µm absorption feature indicative of

the incipient development of dioctahedral clay minerals. Lunar

Lake, which at first glance might appear to be compositionally

homogenous, in fact displays several spectrally distinct surface

units. These surface cover units (”Wet playa” classes E, Q,

R, S, T, V) are distinguished primarily on the basis of their

clay content and on the basis of their adsorbed and, perhaps,

structurally bound hydroxyl and molecular water content.

(Higher water content means deeper absorption features at

approximately 1.4 and 1.9 µm and a consequent depression

of the spectral continuum at longer wavelengths). Many of the
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TABLE I
THE COVER TYPES IN THE LUNAR CRATER VOLCANIC FIELD SITE, WITH

CLASS LABELS USED IN THIS STUDY, AND WITH THE NUMBER OF

ORIGINAL TRAINING SAMPLES (#TR) IDENTIFIED FOR EACH CLASS.

Class Cover type description # tr
A Hematite-rich cinders 72
B Rhyolite of Big Sand Spring Valley 22
C Alluvium #1 50
D Dry playa 160
E Wet playa #1 115
F Young basalt 21
G Shingle Pass tuff 14
H Alluvium #2 (with mixed scrub 50

brush, rocks, and soil)
I Old basalt 36
J Dense scrub brush stands 14
K Basalt cobbles on playa 37
L Ejecta blankets #1 (mixed hematite- 78

rich and unoxidized cinders)
M Alluvium #3 (iron rich) 14
N Dry wash #1 15
O Dry wash #2 54
P Dry wash #3 45
Q Wet playa #2 15
R Wet playa #3 14
S Wet playa #4 15
T Wet playa #5 18
U Alluvium #4 (also iron rich) 36
V Wet playa #6 14
W Ejecta blankets #2 (primarily 33

unoxidized cinders with smaller
percentage of hematite-rich cinders)
Total number of training samples 942

alluvial, or “Dry wash”, units (D, N, O, P) are distinguished in

a similar fashion by subtle variations in the spectral continuum

caused by clay and water content.

23 known, different geologic units were chosen for this

study based on field knowledge, geologic meaning and spectral

properties. The pattern recognition challenge posed by the

spectral variations across these 23 classes is illustrated in

Fig. 2.

B. Data preprocessing

The LCVF image was atmospherically corrected, and con-

verted to reflectance units, using the Empirical Line Method

(e.g., Roberts et al., 1986, Farrand et al., 1994), which pro-

duced spectra with fewer noise artifacts for this 1994 image

than ATREM (Gao et al., 1993). After exclusion of the ex-

cessively noisy and overlapping channels 194 bands remained

with excellent signal-to-noise ratio (Swazey et al., 2003). A

brightness normalization such as that described in Merényi

et al., 1996, (also called the Hyperspherical Directional Co-

sine Transformation (Pouch and Campagna, 1990)) was also

applied in order to eliminate linear illumination geometry

effects. This normalization divides all data vectors by their

Euclidean norm, producing unit vector length while preserv-

ing the spectral angle relations of the bands. Unfortunately

geometric albedo (any linear effect) is also eliminated in this

process, therefore one may need to separate classes that are

Fig. 2. Representative average spectra of the 23 LCVF classes listed in
Table I, vertically offset for clarity. Many signatures (such as the clay bearing
series on the right) have subtle variations, others (such as the iron oxide
bearing species A, L, W, F, G, on the left) have larger differences. The vertical
dotted lines near 1.4 and 1.9 µm indicate data fallout where saturated bands
in the water vapor windows were eliminated, after atmospheric correction.

spectrally the same but distinguished by albedo, in a post-

processing step (as in, e.g., Howell et al., 1994). Fortunately

this is not a frequent situation, in our experience. For the

present analysis the advantages of this brightness normaliztion

outweighed the disadvantages in that the separation among

spectral groups increased (due to the enhanced spectral con-

trast between different species) more than differences were

masked by the loss of albedo variations. Classes distinguished

only by albedo were not present among the LCVF units.

III. CLASSIFIERS AND METHODOLOGY FOR

COMPARISON

A. The ANN paradigm and the competing classifiers

Back Propagation (BP) neural networks, which are perhaps

the most popular and best known ANN paradigm, can be very

difficult to train with high-dimensional data as their complexity

increases non-linearly with the number of input dimensions

and the possibility for the gradient descent learning to get

stuck in local minima increases dramatically. Dimensionality

reduction is frequently applied to high spectral resolution data

to achieve tolerable training time, or training convergence at

all with a BP network (e.g., Benediktsson et al., 1994, Paola

and Schowengerdt, 1994).

To overcome these dificulties, we used an hybrid ANN

architecture, the details of which are given in Merényi

et al., 1997 and Howell et al., 1994. Briefly, it consists of an

input layer with as many nodes as the number of spectral

bands plus one “bias” neuron; a 2-dimensional Self-Organizing
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Map (SOM) (Kohonen 1988) as the hidden layer, and the

SOM layer is connected to a categorization learning output

layer with a Widrow-Hoff (delta) learning rule (Widrow and

Smith, 1963, Haykin, 1999). The output layer has one node for

each class, and the subsequent layers are fully connected. This

network scales up well and trains fast and relatively easily, as

demonstrated by previous works (Howell et al., 1994, Merényi

et al., 1997, Merényi et al., 2000, Rudd and Merényi, 2005)

with up to 200 spectral channels and 20 – 30 classes. It works

in two phases. First, in an unsupervised regime (during which

the output layer is not allowed to learn), it builds its own

view of the manifold structure through forming a cluster map

of the data in the hidden SOM layer. Then learning of the

output layer is turned on and the weights between the SOM

hidden layer and the output layer are trained to recognize

labeled data. The pre-formed clusters — the model of the

data manifold — in the SOM help prevent the learning of

inconsistent labels and thus greatly support accurate learning

of labeled data in the subsequent supervised phase. This results

in better generalization from even a small number of samples,

and in higher classification accuracy, than without the SOM

stage. Back Propagation, in contrast, is powerful enough to

simply “memorize” inconsistent information if the number

of training samples is relatively small. This means that the

network can learn that the labels of individual training samples

are A and B even if the characteristics of the two samples are

very similar (for example, B is an A type sample accidentally

mislabeled). In this case no reasonable prediction can be

expected because the network does not derive general class

properties. This situation can be avoided with the hybrid ANN

paradigm we described. The delta learning rule (Widrow and

Smith, 1963) is much simpler than Back Propagation, which

enables successful training even for very high-dimensional

input spaces, in this SOM-hybrid architecture. It is also much

faster to train the supervised phase of this network than to train

a BP network. Once the SOM layer has been trained it can be

reused in different supervised training sessions, for example,

to train for various sets of classes, since the cluster structure

of the manifold is the same regardless of how many classes

are labeled.

In a recent paper Foody and Cutler (2006) apply a similar

concept: they examine the data structure through SOM clus-

tering and manually evaluate how well the clusters correspond

to known cover classes, in order to assess the potential of the

particular data for the discrimination of the known classes. The

SOM-hybrid network that we use helps accomplish the same,

in an implicit and integrated fashion. Misclassified labeled

training samples (assuming that the SOM learned correctly,

the overall network learned well, and that the training samples

were labeled consistently) will alert the analyst to discrimina-

tion problems. Conversely, in the case of labeling uncertainties

(for example, at the boundaries of similar materials, or in the

case of data that was labeled on the basis of some other

attributes than the given data contains) such misclassified

labeled data can guide a revision of the labeling. (An example

of this is in Howell et al., 1994.)

The quality of SOM learning (including topology preser-

vation, completion of ordering, optimal placement of quan-

tization prototypes (the SOM weights) in the data space,

and convergence) is important for supporting the delivery

of good results. For discussion of related issues, which are

beyond the scope of this paper, we refer to vanHulle (2000),

Villmann et al., 1997, Merényi et al., 2007, and references

therein. We mention here that we use, instead of the basic

Kohonen SOM (Kohonen, 1988) a variant called conscience

learning (DeSieno, 1988), which encourages all SOM neurons

to win with equal frequency through a biasing “conscience”,

and thereby maximizes information theoretical entropy of the

mapping. This leads to the best possible representation of

the data distribution with the given number of quantization

prototypes, and thus facilitates the most faithful learning of the

cluster structure (Merényi et al., 2007). An additional benefit

of conscience learning is that it only needs to update the

immediate SOM neighbors, which makes it computationally

efficient. Even though we did not use the extracted clusters

for establishing labeled classes in this work (we used the

determination of a domain expert for class designations), we

know that the SOM in this study learned the cluster structure

of the LCVF data extremely well. This was demonstrated

by another study where the clusters extracted from the SOM

showed striking correspondence with the supervised classes

(Merényi, 2000, Villmann et al., 2003).

One important feature of this ANN is that the class predic-

tions are characterized by a membership strength, and below

a predefined threshold of the membership strength the data

sample is labeled “unclassified”. In addition, we can record the

membership strengths that each output node predicts on the 0

to 1 scale, which can be used for assessing the confidence in

the class predictions.

This SOM-hybrid ANN was built and tested in Neural-

Ware’s NeuralWorks Professional II/PLus (NeuralWare, 1993),

then deployed using NeuralWare’s Designer Pack, and embed-

ded in our own software environment that has specifically been

developed for the exploitation of high-dimensional data such

as large hyperspectral images. Our own algorithm research and

data analysis environment, HyperEye, builds on NeuralWare

and Khoros (Rasure and Young, 1992) functions, and extends

standard neural network capabilities.

The established classifiers that we compared with the

above SOM-hybrid ANN are Maximum Likelihood (MLH),

Mahalonobis Distance (MHD), Minimum Euclidean Dis-

tance (MED), and Spectral Angle Mapper (SAM) by Kruse

et al., (1993). These non-ANN classifiers are well documented

in remote sensing texts (Swain and Davis, 1978, Jensen,

1986, Lillesand and Kiefer, 1987, Campbell, 1996), and are

commonly available in commercial image analysis packages

such as ENVI (ITT Visual Informaton Systems, 2006, Leica

Geosystems, 2006, Earth Resource Mapping, 2006), and oth-

ers. We chose these non-ANN classifiers for this study because

of their widespread use and easy accessibility.
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B. Evaluation criteria

Performance evaluation criteria were derived from the re-

quirements or necessities dictated by real-life tasks:

1) Classification accuracy

2) The capability of using the full spectral resolution

3) Dependence on the number of training samples. This is

of special interest in remote sensing as the minimum

necessary number of training samples in case of a covari-

ance based classifier (such as Maximum Likelihood), for

AVIRIS-class data is over 200 per class, a prohibitively

large number for a dozen or more classes.

Sensitivity to uneven class representation and to noise are

two of several other important issues. While we do not address

these systematically in this paper, the experiments we describe

involve uneven class representation as well as noisy data.

Learning from unevenly represented class samples is another

strength of ANNs, compared to parametric classifiers and it

is an advantage in remote sensing since even sampling across

cover types is often impossible.

IV. ANALYSIS AND RESULTS

A. The classification experiments

Altogether 942 training pixels were identified across all

classes ranging from as low as 14, to 160 samples for a

class, as shown in Table I. This limited the application of the

covariance based classifiers (MLH and MHD) to a 13-band

subsampled version of the data, with the original training set.

For training of the MLH and MHD classifiers with 194-band

data for 23 classes, a minimum of (194 + 1) ∗ 23 = 4485
samples would be required. The other three classifiers were

not limited by the number of spectral bands.

Since we also wanted to see if an increasing difference in

the quality of performance manifests with increasing number

of bands, we created a second, augmented trainig set. We

were able to increase the minimum number of training samples

for each class to 31, which allowed us to employ the MLH

and MHD classifiers on 30-band data. For this augmentation

we carefully hand-selected additional samples based on prior

knowledge of the surface cover types and on spectral similarity

to the original samples. Further augmentation, to include the

MLH and MHD classifiers in the 194-band experiment, was

not possible, partly because the known occurrences of some

of the classes (such as B, the rhyolitic outcrop) are smaller,

or much smaller (classes Q, R, S, T, for example) than 195

pixels. The classifications were performed, after preprocessing,

for 13-, 30- and 194-band cases, as applicable. Table II shows

a summary of classification runs performed on the 1994 LCVF

AVIRIS data using the full 194-band normalized AVIRIS data

set as well as the spectrally subsampled data sets containing

30 and 13 bands, respectively. The band selection procedure

is described below.

The SOM-hybrid ANN we used for this work had a con-

figuration of 194 input nodes (30 and 13, respectively, for the

subsampled cases) plus one bias node, 23 output nodes, and a

TABLE II
CLASSIFICATIONS PERFORMED IN THIS STUDY AND THE NUMBER OF

SPECTRAL BANDS USED FOR EACH RUN.

# bands Classification runs
13 ANN MED SAM MLH MHD
30 ANN MED SAM MLH MHD
194 ANN MED SAM — —

40-by-40 2-dimensional rectangular SOM in the hidden layer.

The class labels were encoded as 23-element unit vectors, with

a 1 at the position of the output neuron corresponding to the

given class and zeros elsewhere. The input samples and the

outputs were scaled into the [0,1] range in each dimension

(spectral band), as usual for neural networks. This scaling was

done after the preprocessing described in Section II, and with

respect to the global minimum and maximum for all bands.

300,000 unsupervised learning steps were performed to allow

the SOM to learn the cluster structure of the input data space.

In this phase all image pixels were used (without labels).

300,000 may appear as a low number of training steps for

nearly the same number of data points (614 ∗ 420), however,

many pixels have similar spectral signatures thus each spectral

type was shown to the SOM many times. The subsequent

supervised training was performed with the training set shown

in Table I, or with the augmented training set for the MLH

and MHD 30-band cases. Because of the support from the

SOM hidden layer, the supervised training converged very fast.

After ≈ 20, 000 steps, with a learning rate decreasing from

0.15 to 0.01, the training accuracy stabilized at 99.9%. In the

recall phase, class predictions with larger than 0.1 decision

strength (on a scale of approximately 0 to 1) were accepted,

leaving pixels with less than 0.1 decision strength on all output

nodes, unclassified. In the experiments we conducted with

the LCVF image the percent of unclassified pixels was low,

≈3.45% for the ground truth test pixels (see below) in the

best classifications. In addition, the recorded map of decision

strenghs associated with each image pixel contains very few

instances where the class membership assignment had to rely

on less than 0.5 decision strength. There are cases where a

pixel had assignment into two (or sometimes three) competing

classes, with significant decision strengths (for example, 0.6

and 0.4). For the purpose of this study we accepted the

strongest class membership in such cases.

One input sample to the ANN consisted of one image

pixel (one 194-element spectrum). No spatial context was

considered for input, for two reasons. If a k ∗ k window

is selected automatically around the current pixel, the input

may contain contamination by spectral signatures that do not

belong to the given spectral class. In certain circumstances

taking input from a window rather than from a single pixel

can be helpful and works well. For example, Benediktsson

et al., (2005) construct feature vectors from morphological

attributes of a single image band. However, when one works

with high spectral resolution and with many classes, some

of which may have subtle discriminating differences such

as seen in Fig. 2, a window of spatial context may blur
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class distinctions. This is especially a danger in the case

of hyperspectral data that also has high spatial resolution.

Additionally, omitting context in the input allows one to

use the spatial coherence, or lack thereof, to help judge the

resulting classification.

The MED, MLH, MHD and SAM classification results

were generated in the ENVI image processing software. MED

classifications were run for the 194-, 30- and 13-band cases

using the following three sets of minimum distance parame-

ters: 1) No maximum standard deviation around the training

class means, which classifies all pixels to the closest class;

2) one standard deviation, and 3) two standard deviations

from the training sample means for each class. The latter

two can leave many pixels unclassified. For the SAM clas-

sifications, a threshold of the spectral angle was applied. This

threshold specified the spectral angle between an input and

a target spectrum, beyond which the input sample remained

unclassified. The default value of 0.1 radians was used. MLH

and MHD classifications were run for the 30- and 13-band

data sets. The original number of training data (Table I) were

used to classify the 13-band AVIRIS image. The 30-band

data set was classified using the above mentioned augmented

training set. The MLH classifications were run twice for each

of the two subsampled data sets: once with prior probabilities,

once without (i.e., with default, equal prior probabilities). Prior

probabilities were assigned to each land cover class using area

weighted estimates from the MED and ANN results of the

194-band data set, as well as from existing geological field

knowledge of the study site.

B. Selection of bands for covariance based classifiers

The 13- and 30-band spectral subsamples of the 194-band

AVIRIS data set were constructed using a qualitative assess-

ment process by a domain expert. For both the 13- and 30-band

subsamples, band selection concentrated on diagnostic features

in the visible and VNIR (0.45–1.0 µm) and the SWIR (2.1–

2.35 µm). Visible bands were selected to identify iron oxide

mineralogy reflectance features, primarily hematite, but also

goethite and jarosite. A band near 0.86 µm was also selected

for both the 13- and 30-band subsamples to identify the ferric

iron absorption feature of hematite. VNIR bands were included

to identify the reflectance of vegetation. A total of eight

spectral bands between 0.46 and 1.05 µm were selected for the

13-band subsample; 20 bands in the same range were selected

for the 30-band subsample. Bands selected from the SWIR

portion of the spectra focus on diagnostic features related to

clay minerals, micas, and other hydroxyl-bearing minerals, and

were centered around the absorption feature at 2.2 µm. Four

bands between 2.15 and 2.34 µm were selected for the 13-

band subsample. Nine bands in the same range were selected

for the 30-band case, sampled slightly differently than in the

13-band case to provide a more even distribution of the bands

across the region. A single band at 1.62 µm was selected for

both the 13- and 30-band subsamples, to identify a hydroxyl-

bearing reflectance feature which was present in all the playa

and wash classes. The 30-band selection included all the bands

selected for the 13-band case, with the exception of the above

mentioned slight difference for two bands.

Other approaches to band selection that we tried included

uniform subsampling and PCA, but neither produced better

results than the band selection by the domain expert. In

a different study, wavelets (Moon and Merényi, 1995) also

remained unconvincing for the task.

C. Classification results

All of the MED, MLH, and MHD classification results were

evaluated in terms of overall accuracies and κ-statistics, as

detailed in section IV.D below, and in terms of the largest

number of spectral bands used, to determine which variant of

the respective algorithm produced the best results within its

category. The best variants were then compared with the SAM

and ANN classifications. Of the various MED classification

runs the 194-band run, with no maximum standard deviation

specified as a distance constraint, provided the best map. When

a distance constraint was imposed the resulting class maps

contained too few classified pixels for the map to be useful. Of

the four MLH runs, the 13-band run with no prior probabilities

had the highest accuracy. There was little difference between

the MLH runs with and without prior probabilities, probably

due to the relatively large number of classes and the resultant

small probability values. Fig. 3 presents a comparison of the

best class maps produced by four of the classifiers for the

highest applicable number of bands: The ANN and SAM

194-band maps, the 194-band MED map with 0 standard

deviation as distance threshold, and the 30-band MLH map,

computed without prior probabilities. The 13- and 30-band

MLH maps were visually very similar in their tendencies of

the misclassifications, in spite of the higher (albeit still quite

low) accuracy of the 13-band MLH map. The observations

we make based on the 30-band MLH classification in Fig. 3

are generally valid for the 13-band MLH map too. The best

MHD classification produced the least interesting differences

with any of the others therefore it was not included in Fig. 3,

for space considerations. It is easy to see by visual inspection

that there are obvious differences among these class maps.

Comparison of the classification maps to each other and to

the color composite of the site (Fig. 1) reveals that the ANN

and the MED produced much more detailed class maps than

the MLH, and that they are also more detailed than the

SAM map, although the differences with the SAM map are

more subtle. One example is the almost complete omission of

class B (white, rhyolitic outcrop) in the SAM map, another

is the poor delineation of the Shingle Pass Tuff unit (class

G), as class F. ANN and MED are, in addition, very similar

to one another, which is a strong support for these maps

to be more accurate than MLH. Detailed field knowledge

(Farrand, 1991) as well as previous analyses of this scene

by various authors (Farrand, 1991, Farrand and Singer, 1991,

Merényi et al., 1993, Shepard, 1991, Shepard et al., 1991)

also corroborate these observations.

One important point is that the ANN and SAM maps contain

unclassified pixels. In contrast, the other classifiers assigned a
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Fig. 3. Comparison of classification maps obtained with four of the classifiers. Clockwise from top left: ANN class map from 194-band data, MED map
from 194-band data, MLH map from 30-band data, and SAM map from 194-band data. The class labels are resolved in Table I, and spectral statistics are
shown in Fig. 5 and Fig. 6, for the ANN and MLH cases. The label “bg” stands for unclassified pixels (background color). The ANN and SAM class maps
contain a considerable number of unclassified pixels while the other class maps do not.

class label to all pixels in the cases shown. Unclassified pixels

in coherent patches may indicate a potential new class. Along

the borders of two cover types it may suggest that those two

classes were not represented to the full extent by the training

samples. This can be determined by examination of the spectra

at such unclassified locations. Although it looks esthetically

more pleasing, the MED map is not more accurate than the

ANN map, as shown later, and does not leave spectral units

to be discovered.

Large areas are dominated by the L class in the MLH map

where the MED and ANN classifications display considerable

variability in accordance with the color site composite. Class G

also seems unreasonably extensive for the cover type, Shingle

Pass Tuff, which occurs along “The Wall”, a NW–SE trending

scarp that represents the remaining trace of the Lunar Lake

caldera (Ekren, 1973). This scarp spans across the label G

in Fig. 1 and is more accurately traced by the ANN map. F

(young basalt) is another class overestimated by the MLH.

Several classes are almost entirely missing from the MLH

map. Of Q, R, S, T, only the rectangular training areas are

classified. Class N appears at a few miniscule spots and O

overwhelms the wash area where both the ANN and MED

classifiers predicted N. As seen from Fig. 2, which displays

the mean training spectrum for each spectral type, the Q, R, S,

and T classes have very fine distinctions among themselves.

The subtle differences mainly occur between the 0.9–1.2 µm,

1.4–1.6, and 1.95–2.2 µm windows, which may remain less

resolved with the 13- and 30-band selections than with the full

(194-band) resolution, as seen in Figs. 5 and 6. However, we

point out here that the 30-band and even the 13-band cases

of MED and ANN resolved more classes than either of the

MLH cases, including clear distinction among the classes Q,

R, S, and T as well as mapping N and O more similarly to

that of the 194-band cases. Class J, which is abundant in the

lower left corner of the ANN and MED maps is also missing.

Further visual comparison of these class maps is left to the

reader.

For convenience of visual comparison with the class maps,

we also show here a ground truth image (Fig. 4) that will be

described, and referred to later, in subsection “Assessment of

classification accuracies”.
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Fig. 4. The ground truth image, containing at least a 100 test pixels for each
of the 23 classes, with the exception of those classes that consisted of less
than 100 samples. A total of 4332 test pixels were collected, using stratified
random sampling.

The spectral plots in Fig. 5 and Fig. 6 show training

and class statistics, for the 194-band ANN and for the 30-

band MLH classification, respectively. The averages of the

training spectra (sold lines) are overlain with the averages

of the predicted classes (dashed lines). Large deviations of

the means, especially when the general shape of the class

mean shows a different characteristics, indicate poor pattern

recognition. Class G is an example of this in Fig. 6. One

standard deviation of the training data is also plotted (vertical

bars) for each class, to show the spread of the training set.

The training sets of the various classes are inherently different

in their “tightness” because some materials such as the cinder

cones (class A) may be represented by a more broadly varying

spectral set than others (e.g., the playa and wash units). These

and additional statistics (for example, overlaying also the

training and class envelopes), summarized in similar plots,

provide a quick and easy semi-quantitative partial assessment

of classification accuracies. It can alert the analyst to poor

performance without having to do a full κ-statistics. More

importantly, if the number of test samples used in confusion

matrices is small, the κ-statistics may not reflect the effect of

many misclassified pixels (commission errors). In contrast, in

plots like Fig. 5 and Fig. 6 the statistics includes all pixels

classified into any class. We note, however, that a tight match

of the training and class means does not necessarily mean

excellent classification, because this representation does not

include omission errors. For example, in the right panel of

Fig. 6 all classes exhibit very precise match of the means,

however, the statistics for a number of those classes (notably

Q, R, S, T) includes barely more than the training samples.

This can be seen from the class map in Fig. 3 as well. In

contrast, the ANN classification has many pixels in all of

these, as well as other, classes, and still exhibits a precise mach

between training and class means. In this case (and similarly

for the MED) one can be more confident in the overall high

quality of the classification.

Some insight is provided into the generalization capabilities

of the MLH classifier in comparison to ANN and MED, by

Fig. 7. We show three examples of pattern mismatch between

the MLH prediction and the true class, chosen from many

similar cases observed. The top plots in each panel show how

the sample pattern (thick line) fits into the envelope of the

training samples of the class into which both ANN and MED

classified them — apparently correctly. The bottom plot shows

how the same sample fits with the envelope of the class into

which MLH misclassified the pattern. The patterns in each

case are not simply misclassified by some small difference,

but they follow poorly the general shape of the class predicted

by MLH.

In the next section, rigorous accuracy evaluation is given,

through confusion matrices and κ-statistics, for the best classi-

fications in each category, including the ones in Fig. 3. While

we are aware of potential uncertainties of this method, as well

as of alternative ways of accuracy comparisons (e.g., Demšar,
2006, Foody, 2004, Wilcoxon, 1947) we chose this form of

accuracy assessment because of its common current use in

remote sensing.

D. Assessment of classification accuracies

The evaluation of classification accuracies followed that out-

lined in several standard texts on the subject (e.g., Fitzpatrick-

Lins, 1981, Curran and Williamson, 1986, Congalton, 1988,

Congalton and Green, 1999). Statistical estimation of classifi-

cation accuracy has been a long studied and established subject

that has a vast literature. However, most theoretical consider-

ations for sample sizes and other factors for the assessment of

map accuracy were developed and verified on low-to-moderate

dimensionality data (e.g., Landsat TM, MSS, SPOT HRV) and

allowing relatively large errors. With hyperspectral data the

map accuracy is expected to increase, therefore the sample

size required for rigorous assessment of the accuracy within

a meaningful error limit and confidence level may become

prohibitively large. The works cited above, and others in the

literature, offer recommendations for accuracy assessments.

According to the formula derived from binomial distribution

(Fitzpatrick-Lins, 1981), the number of test samples needed for

map accuracy assessment is ntest = x2
∗p∗(1−p)/E2 where

E is the allowed maximum error in the accuracy assessment, x
defines the confidence level (confidence level corresponding to

x “sigma”), and p is the desired map accuracy. As an example,

for assessment of the classification at the 95% confidence level

within 4% error this requires at least 2700 test samples for the

23 classes in this study.

Computation of test sample size based on binomial for-

mulation has been criticized as inadequate for assessment of

the confusion among a large number (more than a dozen) of

classes and for a large number of image pixels (e.g., Congalton

and Green, 1999). The various studies seem to agree, however,

in their conclusion that in such cases (as is also our present

study), a minimum of 75 to 100 test pixels per class are

necessary for a statistically significant accuracy assessment.
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Fig. 5. The mean spectra of the training samples (solid lines) for each class, and the mean of the pixels classified by the SOM-hybrid ANN into the respective
classes (dashed lines), using the full, 194-band image cube. The vertical bars show the 1 standard deviation of the training samples. The mean of the predicted
classes is well within this standard deviation for almost all classes. For many – such as the clay-rich series on the right — the training and class means are
virtually indistinguishable (and therefore the dashed line of the class mean may not be easy to see), indicating a good match between the known training
representatives and the predicted members of the classes. The bare line segments centered at 1.4 and 1.9 µm indicate data fallout regions in the atmospheric
water vapor windows.

The literature also strongly recommends strtified a random

sampling in identifying the test samples. This is especially

important for our study as the LCVF image contains a num-

ber of very small but geologically interesting classes. (The

rhyolitic outcrop, class B, or the Shingle Pass Tuff unit, class

G are good examples.)

A ground truth image that meets these requirements was

painstakingly constructed, and used for accuracy assessment

in this investigation. It contains at least a 100 test pixels

for each class, altogether 4332 samples (individually verified

by one of us (WHF) with extensive field knowledge of the

test area). Exceptions are only those classes that consist of

less than 100 pixels. The ground truth image was created

in the ENVI software by first selecting regions of interest

(ROIs) that represented the best examples of the classes, in

order to achieve a stratification for sampling. Application of

stratified random sampling is non-trivial because it is hard to

know in advance where all the classes are. For that purpose

a mask of the cover types was created from the ANN and

MED classifications to provide the above ROIs, and test pixels

were randomly selected from each of these class ROIs. The

randomly picked pixels were then examined and were selected

to be used in the ground truth image only if their reflectance

spectra matched what was expected for those surface cover

classes and if the locations of the pixels accorded with what

was known for the site from one of the authors’ (WHF)

knowledge of the field site. The spatial distribution of the

resulting test pixels is shown in Fig. 4.

Tables III - VII present summaries of user and producer

accuracies from the costumary confusion matrices and κ-

statistics for each classification. These were computed using

the ENVI software. The overall accuracies are summarized in

Table VIII. The numbers in Table VIII support the visual and

semi-quantitative evaluations that we made above.

In Table VIII, an increase in the difference of accuracy

with growing number of bands can be seen in favor of the

ANN, compared to the runner-up MED. While in the 13-band

and 30-band cases only a 2–3% difference shows between

the ANN and the MED, for the 194-band case the difference

is a more impressive ≈7%. The comparison with the SAM

does not show this trend, however, the SAM remains ≈9.5%
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Fig. 6. The mean spectra of the training samples (solid lines) for each class, and the mean of the pixels classified by the MLH classifier into the respective
classes (dashed lines), using the 30-band subsampled image cube. The vertical bars show the 1 standard deviation of the training samples. The mean of the
predicted classes departs considerably from the mean of the training sampes for a number of classes on the left, indicating a poor match between the known
training representatives and the predicted members of the classes. In contrast, the match is very good for the classes on the right: the training and class means
are virtually indistinguishable (and therefore the dashed line of the class mean may not be easy to see). This, however, does not mean excellent classification
for all classes here, because a number of them have barely more than the training pixels classified into them.

Fig. 7. Examples of typical misclassifications by the MLH classifier, from left to right, for a class J, a class Q, and another class J sample. In each panel,
the top plots show how the correctly classified sample pattern (thick line) fits into the envelop of the training samples (thin dotted lines) of the corresponding
class. The bottom plot shows how the same sample fits with the envelope of the class into which MLH misclassified the pattern.
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below the accuracy of the ANN, for all cases. The increase

in accuracy between the 13- and 194-band versions of the

individual classifiers is greater than 12% for the ANN, less

than 9% for the MED, and greater than 12% for the SAM. This

underlines that for high-dimensional data the sophistication

of the classifier can make a significant difference. It also

shows that even for low-dimensional data the difference in

performance can be considerable (such as in the 13-band case).

Somewhat puzzling is the fact that the accuracy of most of the

classifiers is lower for the 30-band case than for the 13-band

selection. We have not investigated the reason of this seeming

contradiction, but we can speculate that certain combinations

of the subselected bands (such as in our 30-band case) may

not add more information than it increases the “burden” on the

classifier for the discrimination of classes. One previous work

that seems to support this thought is Moon and Merényi, 1995,

where an inconclusive trend of classification accuracies was

observed as a function of band selections made with increasing

number of highest-magnitude wavelet coefficients. Another,

more recent, work showed that selection of bands based on

intelligent understanding of the data structure combined with

taking the classification goals into account produces better

results, and a consistent trend with the number of bands

(Mendenhall and Merényi, 2006, 2007).

TABLE III
CLASSIFICATION ACCURACIES FOR THE ANN CLASSIFICATIONS

194-band 30-band 13-band
user prod user prod user prod

class accuracy accuracy accuracy

A 98.36 96.45 97.69 95.48 98.23 89.35
B 95.33 71.50 67.95 53.00 88.29 49.00
C 95.05 86.50 79.65 90.00 77.78 87.50
D 92.49 93.81 81.63 95.24 81.67 93.33
E 93.88 87.62 92.68 90.48 94.82 87.14
F 40.48 85.00 41.98 85.00 39.00 97.50
G 100.00 64.74 87.72 57.80 100.00 64.16
H 96.92 100.00 97.44 69.09 95.24 90.91
I 50.81 63.00 79.05 83.00 48.08 75.00
J 100.00 96.00 99.04 82.40 100.00 94.40
K 93.25 94.00 97.11 67.20 95.24 64.00
L 97.66 97.66 85.46 90.65 94.81 93.93
M 91.67 82.50 84.21 56.00 93.20 48.00
N 88.32 98.33 70.37 19.00 58.33 30.33
O 94.90 96.13 62.68 86.13 80.86 66.77
P 97.25 82.67 77.52 66.67 70.03 92.67
Q 98.60 96.36 95.67 90.45 97.20 94.55
R 88.46 92.00 95.45 84.00 100.00 78.00
S 90.57 80.00 89.09 81.67 78.67 98.33
T 90.91 92.31 92.65 96.92 91.80 86.15
U 77.78 73.50 73.50 86.00 75.86 66.00
V 100.00 62.00 43.21 70.00 23.27 74.00
W 94.36 92.00 85.29 72.50 79.49 77.50

Acc(%)=88.71 Acc(%)=75.02 Acc(%)=76.39
κ = .8811 κ = .7380 κ = .7522

We add for completeness that if we exclude the unclassified

pixels from the confusion matrices as “neutral” (neither wrong

nor correct), the accuracy of the ANN and the SAM classifiers

are higher than shown in Table VIII (≈92% and ≈82%,

respectively), while the accuracies of the other classifiers

remain the same as those have no unclassified samples. While

TABLE IV
CLASSIFICATION ACCURACIES FOR THE MED CLASSIFICATIONS

194-band 30-band 13-band
user prod user prod user prod

class accuracy accuracy accuracy

A 98.39 98.39 98.39 98.71 98.39 98.71
B 96.05 36.50 84.00 21.00 66.67 23.00
C 54.63 56.50 26.50 55.00 41.37 51.50
D 91.44 96.67 92.38 96.67 90.67 97.14
E 88.20 67.62 89.05 70.48 87.10 64.29
F 41.05 97.50 -32.50 90.00 41.30 95.00
G 100.00 67.05 100.00 65.32 100.00 65.32
H 98.14 95.91 97.73 85.91 98.48 88.64
I 33.49 70.00 -99.00 65.00 24.33 64.00
J 100.00 100.00 98.00 98.80 98.81 99.60
K 97.22 84.00 99.20 84.00 97.98 77.60
L 93.69 97.20 96.99 96.73 93.27 97.20
M 98.18 27.00 98.50 16.50 88.24 22.50
N 97.66 83.33 78.33 9.33 61.88 33.00
O 88.86 95.16 47.74 78.71 71.79 81.29
P 80.00 96.00 50.00 97.67 65.31 96.00
Q 99.07 96.82 97.73 95.91 96.76 95.00
R 100.00 94.00 100.00 92.00 93.33 84.00
S 81.94 98.33 53.33 95.00 65.48 91.67
T 45.61 80.00 32.31 81.54 48.21 83.08
U 43.21 78.00 12.50 68.00 33.89 51.00
V 71.43 70.00 28.00 66.00 43.06 62.00
W 95.40 83.00 97.00 73.00 94.70 71.50

Acc(%)=82.04 Acc(%)=72.85 Acc(%)=73.29
κ = .8126 κ = .7140 κ = .7187

TABLE V
CLASSIFICATION ACCURACIES FOR THE SAM CLASSIFICATIONS

194-band 30-band 13-band
user prod user prod user prod

class accuracy accuracy accuracy

A 98.34 95.48 98.70 73.55 98.77 77.42
B 96.05 36.50 54.05 20.00 55.26 21.00
C 54.63 56.00 35.42 42.50 38.14 45.00
D 91.44 96.67 91.44 96.67 91.86 96.67
E 88.20 67.62 89.16 70.48 89.40 64.29
F 41.94 65.00 40.26 77.50 42.17 87.50
G 100.00 8.09 100.00 18.50 100.00 24.86
H 98.14 95.91 97.56 90.91 98.04 90.91
I 33.49 70.00 24.80 63.00 26.52 61.00
J 100.00 100.00 98.41 99.20 98.80 99.20
K 97.22 84.00 99.04 82.40 97.51 78.40
L 93.69 97.20 94.84 94.39 94.50 96.26
M 100.00 27.00 94.44 17.00 92.98 26.50
N 97.66 83.33 5.51 2.33 12.16 6.00
O 88.86 95.16 49.24 62.90 49.24 62.90
P 80.00 96.00 72.84 95.67 70.05 94.33
Q 99.07 96.82 97.71 96.82 96.77 95.45
R 100.00 94.00 79.63 86.00 78.43 80.00
S 81.94 98.33 63.01 76.67 61.04 78.33
T 45.61 80.00 53.54 81.54 48.21 83.08
U 43.21 78.00 39.21 64.50 36.67 60.50
V 71.43 70.00 41.94 78.00 40.79 62.00
W 95.40 83.00 93.46 71.50 94.70 71.50

Acc(%)=79.18 Acc(%)=66.37 Acc(%)=66.81
κ = .7808 κ = .0.6466 κ = .6510

the statistics without the unclassified pixels provides less than

a complete picture of the classification quality, it is a valuable

measure of the classifier’s pattern matching capability, and its

sensitivity to uncertainty. Table IX lists the overall accuracies

when calculated without the unclassified pixels, i.e., the per-

cent of correctly classified test samples which were assigned
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TABLE VI
CLASSIFICATION ACCURACIES FOR THE MLH CLASSIFICATIONS

194-band 30-band 13-band
user prod user prod user prod

class accuracy accuracy accuracy

A 96.81 97.74 96.87 99.68
B 96.97 16.00 87.23 61.50
C 58.08 84.50 80.44 90.50
D 62.86 94.29 87.34 95.24
E 35.52 98.10 41.50 100.00
F 54.00 67.50 10.93 100.00
G 14.87 83.82 48.89 50.87
H 100.00 5.91 77.51 73.64
I 82.08 87.00 36.72 94.00
J 100.00 1.20 0.00 0.00
K 80.00 8.00 98.55 54.40
L 32.47 99.53 66.88 97.20
M 54.55 6.00 100.00 2.50
N 92.73 17.00 100.00 6.33
O 56.20 65.81 49.31 69.03
P 95.42 76.33 71.32 90.33
Q 100.00 12.27 100.00 17.73
R 100.00 68.00 100.00 32.00
S 96.88 51.67 93.33 46.67
T 100.00 30.77 85.71 92.31
U 93.24 34.50 80.39 82.00
V 51.47 70.00 100.00 26.00
W 89.66 13.00 65.70 79.50

Acc(%)=N/A Acc(%)=49.72 Acc(%)=63.23
κ = N/A κ = .0.4713 κ = .6136

TABLE VII
CLASSIFICATION ACCURACIES FOR THE MHD CLASSIFICATIONS

194-band 30-band 13-band
user prod user prod user prod

class accuracy accuracy accuracy

A 93.31 90.00 97.75 98.06
B 75.00 60.00 100.00 18.50
C 58.49 46.50 68.36 87.50
D 75.74 84.76 83.47 93.81
E 99.44 84.76 39.11 100.00
F 35.87 82.50 10.03 100.00
G 100.00 50.29 36.75 24.86
H 72.91 83.18 78.80 77.73
I 63.50 87.00 23.54 93.00
J 97.50 93.60 100.00 0.40
K 80.81 64.00 93.94 49.60
L 74.09 85.51 71.08 95.33
M 40.38 10.50 00.00 00.00
N 85.25 52.00 100.00 5.00
O 57.49 60.65 48.41 59.03
P 82.43 81.33 78.19 83.67
Q 87.76 94.55 100.00 11.82
R 82.46 94.00 100.00 24.00
S 89.06 95.00 100.00 33.33
T 89.71 93.85 94.83 84.62
U 48.48 95.50 81.60 66.50
V 25.53 72.00 100.00 12.00
W 51.53 59.00 84.92 76.00

Acc(%)=N/A Acc(%)=72.53 Acc(%)=59.34
κ = N/A κ = .0.7108 κ = .5726

a label by the classifier. Table IX also shows that the number

of unclassified test pixels is a small (approx. 3.4%) for the

194-band cases, and it remains below 10% for all cases. It is

interesting though that for both ANN and SAM the 30-band

cases have more unclassified pixels than either the 194- or the

13-band cases, and that the exclusion of the unclassified test

TABLE VIII
SUMMARY OF OVERALL CLASSIFICATION ACCURACIES AND κ VALUES

FOR TEST DATA.

194-band 30-band 13-band
% κ % κ % κ

ANN 88.72 0.88 75.02 0.74 76.36 0.75
MED 82.04 0.81 72.85 0.71 73.29 0.72
SAM 79.18 0.78 66.37 0.65 66.81 0.65
MLH 49.72 0.47 63.23 0.61
MHD 72.53 0.71 59.34 0.57

TABLE IX
SUMMARY OF OVERALL CLASSIFICATION ACCURACIES FOR TEST DATA,
COMPUTED WITH EXCLUSION OF UNCLASSIFIED SAMPLES. NUMBERS

UNDER #UC INDICATE THE NUMBER OF UNCLASSIFIED TEST SAMPLES

(OUT OF 4332 TEST SAMPLES) FOR EACH CASE.

194-band 30-band 13-band
% #uc % #uc % #uc

ANN 91.89 150 82.13 375 81.24 259
MED 82.04 0 72.85 0 73.29 0
SAM 81.92 145 69.34 186 69.30 156
MLH 49.72 0 63.23 0
MHD 72.53 0 59.34 0

pixels from the accuracy calculation effects a reversal of the

accuracy ranking between the 13- and the 30-band maps.

V. CONCLUSIONS AND FUTURE DIRECTIONS

The main thrust of this paper was to compare the perfor-

mances of classifiers for hyperspectral data under realistic

circumstances. We used real AVIRIS data with real noise.

The SOM-hybrid ANN classifier produced the most accurate

map from the 194-band hyperspectral data with 23 cover

classes (89%), followed by the Minimum Euclidean Distance

algorithm (82%), and the Spectral Angle Mapper (79%). The

two covariance based methods, Maximum Likelihood and

Mahalonobis Distance, could not be applied to the full spectral

resolution, which resluted in best case map accuracies of 63%

and 73% for these classifiers, respectively.

It would be valuable to extend the range of non-ANN

classifiers in a future comparative work to relatively new

ones that have been gaining recognition. Some of the

candidates are Constrained Energy Minimization (CEM)

(Farrand and Harsanyi, 1997), the “Tetracorder” algorithm

(Clark et al., 2003), and the n-dimensional Probability Den-

sity Function (n-dPDF) (Cetin and Levandowski, 1991). Fur-

ther interesting comparisons would be with Bayesian clas-

sifiers (e.g., Ramsey et al., 2002), rule based AI classifiers

(e.g., Gazis and Roush, 2001), or some of those (variants

of Bayesian, neural net, minimum distance classifiers) in the

data mining environment of ADaM (Rushing et al., 2005).

However, not all of these (and other emerging) algorithms

are commonly available or straighforward to use, thus a

comparison study would need more extensive collaboration

with their authors.

Equipped with the capability to produce a good benchmark
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classification with the full spectral resolution of hyperspectral

data, one can do systematic dimensionality reduction and

rigorously assess the effect. We note that dimensionality

reduction is most frequently performed by PCA or wavelets,

or by selection of important bands by domain experts. We

found undesirable loss of class distinction with all of these

approaches (Howell et al., 1994, Moon and Merényi, 1995,

and as discussed in this paper). Non-linear dimensionality

reduction approaches, especially with AI, neural network

techniques such as by Benediktsson et al., 1994, Mendenhall

and Merényi, 2006, retain more of the relevant information

and can improve classification accuracy at the same time.

A systematic investigation of noise sensitivity to test how

the classifiers’ performance changes with known amounts of

various forms of noise is a desirable subject of a future

study. While one classifier may outperform others in a low-

noise situation another could prove more robust under noisy

circumstances even if the classification accuracy is lower.

These and other properties of classifiers should make up a

more complete picture of the suitability of different methods

for different purposes.

ANN classifiers, and the above described SOM-hybrid clas-

sifier in particular, are directly applicable to fused disparate

data (such as spectral, elevation or geophysical measurements

together), which could improve classification, but processing

such data with traditional methods is admittedly a problem

because estimation of the relative contributions of the different

components is difficult (Benediktsson et al., 1990b). Neural

approaches, in contrast, can derive those contribution weight-

ings during supervised learning from labeled data samples.

Economy of computation is another important aspect by

which methods could and should be compared. We did not do

it here because the ANN is an inherently massively parallel

procedure which, when run on sequential computers, is very

slow. A training session for this LCVF image, including the

concurrent monitoring of the training, can take hours on low

end Sun workstations (depending on the CPU speed of the

given machine). Real, large-scale applications will need to

invest in appropriate massively parallel hardware in order to

utilize the full power of ANNs.

Finally, we want to suggest that accuracy assessment will

need to be dealt with differently for hyperspectral classifica-

tions than for lower-dimensionality data. Hyperspectral dimen-

sionality poses a difficult challenge for rigorous performance

evaluations because of the unavailability of the number of test

samples required for menaningful statistics. One possibility

to overcome this, for the purpose of comparing various clas-

sifiers, is to use synthetically created hyperspectral imagery

where each pixel is labeled. This is becoming a realistic

choice through rigorous simulation work (Schott et al., 1999,

Ientilucci and Brown, 2003). We want to stress, however, the

need for research that can yield new, innovative measures of

performance for accuracy evaluation of class maps obtained

from real data, for which it is not possible to obtain the

requisite number of test samples. Such new measures will

have to produce the same results as the κ-statistics or other

widely accepted measure, for known test data (such as we

constructed for this study, or for synthetic data), while relying

on less test data points and perhaps using more of the internal

characteristics of the data.
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